Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
89069af5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89069af5
编写于
12月 10, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
12月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support quantization of condition block (#37498)
* Support sub graph quant-post
上级
76c73226
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
387 addition
and
41 deletion
+387
-41
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+72
-41
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+2
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_while.py
...ntrib/slim/tests/test_post_training_quantization_while.py
+313
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
89069af5
...
...
@@ -410,6 +410,23 @@ class PostTrainingQuantization(object):
for
op_type
in
self
.
_dynamic_quantize_op_type
):
self
.
_collect_dynamic_quantize_op_threshold
(
self
.
_dynamic_quantize_op_type
)
# Move sub blocks persistable var to global block
global_block
=
self
.
_program
.
global_block
()
for
_op
in
global_block
.
ops
:
if
_op
.
type
==
"while"
:
_block_id
=
_op
.
attr
(
"sub_block"
).
id
_block
=
self
.
_program
.
block
(
_block_id
)
persistables
=
[]
for
_name
,
_var
in
_block
.
vars
.
items
():
if
_var
.
persistable
:
global_block
.
_clone_variable
(
_var
)
persistables
.
append
(
_name
)
for
_name
in
persistables
:
_block
.
_remove_var
(
_name
)
persistables
.
extend
(
_op
.
input
(
'X'
))
_op
.
desc
.
set_input
(
"X"
,
persistables
)
return
self
.
_program
def
save_quantized_model
(
self
,
...
...
@@ -451,10 +468,6 @@ class PostTrainingQuantization(object):
model_filename
=
self
.
_model_filename
,
params_filename
=
self
.
_params_filename
)
if
self
.
_program
.
num_blocks
>
1
:
_logger
.
error
(
"The post training quantization requires that the "
"program only has one block."
)
if
self
.
_optimize_model
:
self
.
_optimize_fp32_model
()
...
...
@@ -505,23 +518,26 @@ class PostTrainingQuantization(object):
self
.
_quantized_act_var_name
.
add
(
var_name
)
persistable_var_names
=
_all_persistable_var_names
(
self
.
_program
)
for
op
in
self
.
_program
.
global_block
().
ops
:
op_type
=
op
.
type
if
self
.
_is_full_quantize
and
\
op_type
not
in
self
.
_quantizable_op_type
:
_logger
.
warning
(
op_type
+
" is not supported for quantization."
)
# For quantized ops, sample inputs and outputs
if
op_type
in
self
.
_quantizable_op_type
:
collect_var_name
(
_get_op_input_var_names
(
op
),
persistable_var_names
,
op_type
)
collect_var_name
(
_get_op_output_var_names
(
op
),
persistable_var_names
,
op_type
)
# For other op, only sample output scale
elif
op_type
in
self
.
_out_scale_op_list
:
collect_var_name
(
_get_op_output_var_names
(
op
),
persistable_var_names
,
op_type
)
for
block_id
in
range
(
len
(
self
.
_program
.
blocks
)):
for
op
in
self
.
_program
.
blocks
[
block_id
].
ops
:
op_type
=
op
.
type
if
self
.
_is_full_quantize
and
\
op_type
not
in
self
.
_quantizable_op_type
:
_logger
.
warning
(
op_type
+
" is not supported for quantization."
)
# For quantized ops, sample inputs and outputs
if
op_type
in
self
.
_quantizable_op_type
:
collect_var_name
(
_get_op_input_var_names
(
op
),
persistable_var_names
,
op_type
)
collect_var_name
(
_get_op_output_var_names
(
op
),
persistable_var_names
,
op_type
)
# For other op, only sample output scale
elif
op_type
in
self
.
_out_scale_op_list
:
collect_var_name
(
_get_op_output_var_names
(
op
),
persistable_var_names
,
op_type
)
def
_set_activation_persistable
(
self
):
'''
...
...
@@ -696,16 +712,17 @@ class PostTrainingQuantization(object):
'''
assert
self
.
_algo
==
"min_max"
,
\
"The algo should be min_max to save input threshold."
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
for
var_name
in
_get_op_input_var_names
(
op
):
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
op
.
_set_attr
(
"with_quant_attr"
,
True
)
for
block_id
in
range
(
len
(
self
.
_program
.
blocks
)):
for
op
in
self
.
_program
.
blocks
[
block_id
].
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
for
var_name
in
_get_op_input_var_names
(
op
):
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
op
.
_set_attr
(
"with_quant_attr"
,
True
)
def
_collect_activation_abs_min_max
(
self
):
'''
...
...
@@ -795,7 +812,12 @@ class PostTrainingQuantization(object):
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
)
transform_pass
.
apply
(
graph
)
for
sub_graph
in
graph
.
all_sub_graphs
():
# Insert fake_quant/fake_dequantize op must in test graph, so
# set per graph's _for_test is True.
sub_graph
.
_for_test
=
True
transform_pass
.
apply
(
sub_graph
)
# use AddQuantDequantPass to insert fake_quant_dequant op
minor_quantizable_op_types
=
[]
...
...
@@ -806,7 +828,10 @@ class PostTrainingQuantization(object):
scope
=
self
.
_scope
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
)
add_quant_dequant_pass
.
apply
(
graph
)
for
sub_graph
in
graph
.
all_sub_graphs
():
sub_graph
.
_for_test
=
True
add_quant_dequant_pass
.
apply
(
sub_graph
)
# save threshold to scale var node
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
...
...
@@ -836,7 +861,11 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
)
freeze_pass
.
apply
(
graph
)
for
sub_graph
in
graph
.
all_sub_graphs
():
sub_graph
.
_for_test
=
True
freeze_pass
.
apply
(
sub_graph
)
self
.
_program
=
graph
.
to_program
()
def
_save_output_threshold
(
self
):
...
...
@@ -888,13 +917,15 @@ class PostTrainingQuantization(object):
save_info
(
op_node
,
out_var_name
,
self
.
_quantized_var_max
,
"out_max"
,
"post_min_max"
)
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
(
self
.
_quantizable_op_type
+
self
.
_out_scale_op_list
):
out_var_names
=
_get_op_output_var_names
(
op
)
assert
len
(
out_var_names
)
==
1
,
"Post training "
+
\
"quantization only support one output for "
+
op
.
type
for
var_name
in
out_var_names
:
analysis_and_save_info
(
op
,
var_name
)
for
block_id
in
range
(
len
(
self
.
_program
.
blocks
)):
for
op
in
self
.
_program
.
blocks
[
block_id
].
ops
:
if
op
.
type
in
(
self
.
_quantizable_op_type
+
self
.
_out_scale_op_list
):
out_var_names
=
_get_op_output_var_names
(
op
)
assert
len
(
out_var_names
)
==
1
,
"Post training "
+
\
"quantization only support one output for "
+
op
.
type
for
var_name
in
out_var_names
:
analysis_and_save_info
(
op
,
var_name
)
def
_collect_dynamic_quantize_op_threshold
(
self
,
target_ops_type
):
"""
...
...
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
89069af5
...
...
@@ -139,6 +139,7 @@ endfunction()
if
(
WIN32
)
list
(
REMOVE_ITEM TEST_OPS test_light_nas
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_while
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model
)
...
...
@@ -336,6 +337,7 @@ if(NOT WIN32)
set_tests_properties
(
test_post_training_quantization_mobilenetv1 PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_resnet50 PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_mnist PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_post_training_quantization_while PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_imperative_ptq PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_weight_quantization_mobilenetv1 PROPERTIES TIMEOUT 120
)
endif
()
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_while.py
0 → 100644
浏览文件 @
89069af5
# copyright (c) 2021 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
unittest
import
os
import
time
import
sys
import
random
import
math
import
functools
import
contextlib
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.dataset.common
import
download
from
paddle.fluid.contrib.slim.quantization
import
PostTrainingQuantization
paddle
.
enable_static
()
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
class
TestPostTrainingQuantization
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
download_path
=
'int8/download'
self
.
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
self
.
download_path
)
self
.
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
self
.
int8_model_path
=
os
.
path
.
join
(
os
.
getcwd
(),
"post_training_"
+
self
.
timestamp
)
try
:
os
.
system
(
"mkdir -p "
+
self
.
int8_model_path
)
except
Exception
as
e
:
print
(
"Failed to create {} due to {}"
.
format
(
self
.
int8_model_path
,
str
(
e
)))
sys
.
exit
(
-
1
)
def
tearDown
(
self
):
try
:
os
.
system
(
"rm -rf {}"
.
format
(
self
.
int8_model_path
))
except
Exception
as
e
:
print
(
"Failed to delete {} due to {}"
.
format
(
self
.
int8_model_path
,
str
(
e
)))
def
cache_unzipping
(
self
,
target_folder
,
zip_path
):
cmd
=
'tar xf {0} -C {1}'
.
format
(
zip_path
,
target_folder
)
os
.
system
(
cmd
)
def
download_model
(
self
,
data_url
,
data_md5
,
folder_name
):
download
(
data_url
,
self
.
download_path
,
data_md5
)
file_name
=
data_url
.
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
print
(
'Data is downloaded at {0}'
.
format
(
zip_path
))
data_cache_folder
=
os
.
path
.
join
(
self
.
cache_folder
,
folder_name
)
self
.
cache_unzipping
(
self
.
cache_folder
,
zip_path
)
return
data_cache_folder
def
run_program
(
self
,
model_path
,
batch_size
,
infer_iterations
):
print
(
"test model path:"
+
model_path
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
infer_program
,
feed_dict
,
fetch_targets
]
=
\
fluid
.
io
.
load_inference_model
(
model_path
,
model_filename
=
'model.pdmodel'
,
params_filename
=
'model.pdiparams'
,
executor
=
exe
)
val_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
)
img_shape
=
[
1
,
28
,
28
]
test_info
=
[]
cnt
=
0
periods
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
np
.
array
(
[
x
[
0
].
reshape
(
img_shape
)
for
x
in
data
]).
astype
(
"float32"
)
input_label
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
t1
=
time
.
time
()
out
=
exe
.
run
(
infer_program
,
feed
=
{
feed_dict
[
0
]:
image
},
fetch_list
=
fetch_targets
)
t2
=
time
.
time
()
period
=
t2
-
t1
periods
.
append
(
period
)
out_label
=
np
.
argmax
(
np
.
array
(
out
[
0
]),
axis
=
1
)
top1_num
=
sum
(
input_label
==
out_label
)
test_info
.
append
(
top1_num
)
cnt
+=
len
(
data
)
if
(
batch_id
+
1
)
==
infer_iterations
:
break
throughput
=
cnt
/
np
.
sum
(
periods
)
latency
=
np
.
average
(
periods
)
acc1
=
np
.
sum
(
test_info
)
/
cnt
return
(
throughput
,
latency
,
acc1
)
def
generate_quantized_model
(
self
,
model_path
,
algo
=
"KL"
,
quantizable_op_type
=
[
"conv2d"
],
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
batch_size
=
10
,
batch_nums
=
10
):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
global_scope
()
val_reader
=
paddle
.
dataset
.
mnist
.
train
()
ptq
=
PostTrainingQuantization
(
executor
=
exe
,
model_dir
=
model_path
,
model_filename
=
'model.pdmodel'
,
params_filename
=
'model.pdiparams'
,
sample_generator
=
val_reader
,
batch_size
=
batch_size
,
batch_nums
=
batch_nums
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
is_use_cache_file
=
is_use_cache_file
)
ptq
.
quantize
()
ptq
.
save_quantized_model
(
self
.
int8_model_path
,
model_filename
=
'model.pdmodel'
,
params_filename
=
'model.pdiparams'
)
def
run_test
(
self
,
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
=
10
,
infer_iterations
=
10
,
quant_iterations
=
5
):
origin_model_path
=
self
.
download_model
(
data_url
,
data_md5
,
model_name
)
#origin_model_path = os.path.join(origin_model_path, model_name)
print
(
"Start FP32 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
origin_model_path
,
batch_size
,
infer_iterations
)
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model_name
,
quant_iterations
*
batch_size
))
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
(
int8_throughput
,
int8_latency
,
int8_acc1
)
=
self
.
run_program
(
self
.
int8_model_path
,
batch_size
,
infer_iterations
)
print
(
"---Post training quantization of {} method---"
.
format
(
algo
))
print
(
"FP32 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}."
.
format
(
model_name
,
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
))
print
(
"INT8 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.
\n
"
.
format
(
model_name
,
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
))
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTrainingKLForWhile
(
TestPostTrainingQuantization
):
def
test_post_training_kl
(
self
):
model_name
=
"mnist_while"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_while.tar.gz"
data_md5
=
"2387390beeb37b51dec041c27b8a681f"
algo
=
"KL"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTraininghistForWhile
(
TestPostTrainingQuantization
):
def
test_post_training_hist
(
self
):
model_name
=
"mnist_while"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_while.tar.gz"
data_md5
=
"2387390beeb37b51dec041c27b8a681f"
algo
=
"hist"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingmseForWhile
(
TestPostTrainingQuantization
):
def
test_post_training_mse
(
self
):
model_name
=
"mnist_while"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_while.tar.gz"
data_md5
=
"2387390beeb37b51dec041c27b8a681f"
algo
=
"mse"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingavgForWhile
(
TestPostTrainingQuantization
):
def
test_post_training_avg
(
self
):
model_name
=
"mnist_while"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_while.tar.gz"
data_md5
=
"2387390beeb37b51dec041c27b8a681f"
algo
=
"avg"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingMinMaxForWhile
(
TestPostTrainingQuantization
):
def
test_post_training_min_max
(
self
):
model_name
=
"mnist_while"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_while.tar.gz"
data_md5
=
"2387390beeb37b51dec041c27b8a681f"
algo
=
"min_max"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingAbsMaxForWhile
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max
(
self
):
model_name
=
"mnist_while"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_while.tar.gz"
data_md5
=
"2387390beeb37b51dec041c27b8a681f"
algo
=
"abs_max"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录