Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82c30f71
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
82c30f71
编写于
3月 11, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
3月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add EMD method of post_quant (#40421)
上级
1593c7ca
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
92 addition
and
7 deletion
+92
-7
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+50
-7
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+20
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+22
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
82c30f71
...
...
@@ -272,7 +272,7 @@ class PostTrainingQuantization(object):
]
self
.
_support_weight_quantize_type
=
[
'abs_max'
,
'channel_wise_abs_max'
]
self
.
_support_algo_type
=
[
'KL'
,
'hist'
,
'avg'
,
'mse'
,
'abs_max'
,
'min_max'
'KL'
,
'hist'
,
'avg'
,
'mse'
,
'
emd'
,
'
abs_max'
,
'min_max'
]
self
.
_dynamic_quantize_op_type
=
[
'lstm'
]
self
.
_support_quantize_op_type
=
\
...
...
@@ -349,7 +349,7 @@ class PostTrainingQuantization(object):
# The vars for algo = avg
self
.
_quantized_var_avg
=
{}
# The best loss of algo = mse
self
.
_best_
mse
_loss
=
{}
self
.
_best_
calibration
_loss
=
{}
# The threshold for algo = abs_max, mse or avg
self
.
_quantized_threshold
=
{}
...
...
@@ -408,7 +408,7 @@ class PostTrainingQuantization(object):
np
.
array
(
self
.
_quantized_var_avg
[
var_name
]).
mean
()
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
self
.
_calculate_kl_hist_threshold
()
if
self
.
_algo
in
[
"KL"
,
"abs_max"
,
"hist"
,
"avg"
,
"mse"
]:
if
self
.
_algo
in
[
"KL"
,
"abs_max"
,
"hist"
,
"avg"
,
"mse"
,
"emd"
]:
self
.
_update_program
()
else
:
self
.
_save_input_threhold
()
...
...
@@ -582,6 +582,8 @@ class PostTrainingQuantization(object):
self
.
_sample_min_max
()
elif
self
.
_algo
==
"mse"
:
self
.
_sample_mse
()
elif
self
.
_algo
==
"emd"
:
self
.
_sample_emd
()
elif
self
.
_algo
in
[
"KL"
,
"hist"
]:
self
.
_sample_histogram
()
...
...
@@ -610,8 +612,8 @@ class PostTrainingQuantization(object):
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
abs_max_value
=
1e-8
if
abs_max_value
==
0.0
else
abs_max_value
s
=
0.3
if
var_name
not
in
self
.
_best_
mse
_loss
:
self
.
_best_
mse
_loss
[
var_name
]
=
float
(
'inf'
)
if
var_name
not
in
self
.
_best_
calibration
_loss
:
self
.
_best_
calibration
_loss
[
var_name
]
=
float
(
'inf'
)
while
s
<=
1.0
:
scale
=
s
*
abs_max_value
s
+=
0.02
...
...
@@ -620,8 +622,49 @@ class PostTrainingQuantization(object):
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
bins
)
/
bins
*
scale
mse_loss
=
((
var_tensor
-
quant_dequant_var
)
**
2
).
mean
()
if
mse_loss
<=
self
.
_best_mse_loss
[
var_name
]:
self
.
_best_mse_loss
[
var_name
]
=
mse_loss
if
mse_loss
<=
self
.
_best_calibration_loss
[
var_name
]:
self
.
_best_calibration_loss
[
var_name
]
=
mse_loss
self
.
_quantized_threshold
[
var_name
]
=
scale
def
_sample_emd
(
self
):
if
self
.
_quantized_threshold
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
if
self
.
_weight_quantize_type
==
"abs_max"
:
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
elif
self
.
_weight_quantize_type
==
"channel_wise_abs_max"
:
abs_max_value
=
[]
if
self
.
_weight_op_pairs
[
var_name
]
in
_channelwise_quant_axis1_ops
:
for
i
in
range
(
var_tensor
.
shape
[
1
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[:,
i
]))))
else
:
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_value
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
_logger
.
info
(
"EMD searching stage ..."
)
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
flatten
()
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
abs_max_value
=
1e-8
if
abs_max_value
==
0.0
else
abs_max_value
s
=
0.3
if
var_name
not
in
self
.
_best_calibration_loss
:
self
.
_best_calibration_loss
[
var_name
]
=
float
(
'inf'
)
while
s
<=
1.0
:
scale
=
s
*
abs_max_value
s
+=
0.02
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
quant_dequant_var
=
np
.
round
(
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
bins
)
/
bins
*
scale
emd_loss
=
np
.
abs
(
np
.
mean
(
var_tensor
)
-
np
.
mean
(
quant_dequant_var
))
+
np
.
abs
(
np
.
std
(
var_tensor
)
-
np
.
std
(
quant_dequant_var
))
if
emd_loss
<=
self
.
_best_calibration_loss
[
var_name
]:
self
.
_best_calibration_loss
[
var_name
]
=
emd_loss
self
.
_quantized_threshold
[
var_name
]
=
scale
def
_sample_avg
(
self
):
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
浏览文件 @
82c30f71
...
...
@@ -244,6 +244,26 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
quant_iterations
)
class
TestPostTrainingemdForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_mse
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"emd"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingavgForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_avg
(
self
):
model_name
=
"mnist_model"
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
82c30f71
...
...
@@ -394,5 +394,27 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
diff_threshold
)
class
TestPostTrainingEMDForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_avg_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"emd"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录