Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4281eb49
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4281eb49
编写于
4月 14, 2021
作者:
X
XGZhang
提交者:
GitHub
4月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new post-quant methods (#32208)
上级
cb81826a
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
334 addition
and
46 deletion
+334
-46
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+163
-44
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+50
-1
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+60
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+44
-0
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+17
-1
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
4281eb49
...
...
@@ -55,7 +55,7 @@ def _set_variable_data(scope, place, var_name, np_value):
Set the value of var node by name, if the node exits,
'''
assert
isinstance
(
np_value
,
np
.
ndarray
),
\
'The type of value should be numpy array.'
'The type of value should be numpy array.'
var_node
=
scope
.
find_var
(
var_name
)
if
var_node
!=
None
:
tensor
=
var_node
.
get_tensor
()
...
...
@@ -138,8 +138,10 @@ class PostTrainingQuantization(object):
batch_size
=
10
,
batch_nums
=
None
,
algo
=
"KL"
,
hist_percent
=
0.99999
,
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
],
is_full_quantize
=
False
,
bias_correction
=
False
,
activation_bits
=
8
,
weight_bits
=
8
,
activation_quantize_type
=
'range_abs_max'
,
...
...
@@ -180,7 +182,13 @@ class PostTrainingQuantization(object):
get the KL threshold for quantized activations and get the abs_max
value for quantized weights. If algo='abs_max', get the abs max
value for activations and weights. If algo= 'min_max', get the min
and max value for quantized activations and weights. Default is KL.
and max value for quantized activations and weights. If algo='avg',
get the average value among the max values for activations. If
algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
If algo='mse', get the value which makes the quantization mse loss
minimal. Default is KL.
hist_percent(float, optional): The threshold of algo 'hist' for activations.
Default is 0.99999.
quantizable_op_type(list[str], optional): List the type of ops
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
"mul"].
...
...
@@ -188,6 +196,8 @@ class PostTrainingQuantization(object):
apply quantization to all supported quantizable op type. If set
is_full_quantized as False, only apply quantization to the op type
according to the input quantizable_op_type.
bias_correction(bool, optional): If set as True, use the bias correction
method of https://arxiv.org/abs/1810.05723. Default is False.
activation_bits(int): quantization bit number for activation.
weight_bits(int, optional): quantization bit number for weights.
activation_quantize_type(str): quantization type for activation,
...
...
@@ -255,7 +265,9 @@ class PostTrainingQuantization(object):
'range_abs_max'
,
'moving_average_abs_max'
,
'abs_max'
]
self
.
_support_weight_quantize_type
=
[
'abs_max'
,
'channel_wise_abs_max'
]
self
.
_support_algo_type
=
[
'KL'
,
'abs_max'
,
'min_max'
]
self
.
_support_algo_type
=
[
'KL'
,
'hist'
,
'avg'
,
'mse'
,
'abs_max'
,
'min_max'
]
self
.
_dynamic_quantize_op_type
=
[
'lstm'
]
self
.
_support_quantize_op_type
=
\
list
(
set
(
QuantizationTransformPass
.
_supported_quantizable_op_type
+
...
...
@@ -270,7 +282,7 @@ class PostTrainingQuantization(object):
"cannot be None in the same time."
assert
batch_size
>
0
,
"The batch_size should be greater than 0."
assert
algo
in
self
.
_support_algo_type
,
\
"The algo should be KL, abs_max or min_max."
"The algo should be KL,
hist, mse, avg,
abs_max or min_max."
assert
activation_quantize_type
in
self
.
_support_activation_quantize_type
,
\
"The activation_quantize_type ({}) should in ({})."
.
format
(
activation_quantize_type
,
self
.
_support_activation_quantize_type
)
...
...
@@ -279,6 +291,7 @@ class PostTrainingQuantization(object):
weight_quantize_type
,
self
.
_support_weight_quantize_type
)
# Save input params
self
.
_bias_correction
=
bias_correction
self
.
_executor
=
executor
self
.
_scope
=
global_scope
()
if
scope
==
None
else
scope
self
.
_model_dir
=
model_dir
...
...
@@ -289,6 +302,7 @@ class PostTrainingQuantization(object):
self
.
_batch_size
=
batch_size
self
.
_batch_nums
=
batch_nums
self
.
_algo
=
algo
self
.
_hist_percent
=
hist_percent
self
.
_activation_bits
=
activation_bits
self
.
_weight_bits
=
weight_bits
self
.
_activation_quantize_type
=
activation_quantize_type
...
...
@@ -314,17 +328,21 @@ class PostTrainingQuantization(object):
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_act_var_name
=
set
()
self
.
_weight_op_pairs
=
{}
# The vars for alog = KL
# The vars for alog = KL
or hist
self
.
_sampling_act_abs_min_max
=
{}
self
.
_sampling_act_histogram
=
{}
self
.
_sampling_data
=
{}
self
.
_quantized_var_
kl_
threshold
=
{}
self
.
_quantized_var_threshold
=
{}
self
.
_histogram_bins
=
2048
# The vars for algo = min_max
self
.
_quantized_var_min
=
{}
self
.
_quantized_var_max
=
{}
# The vars for algo = abs_max
self
.
_quantized_var_abs_max
=
{}
# The vars for algo = avg
self
.
_quantized_var_avg
=
{}
# The best loss of algo = mse
self
.
_best_mse_loss
=
{}
# The threshold for algo = abs_max, mse or avg
self
.
_quantized_threshold
=
{}
def
quantize
(
self
):
'''
...
...
@@ -341,7 +359,7 @@ class PostTrainingQuantization(object):
self
.
_collect_target_varnames
()
self
.
_set_activation_persistable
()
if
self
.
_algo
==
"KL"
:
if
self
.
_algo
in
[
"KL"
,
"hist"
]
:
_logger
.
info
(
"Preparation stage ..."
)
batch_id
=
0
for
data
in
self
.
_data_loader
():
...
...
@@ -374,13 +392,14 @@ class PostTrainingQuantization(object):
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"Finish sampling stage, all batch: "
+
str
(
batch_id
))
self
.
_reset_activation_persistable
()
if
self
.
_algo
==
"KL"
:
self
.
_calculate_kl_threshold
()
if
self
.
_algo
in
[
"KL"
,
"abs_max"
]:
if
self
.
_algo
==
'avg'
:
for
var_name
in
self
.
_quantized_act_var_name
:
self
.
_quantized_threshold
[
var_name
]
=
\
np
.
array
(
self
.
_quantized_var_avg
[
var_name
]).
mean
()
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
self
.
_calculate_kl_hist_threshold
()
if
self
.
_algo
in
[
"KL"
,
"abs_max"
,
"hist"
,
"avg"
,
"mse"
]:
self
.
_update_program
()
else
:
self
.
_save_input_threhold
()
...
...
@@ -526,14 +545,84 @@ class PostTrainingQuantization(object):
'''
if
self
.
_algo
==
"abs_max"
:
self
.
_sample_abs_max
()
elif
self
.
_algo
==
"avg"
:
self
.
_sample_avg
()
elif
self
.
_algo
==
"min_max"
:
self
.
_sample_min_max
()
elif
self
.
_algo
==
"KL"
:
elif
self
.
_algo
==
"mse"
:
self
.
_sample_mse
()
elif
self
.
_algo
in
[
"KL"
,
"hist"
]:
self
.
_sample_histogram
()
def
_sample_mse
(
self
):
if
self
.
_quantized_threshold
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
if
self
.
_weight_quantize_type
==
"abs_max"
:
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
elif
self
.
_weight_quantize_type
==
"channel_wise_abs_max"
:
abs_max_value
=
[]
if
self
.
_weight_op_pairs
[
var_name
]
in
_channelwise_quant_axis1_ops
:
for
i
in
range
(
var_tensor
.
shape
[
1
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[:,
i
]))))
else
:
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
_logger
.
info
(
"MSE searching stage ..."
)
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
flatten
()
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
s
=
0.3
if
var_name
not
in
self
.
_best_mse_loss
:
self
.
_best_mse_loss
[
var_name
]
=
float
(
'inf'
)
while
s
<=
1.0
:
scale
=
s
*
abs_max_value
s
+=
0.02
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
quant_dequant_var
=
np
.
round
(
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
bins
)
/
bins
*
scale
mse_loss
=
((
var_tensor
-
quant_dequant_var
)
**
2
).
mean
()
if
mse_loss
<=
self
.
_best_mse_loss
[
var_name
]:
self
.
_best_mse_loss
[
var_name
]
=
mse_loss
self
.
_quantized_threshold
[
var_name
]
=
scale
def
_sample_avg
(
self
):
if
self
.
_quantized_threshold
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
if
self
.
_weight_quantize_type
==
"abs_max"
:
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
elif
self
.
_weight_quantize_type
==
"channel_wise_abs_max"
:
abs_max_value
=
[]
if
self
.
_weight_op_pairs
[
var_name
]
in
_channelwise_quant_axis1_ops
:
for
i
in
range
(
var_tensor
.
shape
[
1
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[:,
i
]))))
else
:
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
if
(
var_name
not
in
self
.
_quantized_var_avg
):
self
.
_quantized_var_avg
[
var_name
]
=
[]
abs_avg_value
=
float
(
np
.
mean
(
np
.
max
(
\
np
.
abs
(
var_tensor
.
reshape
(
var_tensor
.
shape
[
0
],
-
1
)),
axis
=
(
1
))))
self
.
_quantized_var_avg
[
var_name
].
append
(
abs_avg_value
)
continue
def
_sample_abs_max
(
self
):
# Only calculate abs_max value for weight for once
if
self
.
_quantized_var_abs_max
==
{}:
if
self
.
_quantized_threshold
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
if
self
.
_weight_quantize_type
==
"abs_max"
:
...
...
@@ -549,14 +638,14 @@ class PostTrainingQuantization(object):
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_
var_abs_max
[
var_name
]
=
abs_max_value
self
.
_quantized_
threshold
[
var_name
]
=
abs_max_value
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
if
(
var_name
not
in
self
.
_quantized_
var_abs_max
)
or
\
(
abs_max_value
>
self
.
_quantized_
var_abs_max
[
var_name
]):
self
.
_quantized_
var_abs_max
[
var_name
]
=
abs_max_value
if
(
var_name
not
in
self
.
_quantized_
threshold
)
or
\
(
abs_max_value
>
self
.
_quantized_
threshold
[
var_name
]):
self
.
_quantized_
threshold
[
var_name
]
=
abs_max_value
def
_sample_min_max
(
self
):
if
self
.
_quantized_var_min
==
{}
and
self
.
_quantized_var_max
==
{}:
...
...
@@ -646,12 +735,12 @@ class PostTrainingQuantization(object):
[],
bins
=
self
.
_histogram_bins
,
range
=
(
min_val
,
max_val
))
self
.
_sampling_act_histogram
[
var_name
]
=
[
hist
,
hist_edeges
]
def
_calculate_kl_threshold
(
self
):
def
_calculate_kl_
hist_
threshold
(
self
):
'''
Calculate the KL threshold of quantized variables.
Calculate the KL
or hist
threshold of quantized variables.
'''
_logger
.
info
(
"Calculate
KL threshold ..."
)
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to calculate kl threshold
."
_logger
.
info
(
"Calculate
{} threshold ..."
.
format
(
self
.
_algo
)
)
assert
self
.
_algo
in
[
"KL"
,
"hist"
],
"The algo should be KL or hist
."
# Abs_max threshold for weights
for
var_name
in
self
.
_quantized_weight_var_name
:
...
...
@@ -669,18 +758,22 @@ class PostTrainingQuantization(object):
for
i
in
range
(
weight_data
.
shape
[
0
]):
weight_threshold
.
append
(
float
(
np
.
max
(
np
.
abs
(
weight_data
[
i
]))))
self
.
_quantized_var_
kl_
threshold
[
var_name
]
=
weight_threshold
self
.
_quantized_var_threshold
[
var_name
]
=
weight_threshold
for
var_name
in
self
.
_quantized_act_var_name
:
hist
,
hist_edeges
=
self
.
_sampling_act_histogram
[
var_name
]
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
hist
,
hist_edeges
)
if
self
.
_algo
==
"KL"
:
self
.
_quantized_var_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
hist
,
hist_edeges
)
elif
self
.
_algo
==
"hist"
:
self
.
_quantized_var_threshold
[
var_name
]
=
\
self
.
_get_hist_scaling_factor
(
hist
,
hist_edeges
)
def
_update_program
(
self
):
'''
Use QuantizationTransformPass and AddQuantDequantPass to insert
fake_quantize, fake_dequantize and fake_quant_dequant op.
Besides, save all
kl
threshold to the scale var node.
Besides, save all threshold to the scale var node.
'''
_logger
.
info
(
"Update the program ..."
)
graph
=
IrGraph
(
core
.
Graph
(
self
.
_program
.
desc
),
for_test
=
True
)
...
...
@@ -711,11 +804,11 @@ class PostTrainingQuantization(object):
quantizable_op_type
=
minor_quantizable_op_types
)
add_quant_dequant_pass
.
apply
(
graph
)
# save
abs_max or KL
threshold to scale var node
if
self
.
_algo
==
"KL"
:
scale_dict
=
self
.
_quantized_var_
kl_
threshold
# save threshold to scale var node
if
self
.
_algo
in
[
"KL"
,
"hist"
]
:
scale_dict
=
self
.
_quantized_var_threshold
else
:
scale_dict
=
self
.
_quantized_
var_abs_max
scale_dict
=
self
.
_quantized_
threshold
for
key
,
val
in
scale_dict
.
items
():
_set_variable_data
(
self
.
_scope
,
...
...
@@ -734,6 +827,7 @@ class PostTrainingQuantization(object):
freeze_pass
=
QuantizationFreezePass
(
scope
=
self
.
_scope
,
place
=
self
.
_place
,
bias_correction
=
self
.
_bias_correction
,
weight_bits
=
self
.
_weight_bits
,
activation_bits
=
self
.
_activation_bits
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
...
...
@@ -761,20 +855,28 @@ class PostTrainingQuantization(object):
out_var_name
+
" is not the output of the op"
if
self
.
_algo
==
"KL"
:
# For compatibility, we save output threshold by two methods.
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_kl_threshold
,
"out_threshold"
,
"post_kl"
)
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_threshold
,
"out_threshold"
,
"post_kl"
)
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_
kl_
threshold
,
op_node
,
out_var_name
,
self
.
_quantized_var_threshold
,
argname_index
[
0
]
+
str
(
argname_index
[
1
])
+
"_threshold"
,
"post_kl"
)
elif
self
.
_algo
==
"abs_max"
:
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_abs_max
,
"out_threshold"
,
"post_abs_max"
)
elif
self
.
_algo
==
"hist"
:
# For compatibility, we save output threshold by two methods.
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_threshold
,
"out_threshold"
,
"post_hist"
)
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_
abs_max
,
op_node
,
out_var_name
,
self
.
_quantized_var_
threshold
,
argname_index
[
0
]
+
str
(
argname_index
[
1
])
+
"_threshold"
,
"post_kl"
)
"post_hist"
)
elif
self
.
_algo
in
[
"avg"
,
"abs_max"
,
"mse"
]:
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_threshold
,
"out_threshold"
,
"post_"
+
str
(
self
.
_algo
))
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_threshold
,
argname_index
[
0
]
+
str
(
argname_index
[
1
])
+
"_threshold"
,
"post_"
+
str
(
self
.
_algo
))
elif
self
.
_algo
==
"min_max"
:
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_min
,
"out_min"
,
"post_min_max"
)
...
...
@@ -817,10 +919,27 @@ class PostTrainingQuantization(object):
op
.
_set_attr
(
"quantization_type"
,
quantization_type
)
op
.
_set_attr
(
"bit_length"
,
self
.
_weight_bits
)
def
_get_kl_scaling_factor
(
self
,
hist
,
hist_edeges
,
num_quantized_bins
=
255
):
def
_get_hist_scaling_factor
(
self
,
hist
,
hist_edges
):
'''
Using the hist method to get the scaling factor.
'''
threshold_rate
=
self
.
_hist_percent
hist
=
hist
/
float
(
sum
(
hist
))
hist_sum
=
0
hist_index
=
0
for
i
in
range
(
len
(
hist
)):
hist_sum
+=
hist
[
i
]
if
hist_sum
>=
threshold_rate
:
hist_index
=
i
+
1
break
bin_width
=
hist_edges
[
1
]
-
hist_edges
[
0
]
return
(
hist_index
-
0.5
)
*
bin_width
def
_get_kl_scaling_factor
(
self
,
hist
,
hist_edeges
):
'''
Using the KL-divergenc method to get the more precise scaling factor.
'''
num_quantized_bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
ending_iter
=
self
.
_histogram_bins
-
1
starting_iter
=
int
(
ending_iter
*
0.7
)
bin_width
=
hist_edeges
[
1
]
-
hist_edeges
[
0
]
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
4281eb49
...
...
@@ -1070,6 +1070,7 @@ class QuantizationFreezePass(object):
def
__init__
(
self
,
scope
,
place
,
bias_correction
=
False
,
weight_bits
=
8
,
activation_bits
=
8
,
weight_quantize_type
=
'abs_max'
,
...
...
@@ -1085,6 +1086,8 @@ class QuantizationFreezePass(object):
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
bias_correction(bool): whether use bias correction for post-training quantization.
https://arxiv.org/abs/1810.05723.
weight_bits(int): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
...
...
@@ -1098,6 +1101,7 @@ class QuantizationFreezePass(object):
assert
place
is
not
None
,
\
'The place cannot be set None.'
self
.
_scope
=
scope
self
.
_bias_correction
=
bias_correction
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
...
...
@@ -1154,7 +1158,10 @@ class QuantizationFreezePass(object):
else
:
quant_axis
=
0
quantized_param_v
=
self
.
_quant
(
param_v
,
scale_v
,
self
.
_weight_bits
,
quant_axis
)
param_v
.
copy
(),
scale_v
,
self
.
_weight_bits
,
quant_axis
)
if
self
.
_bias_correction
==
True
:
quantized_param_v
=
self
.
_bias_correction_w
(
param_v
,
quantized_param_v
,
scale_v
,
quant_axis
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
...
...
@@ -1373,6 +1380,8 @@ class QuantizationFreezePass(object):
if
isinstance
(
scale
,
list
):
for
i
,
s
in
enumerate
(
scale
):
if
s
==
0.0
:
s
=
1e-8
if
quant_axis
==
0
:
x
[
i
]
=
_clip
(
x
[
i
],
s
)
x
[
i
]
=
np
.
round
(
x
[
i
]
/
s
*
bnt
)
...
...
@@ -1384,6 +1393,46 @@ class QuantizationFreezePass(object):
x
=
np
.
round
(
x
/
scale
*
bnt
)
return
x
def
_bias_correction_w
(
self
,
x
,
x_quant
,
scale_v
,
quant_axis
):
'''
Bias correction for weight
'''
eps
=
1e-8
bnt
=
(
1
<<
(
self
.
_weight_bits
-
1
))
-
1
x_dequant
=
x_quant
.
copy
()
if
isinstance
(
scale_v
,
list
):
if
quant_axis
==
0
:
for
i
,
s
in
enumerate
(
scale_v
):
x_dequant
[
i
]
=
x_dequant
[
i
]
*
s
/
bnt
quant_bias
=
x
-
x_dequant
mean_bias
=
quant_bias
.
reshape
(
quant_bias
.
shape
[
0
],
-
1
).
mean
(
-
1
)
std_orig
=
x
.
reshape
(
x
.
shape
[
0
],
-
1
).
std
(
-
1
)
std_quant
=
x_dequant
.
reshape
(
x_dequant
.
shape
[
0
],
-
1
).
std
(
-
1
)
std_bias
=
std_orig
/
(
std_quant
+
eps
)
else
:
for
i
,
s
in
enumerate
(
scale_v
):
x_dequant
[:,
i
]
=
x_quant
[:,
i
]
*
s
/
bnt
quant_bias
=
x
-
x_dequant
mean_bias
=
np
.
array
([
quant_bias
[:,
i
].
mean
()
for
i
in
range
(
quant_bias
.
shape
[
1
])
])
std_orig
=
np
.
array
([
x
[:,
i
].
std
()
for
i
in
range
(
x
.
shape
[
1
])])
std_quant
=
np
.
array
(
[
x_dequant
[:,
i
].
std
()
for
i
in
range
(
x_dequant
.
shape
[
1
])])
std_bias
=
std_orig
/
(
std_quant
+
eps
)
else
:
x_dequant
=
x_quant
*
scale_v
/
bnt
mean_bias
=
(
x
-
x_dequant
).
mean
()
std_bias
=
x
.
std
()
/
(
x_dequant
.
std
()
+
eps
)
if
mean_bias
.
ndim
==
1
:
std_bias
=
np
.
resize
(
std_bias
,
x
.
shape
)
mean_bias
=
np
.
resize
(
mean_bias
,
x
.
shape
)
x_dequant
=
(
mean_bias
+
x_dequant
)
*
std_bias
quantized_param_v
=
self
.
_quant
(
x_dequant
,
scale_v
,
self
.
_weight_bits
,
quant_axis
)
return
quantized_param_v
class
ConvertToInt8Pass
(
object
):
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
None
):
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
浏览文件 @
4281eb49
...
...
@@ -204,6 +204,66 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
quant_iterations
)
class
TestPostTraininghistForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_hist
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"hist"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingmseForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_mse
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingavgForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_avg
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"avg"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingAbsMaxForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max
(
self
):
model_name
=
"mnist_model"
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
4281eb49
...
...
@@ -328,6 +328,50 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
diff_threshold
)
class
TestPostTrainingavgForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_avg_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"avg"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTraininghistForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_hist_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"hist"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTrainingAbsMaxForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
4281eb49
...
...
@@ -257,6 +257,7 @@ class TestQuantizationFreezePass(unittest.TestCase):
use_cuda
,
seed
,
activation_quant_type
,
bias_correction
=
False
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
,
quant_skip_pattern
=
'skip_quant'
):
...
...
@@ -355,7 +356,8 @@ class TestQuantizationFreezePass(unittest.TestCase):
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quant_type
)
scope
=
scope
,
place
=
place
,
bias_correction
=
bias_correction
,
\
weight_quantize_type
=
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
if
not
for_ci
:
marked_nodes
=
set
()
...
...
@@ -472,6 +474,13 @@ class TestQuantizationFreezePass(unittest.TestCase):
def
test_freeze_graph_cuda_static
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'range_abs_max'
,
bias_correction
=
True
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
...
...
@@ -496,6 +505,13 @@ class TestQuantizationFreezePass(unittest.TestCase):
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'moving_average_abs_max'
,
bias_correction
=
True
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cpu_static
(
self
):
with
fluid
.
unique_name
.
guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录