post_training_quantization.py 67.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20 21 22 23
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
24
from inspect import isgeneratorfunction
25 26 27
from .... import io
from .... import core
from .... import framework
28
from .... import unique_name
29
from ....executor import global_scope, Executor
30 31
from ....framework import IrGraph
from ....log_helper import get_logger
32
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
33
from .cal_kl_threshold import cal_kl_threshold
34
from .adaround import run_adaround
35
from . import utils
36

37
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
38

39 40 41
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
42 43


44 45 46 47 48 49 50 51
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
92 93
            attr_values
        ), "Different number of pass attributes and their values."
94 95 96 97 98 99 100 101 102
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


103
class PostTrainingQuantization(object):
104 105 106 107 108 109
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

110
    def __init__(self,
111 112 113
                 executor=None,
                 scope=None,
                 model_dir=None,
114 115
                 model_filename=None,
                 params_filename=None,
116
                 batch_generator=None,
117
                 sample_generator=None,
118
                 data_loader=None,
119 120 121
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
122
                 hist_percent=0.99999,
123
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
124 125
                 round_type='round',
                 learning_rate=0.001,
126
                 is_full_quantize=False,
X
XGZhang 已提交
127
                 bias_correction=False,
128
                 activation_bits=8,
129 130 131
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
132
                 onnx_format=False,
133
                 optimize_model=False,
134
                 is_use_cache_file=False,
135
                 skip_tensor_list=None,
136
                 cache_dir=None):
137
        '''
138
        Constructor.
139 140

        Args:
141
            executor(fluid.Executor): The executor to load, run and save the
142
                quantized model.
143 144
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
145 146 147 148 149 150 151 152 153
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
154 155 156 157 158 159 160 161
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
162 163 164
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
165 166 167 168
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
169 170 171 172
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
173 174 175 176 177 178 179
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
180 181
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
182
                "mul"].
183 184 185 186
            round_type(str, optional): The method of converting the quantized weights
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the nearest whole number.
            learning_rate(float, optional): The learning rate of adaround method.
187
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
188
                apply quantization to all supported quantizable op type. If set
189 190
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
191 192
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
193
            activation_bits(int): quantization bit number for activation.
194 195 196 197 198 199 200 201 202 203 204 205
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
206 207
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
208
            skip_tensor_list(list): List of skip quant tensor name.
209 210 211 212 213 214 215 216
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
217 218
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
219 220 221
        Returns:
            None

222 223 224 225 226 227
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
228 229 230 231 232 233 234 235 236
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
237
            # sample generator must return a sample every time. The reference
238 239 240
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
241 242 243
            batch_size = 10
            batch_nums = 10
            algo = "KL"
244
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
245 246
            ptq = PostTrainingQuantization(
                        executor=exe,
247 248 249 250
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
251 252 253 254 255 256 257
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
258

259 260 261 262
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
263
        self._support_algo_type = [
264
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max'
X
XGZhang 已提交
265
        ]
266 267 268
        assert round_type in ['adaround', 'round']
        self._round_type = round_type
        self._learning_rate = learning_rate
269
        self._dynamic_quantize_op_type = ['lstm']
270
        self._support_quantize_op_type = \
271 272
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
273
                self._dynamic_quantize_op_type))
274 275

        # Check inputs
276 277
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
278
        assert any([gen is not None] for gen in [sample_generator,
279 280 281 282 283
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
284 285
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
X
XGZhang 已提交
286
            "The algo should be KL, hist, mse, avg, abs_max or min_max."
287 288 289 290 291 292 293 294
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
295
        self._bias_correction = bias_correction
296
        self._executor = executor
297
        self._scope = global_scope() if scope == None else scope
298 299 300
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
301
        self._sample_generator = sample_generator
302
        self._batch_generator = batch_generator
303 304 305
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
306
        self._hist_percent = hist_percent
307 308 309 310
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
311
        self._onnx_format = onnx_format
312
        self._skip_tensor_list = skip_tensor_list
313
        self._is_full_quantize = is_full_quantize
314
        if is_full_quantize:
315
            self._quantizable_op_type = self._support_quantize_op_type
316 317 318
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
319
                assert op_type in self._support_quantize_op_type, \
320
                    op_type + " is not supported for quantization."
321
        self._optimize_model = optimize_model
322

323
        # Define variables
324 325 326 327
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
328
        self._data_loader = data_loader
329

330
        self._out_scale_op_list = utils._out_scale_op_list
331 332
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
333
        self._weight_op_pairs = {}
X
XGZhang 已提交
334
        # The vars for alog = KL or hist
335 336
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
337
        self._sampling_data = {}
X
XGZhang 已提交
338
        self._quantized_var_threshold = {}
339 340
        self._histogram_bins = 2048
        # The vars for algo = min_max
341 342
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
343 344 345
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
346
        self._best_calibration_loss = {}
X
XGZhang 已提交
347 348
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
349 350 351

    def quantize(self):
        '''
352 353 354
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
355 356 357 358

        Args:
            None
        Returns:
359 360
            the program of quantized model.
        '''
361
        self._load_model_data()
362
        self._collect_target_varnames()
363
        self._set_activation_persistable()
364

X
XGZhang 已提交
365
        if self._algo in ["KL", "hist"]:
366
            batch_id = 0
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
            with tqdm(
                    total=self._batch_nums,
                    bar_format=
                    'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(total=self._batch_nums,
                  bar_format=
                  'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
390 391 392 393 394 395
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
396
                self._sampling()
397
                batch_id += 1
398
                t.update()
399 400
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
401

X
XGZhang 已提交
402 403 404 405 406 407
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
408 409 410 411 412 413 414

        if self._round_type == 'adaround':
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
415
            self._save_input_threhold()
416 417 418 419 420 421
        else:
            self._update_program()

        # save out_threshold for quantized ops.
        if not self._onnx_format:
            self._save_output_threshold()
422

423 424 425 426
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

444 445
        return self._program

446
    def _adaround_apply(self):
447
        assert self._algo != "min_max", "The algo should not be min_max."
448 449 450 451
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
452 453 454 455 456 457 458 459 460 461 462
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
                     lr=self._learning_rate)
463

464 465 466 467
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
468 469 470 471
        '''
        Save the quantized model to the disk.

        Args:
472 473 474 475 476 477 478
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
479
        Returns:
480 481
            None
        '''
482
        clip_extra = True if self._onnx_format else False
483 484 485 486 487 488 489 490
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
                                clip_extra=clip_extra)
491
        _logger.info("The quantized model is saved in " + save_model_path)
492

493
    def _load_model_data(self):
494
        '''
495
        Load model and set data loader.
496
        '''
497
        _logger.info("Load model and set data loader ...")
498
        [self._program, self._feed_list, self._fetch_list] = \
499 500 501 502
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
503 504 505 506

        if self._optimize_model:
            self._optimize_fp32_model()

507 508
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
509 510 511

        if self._data_loader is not None:
            return
512 513 514 515
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
516
        if self._sample_generator is not None:
517 518 519 520
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
521
        elif self._batch_generator is not None:
522 523
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
524

525 526 527 528 529 530 531 532
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
533 534
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
535 536 537 538
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

539 540
        self._program = graph.to_program()

541
    def _collect_target_varnames(self):
542 543 544 545
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
546
        # TODO(juncaipeng), consider the name_scope of skip_quant
547
        _logger.info("Collect quantized variable names ...")
548
        self._quantized_op_pairs = {}
549

550
        def collect_var_name(var_name_list, persistable_var_names, op_type):
551 552 553
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
554
                    self._weight_op_pairs[var_name] = op_type
555 556 557
                else:
                    self._quantized_act_var_name.add(var_name)

558
        persistable_var_names = _all_persistable_var_names(self._program)
559 560
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
561 562 563 564 565 566
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

567 568 569 570 571 572 573
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
574 575 576 577
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
578
                    # collect quanted op output var name
579 580
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
581 582 583
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
584 585
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
586 587
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
588 589 590 591 592 593

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
594 595 596 597
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

598 599 600 601
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
602
        to_erase = []
603 604 605
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
606 607
                to_erase.append(var.name)
        self._scope.erase(to_erase)
608

609
    def _sampling(self):
610
        '''
611
        Sample the min/max, abs_max or histogram in every iterations.
612 613
        '''
        if self._algo == "abs_max":
614
            self._sample_abs_max()
X
XGZhang 已提交
615 616
        elif self._algo == "avg":
            self._sample_avg()
617
        elif self._algo == "min_max":
618
            self._sample_min_max()
X
XGZhang 已提交
619 620
        elif self._algo == "mse":
            self._sample_mse()
621 622
        elif self._algo == "emd":
            self._sample_emd()
X
XGZhang 已提交
623
        elif self._algo in ["KL", "hist"]:
624
            self._sample_histogram()
625

X
XGZhang 已提交
626 627 628
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
629
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
630 631 632 633 634
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
635
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
636 637 638 639 640 641 642 643 644 645
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
646
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
647 648
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
649
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
650
            s = 0.3
651 652
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
653 654 655 656 657 658 659 660
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
661 662 663 664 665 666 667
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
668
                var_tensor = utils.load_variable_data(self._scope, var_name)
669 670 671 672 673
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
674
                            var_name] in utils._channelwise_quant_axis1_ops:
675 676 677 678 679 680 681 682 683 684
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
685
            var_tensor = utils.load_variable_data(self._scope, var_name)
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
704 705 706 707 708
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
709
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
710 711 712 713 714
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
715
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
716 717 718 719 720 721 722 723 724 725
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
726
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
727 728 729 730 731 732 733 734
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

735
    def _sample_abs_max(self):
X
XGZhang 已提交
736
        if self._quantized_threshold == {}:
737
            for var_name in self._quantized_weight_var_name:
738
                var_tensor = utils.load_variable_data(self._scope, var_name)
739 740 741 742
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
743
                    if self._weight_op_pairs[
744
                            var_name] in utils._channelwise_quant_axis1_ops:
745 746 747 748 749 750 751
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
752
                self._quantized_threshold[var_name] = abs_max_value
753 754

        for var_name in self._quantized_act_var_name:
755
            var_tensor = utils.load_variable_data(self._scope, var_name)
756
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
757 758 759
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
760

761
    def _sample_min_max(self):
762 763
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
764
                var_tensor = utils.load_variable_data(self._scope, var_name)
765 766 767 768 769 770
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
771
                    if self._weight_op_pairs[
772
                            var_name] in utils._channelwise_quant_axis1_ops:
773 774 775 776 777 778 779 780 781 782 783
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
784
            var_tensor = utils.load_variable_data(self._scope, var_name)
785 786 787 788 789 790 791 792
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
793

794 795
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
796
            var_tensor = utils.load_variable_data(self._scope, var_name)
797 798 799 800 801
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

802 803 804 805 806 807
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
808 809 810
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
811
                    for var_name in utils._get_op_input_var_names(op):
812 813 814 815 816 817 818
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
819

820
    def _collect_activation_abs_min_max(self):
821
        '''
822 823
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
824
        '''
825
        for var_name in self._quantized_act_var_name:
826
            var_tensor = utils.load_variable_data(self._scope, var_name)
827 828 829 830
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
831 832 833
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
834 835 836 837 838 839 840 841 842 843 844 845 846 847
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
848 849 850
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
851
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
852

X
XGZhang 已提交
853
    def _calculate_kl_hist_threshold(self):
854
        '''
X
XGZhang 已提交
855
        Calculate the KL or hist threshold of quantized variables.
856
        '''
X
XGZhang 已提交
857 858
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
859 860

        # Abs_max threshold for weights
861
        for var_name in self._quantized_weight_var_name:
862
            weight_data = utils.load_variable_data(self._scope, var_name)
863
            if self._weight_quantize_type == "abs_max":
864
                weight_threshold = float(np.max(np.abs(weight_data)))
865 866
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
867
                if self._weight_op_pairs[
868
                        var_name] in utils._channelwise_quant_axis1_ops:
869 870 871 872 873 874 875
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
876
            self._quantized_var_threshold[var_name] = weight_threshold
877

878 879
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
880
            if self._algo == "KL":
881
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
882
                self._quantized_var_threshold[var_name] = \
883
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
884 885 886
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
887 888 889

    def _update_program(self):
        '''
890 891
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
892
        Besides, save all threshold to the scale var node.
893
        '''
894
        _logger.info("Update the program ...")
895 896
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

897
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
898
        major_quantizable_op_types = []
899
        for op_type in utils._weight_supported_quantizable_op_type:
900
            if op_type in self._quantizable_op_type:
901
                major_quantizable_op_types.append(op_type)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
920 921 922 923 924 925

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
926 927

        # use AddQuantDequantPass to insert fake_quant_dequant op
928
        minor_quantizable_op_types = []
929
        for op_type in utils._act_supported_quantizable_op_type:
930
            if op_type in self._quantizable_op_type:
931
                minor_quantizable_op_types.append(op_type)
932 933 934 935 936 937 938 939 940 941 942
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types)
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
                is_full_quantized=self._is_full_quantize)
943 944 945 946

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
947

X
XGZhang 已提交
948 949 950
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
951
        else:
X
XGZhang 已提交
952
            scale_dict = self._quantized_threshold
953
        for key, val in scale_dict.items():
954 955 956 957 958
            utils.set_variable_data(self._scope, self._place, key + ".scale",
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
                                    key + ".quant_dequant.scale",
                                    np.array([val], dtype=np.float32))
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
            freeze_pass = QuantizationFreezePass(
                scope=self._scope,
                place=self._place,
                bias_correction=self._bias_correction,
                weight_bits=self._weight_bits,
                round_type=self._round_type,
                activation_bits=self._activation_bits,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)

            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                freeze_pass.apply(sub_graph)
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
980

981 982
        self._program = graph.to_program()

983
    def _save_output_threshold(self):
984
        '''
985
        Save output threshold to the quantized op.
986
        '''
987 988 989 990 991 992 993

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
994
            op_node._set_attr("with_quant_attr", True)
995 996 997 998
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
999
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1000 1001
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1002
            if self._algo == "KL":
1003
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1004 1005
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1006
                save_info(
X
XGZhang 已提交
1007
                    op_node, out_var_name, self._quantized_var_threshold,
1008 1009
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1010 1011 1012 1013
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1014
                save_info(
X
XGZhang 已提交
1015
                    op_node, out_var_name, self._quantized_var_threshold,
1016
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1017 1018
                    "post_hist")

1019
            elif self._algo in ["avg", "abs_max", "mse", "emd"]:
X
XGZhang 已提交
1020 1021 1022 1023 1024 1025
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1026 1027 1028 1029 1030 1031
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1032 1033
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1034 1035
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1036
                    out_var_names = utils._get_op_output_var_names(op)
1037 1038
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1059
            for var_name in utils._get_op_input_var_names(op):
1060
                if var_name in persistable_var_names:
1061
                    var_data = utils.load_variable_data(self._scope, var_name)
1062
                    threshold = float(np.max(np.abs(var_data)))
1063
                    argname, index = utils._get_input_name_index(op, var_name)
1064 1065 1066
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1067
                    op._set_attr("with_quant_attr", True)
1068

X
XGZhang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1085 1086 1087

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1088
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1115
                               weight_bits=8,
1116 1117
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1137 1138
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1139 1140 1141 1142 1143 1144 1145
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1146 1147 1148 1149 1150 1151 1152 1153 1154
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1155
                "Input error:" + op_type + \
1156
                " is not supported for weight quantization."
1157
        assert weight_bits in [8, 16], \
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1171 1172 1173 1174 1175
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1235 1236 1237 1238 1239 1240 1241 1242 1243
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1255 1256 1257 1258 1259 1260 1261 1262
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1263 1264 1265 1266 1267 1268 1269 1270 1271
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1291

1292 1293 1294 1295 1296 1297 1298
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1309
        weight_data = utils.load_variable_data(scope, var_name)
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1323 1324
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1325 1326 1327
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1328 1329
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1330 1331 1332 1333 1334

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1335
        op._set_attr("with_quant_attr", True)
1336

1337 1338 1339
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1340 1341 1342 1343 1344 1345 1346
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1347
        weight_data = utils.load_variable_data(scope, var_name)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1361 1362
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1373 1374
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1375 1376 1377 1378 1379

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1380
        op._set_attr("with_quant_attr", True)
1381 1382 1383 1384 1385 1386 1387 1388

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1389 1390
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1403 1404
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1417 1418
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1431 1432
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1433 1434 1435 1436 1437
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1438 1439
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1440 1441 1442
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width