Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1c7e35dc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1c7e35dc
编写于
6月 13, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add progress bar and speed up Quantization Pass (#43398)
上级
5fcd8061
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
223 addition
and
156 deletion
+223
-156
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+29
-22
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+169
-132
python/paddle/fluid/contrib/slim/quantization/utils.py
python/paddle/fluid/contrib/slim/quantization/utils.py
+25
-2
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
1c7e35dc
...
...
@@ -17,6 +17,10 @@ import re
import
logging
import
numpy
as
np
import
shutil
try
:
from
tqdm
import
tqdm
except
:
from
.utils
import
tqdm
from
inspect
import
isgeneratorfunction
from
....
import
io
from
....
import
core
...
...
@@ -359,38 +363,41 @@ class PostTrainingQuantization(object):
self
.
_set_activation_persistable
()
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
_logger
.
info
(
"Preparation stage ..."
)
batch_id
=
0
with
tqdm
(
total
=
self
.
_batch_nums
,
bar_format
=
'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
self
.
_data_loader
():
self
.
_executor
.
run
(
program
=
self
.
_program
,
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
,
scope
=
self
.
_scope
)
self
.
_collect_activation_abs_min_max
()
batch_id
+=
1
t
.
update
()
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
self
.
_init_sampling_act_histogram
()
batch_id
=
0
with
tqdm
(
total
=
self
.
_batch_nums
,
bar_format
=
'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
self
.
_data_loader
():
self
.
_executor
.
run
(
program
=
self
.
_program
,
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
,
scope
=
self
.
_scope
)
self
.
_collect_activation_abs_min_max
()
if
batch_id
%
5
==
0
:
_logger
.
info
(
"Run batch: "
+
str
(
batch_id
))
self
.
_sampling
()
batch_id
+=
1
t
.
update
()
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"Finish preparation stage, all batch:"
+
str
(
batch_id
))
self
.
_init_sampling_act_histogram
()
_logger
.
info
(
"Sampling stage ..."
)
batch_id
=
0
for
data
in
self
.
_data_loader
():
self
.
_executor
.
run
(
program
=
self
.
_program
,
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
,
scope
=
self
.
_scope
)
self
.
_sampling
()
if
batch_id
%
5
==
0
:
_logger
.
info
(
"Run batch: "
+
str
(
batch_id
))
batch_id
+=
1
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"Finish sampling stage, all batch: "
+
str
(
batch_id
))
if
self
.
_algo
==
'avg'
:
for
var_name
in
self
.
_quantized_act_var_name
:
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
1c7e35dc
...
...
@@ -14,6 +14,10 @@
import
collections
import
numpy
as
np
try
:
from
tqdm
import
tqdm
except
:
from
.utils
import
tqdm
from
.....
import
compat
as
cpt
from
....
import
core
from
....framework
import
IrGraph
...
...
@@ -373,10 +377,15 @@ class QuantizationTransformPass(object):
graph
.
out_node_mapping_table
=
dict
()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
self
.
_is_skip_quant
(
graph
,
op
)
and
_has_weight
(
op
):
_transform_forward
(
graph
,
op
)
with
tqdm
(
total
=
len
(
ops
),
bar_format
=
'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
self
.
_is_skip_quant
(
graph
,
op
)
and
_has_weight
(
op
):
_transform_forward
(
graph
,
op
)
t
.
update
()
# The loop for renaming the inputs of backward op.
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_grad_ops
and
_has_weight
(
op
):
...
...
@@ -1418,73 +1427,81 @@ class OutScaleForTrainingPass(object):
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
()
in
self
.
_teller_set
:
target_ops
.
append
(
op
)
for
op
in
target_ops
:
for
output_var_name
in
utils
.
_get_op_output_var_names
(
op
):
in_node
=
graph
.
_find_node_by_name
(
op
.
outputs
,
output_var_name
)
if
in_node
.
dtype
()
not
in
\
[
core
.
VarDesc
.
VarType
.
FP64
,
core
.
VarDesc
.
VarType
.
FP32
]:
continue
with
tqdm
(
total
=
len
(
target_ops
),
bar_format
=
'Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
op
in
target_ops
:
for
output_var_name
in
utils
.
_get_op_output_var_names
(
op
):
in_node
=
graph
.
_find_node_by_name
(
op
.
outputs
,
output_var_name
)
if
in_node
.
dtype
()
not
in
\
[
core
.
VarDesc
.
VarType
.
FP64
,
core
.
VarDesc
.
VarType
.
FP32
]:
continue
scale_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
in_node
.
name
()),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
in_node
.
dtype
())
data_type
=
'float64'
if
in_node
.
dtype
()
\
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
ins
=
{
'X'
:
in_node
}
outs
=
{
'OutScale'
:
scale_node
}
if
not
self
.
_is_test
:
state_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'scale_state@'
),
scale_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
in_node
.
name
()),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
in_node
.
dtype
(),
shape
=
[
1
])
_init_var_node
(
state_in_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
shape
=
[
1
],
var_dtype
=
in_node
.
dtype
())
data_type
=
'float64'
if
in_node
.
dtype
()
\
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
scale_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
accum_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'scale_accum@'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
in_node
.
dtype
(),
shape
=
[
1
])
_init_var_node
(
accum_in_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
state_out_node
=
graph
.
create_var_node_from_desc
(
state_in_node
.
var
())
accum_out_node
=
graph
.
create_var_node_from_desc
(
accum_in_node
.
var
())
ins
[
'InState'
]
=
state_in_node
ins
[
'InAccum'
]
=
accum_in_node
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
attrs
=
{
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
scale_op_node
=
graph
.
create_op_node
(
op_type
=
'moving_average_abs_max_scale'
,
attrs
=
attrs
,
inputs
=
ins
,
outputs
=
outs
)
graph
.
link_to
(
in_node
,
scale_op_node
)
graph
.
link_to
(
scale_op_node
,
scale_node
)
if
not
self
.
_is_test
:
graph
.
link_to
(
state_in_node
,
scale_op_node
)
graph
.
link_to
(
accum_in_node
,
scale_op_node
)
graph
.
link_to
(
scale_op_node
,
state_out_node
)
graph
.
link_to
(
scale_op_node
,
accum_out_node
)
ins
=
{
'X'
:
in_node
}
outs
=
{
'OutScale'
:
scale_node
}
if
not
self
.
_is_test
:
state_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'scale_state@'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
in_node
.
dtype
(),
shape
=
[
1
])
_init_var_node
(
state_in_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
accum_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'scale_accum@'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
in_node
.
dtype
(),
shape
=
[
1
])
_init_var_node
(
accum_in_node
,
np
.
ones
([
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
state_out_node
=
graph
.
create_var_node_from_desc
(
state_in_node
.
var
())
accum_out_node
=
graph
.
create_var_node_from_desc
(
accum_in_node
.
var
())
ins
[
'InState'
]
=
state_in_node
ins
[
'InAccum'
]
=
accum_in_node
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
attrs
=
{
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
scale_op_node
=
graph
.
create_op_node
(
op_type
=
'moving_average_abs_max_scale'
,
attrs
=
attrs
,
inputs
=
ins
,
outputs
=
outs
)
graph
.
link_to
(
in_node
,
scale_op_node
)
graph
.
link_to
(
scale_op_node
,
scale_node
)
if
not
self
.
_is_test
:
graph
.
link_to
(
state_in_node
,
scale_op_node
)
graph
.
link_to
(
accum_in_node
,
scale_op_node
)
graph
.
link_to
(
scale_op_node
,
state_out_node
)
graph
.
link_to
(
scale_op_node
,
accum_out_node
)
t
.
update
()
return
graph
def
_scale_name
(
self
,
var_name
):
"""
Return the scale name for the var named `var_name`.
"""
return
"%s
.
scale"
%
(
var_name
)
return
"%s
@
scale"
%
(
var_name
)
class
OutScaleForInferencePass
(
object
):
...
...
@@ -1544,7 +1561,7 @@ class OutScaleForInferencePass(object):
"""
Return the scale name for the var named `var_name`.
"""
return
"%s
.
scale"
%
(
var_name
)
return
"%s
@
scale"
%
(
var_name
)
class
AddQuantDequantPass
(
object
):
...
...
@@ -1624,36 +1641,43 @@ class AddQuantDequantPass(object):
# Forward stage, insert quant_dequant op
all_op_nodes
=
graph
.
all_op_nodes
()
for
op_node
in
all_op_nodes
:
if
op_node
.
name
()
in
self
.
_quantizable_op_type
:
is_skip
=
False
if
isinstance
(
self
.
_skip_pattern
,
list
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
any
(
pattern
in
op_node
.
op
().
attr
(
"op_namescope"
)
for
pattern
in
self
.
_skip_pattern
)
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
if
is_skip
or
is_quantized
or
\
(
not
_is_input_all_not_persistable
(
graph
,
op_node
)):
continue
with
tqdm
(
total
=
len
(
all_op_nodes
),
bar_format
=
'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
op_node
in
all_op_nodes
:
if
op_node
.
name
()
in
self
.
_quantizable_op_type
:
is_skip
=
False
if
isinstance
(
self
.
_skip_pattern
,
list
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
any
(
pattern
in
op_node
.
op
().
attr
(
"op_namescope"
)
for
pattern
in
self
.
_skip_pattern
)
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
if
is_skip
or
is_quantized
or
\
(
not
_is_input_all_not_persistable
(
graph
,
op_node
)):
continue
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
op_node
.
op
().
_set_attr
(
"activation_bits"
,
self
.
_quant_bits
)
op_node
.
op
().
_set_attr
(
"with_quant_attr"
,
True
)
arg_names
=
utils
.
_get_op_input_var_names
(
op_node
)
for
arg_name
in
arg_names
:
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
arg_name
)
if
arg_name
in
dequantized_vars_map
:
quant_var_node
=
dequantized_vars_map
[
arg_name
]
else
:
quant_var_node
,
_
=
\
self
.
_inser_quant_dequant_moving_average_abs_max_op
(
graph
,
in_node
,
self
.
_quant_bits
)
dequantized_vars_map
[
arg_name
]
=
quant_var_node
graph
.
update_input_link
(
in_node
,
quant_var_node
,
op_node
)
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
op_node
.
op
().
_set_attr
(
"activation_bits"
,
self
.
_quant_bits
)
op_node
.
op
().
_set_attr
(
"with_quant_attr"
,
True
)
arg_names
=
utils
.
_get_op_input_var_names
(
op_node
)
for
arg_name
in
arg_names
:
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
arg_name
)
if
arg_name
in
dequantized_vars_map
:
quant_var_node
=
dequantized_vars_map
[
arg_name
]
else
:
quant_var_node
,
_
=
\
self
.
_inser_quant_dequant_moving_average_abs_max_op
(
graph
,
in_node
,
self
.
_quant_bits
)
dequantized_vars_map
[
arg_name
]
=
quant_var_node
graph
.
update_input_link
(
in_node
,
quant_var_node
,
op_node
)
t
.
update
()
# Backward stage, update input link
for
op_node
in
all_op_nodes
:
...
...
@@ -2204,10 +2228,16 @@ class QuantizationTransformPassV2(object):
graph
.
out_node_mapping_table
=
dict
()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
self
.
_is_skip_quant
(
graph
,
op
)
and
self
.
_has_weight
(
op
):
self
.
_transform_forward
(
graph
,
op
)
with
tqdm
(
total
=
len
(
ops
),
bar_format
=
'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
self
.
_is_skip_quant
(
graph
,
op
)
and
self
.
_has_weight
(
op
):
self
.
_transform_forward
(
graph
,
op
)
t
.
update
()
# The loop for renaming the inputs of backward op.
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_grad_ops
and
self
.
_has_weight
(
op
):
...
...
@@ -2310,43 +2340,50 @@ class AddQuantDequantPassV2(object):
# Forward stage, insert quant_dequant op
all_op_nodes
=
graph
.
all_op_nodes
()
for
op_node
in
all_op_nodes
:
if
op_node
.
name
()
in
self
.
_quantizable_op_type
:
is_skip
=
False
if
isinstance
(
self
.
_skip_pattern
,
list
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
any
(
pattern
in
op_node
.
op
().
attr
(
"op_namescope"
)
for
pattern
in
self
.
_skip_pattern
)
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
if
is_skip
or
is_quantized
:
continue
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
arg_names
=
utils
.
_get_op_input_var_names
(
op_node
)
for
arg_name
in
arg_names
:
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
arg_name
)
if
in_node
.
persistable
():
with
tqdm
(
total
=
len
(
all_op_nodes
),
bar_format
=
'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
op_node
in
all_op_nodes
:
if
op_node
.
name
()
in
self
.
_quantizable_op_type
:
is_skip
=
False
if
isinstance
(
self
.
_skip_pattern
,
list
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
any
(
pattern
in
op_node
.
op
().
attr
(
"op_namescope"
)
for
pattern
in
self
.
_skip_pattern
)
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
if
is_skip
or
is_quantized
:
continue
if
arg_name
in
dequantized_vars_map
:
dequant_var_node
=
dequantized_vars_map
[
arg_name
]
else
:
insert_quant_pass
=
InsertQuantizeLinear
(
self
.
_place
,
self
.
_scope
,
quant_bits
=
self
.
_quant_bits
,
quant_axis
=-
1
,
channel_wise
=
False
,
is_test
=
self
.
_is_test
)
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
graph
,
in_node
)
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
graph
,
quant_var_node
,
scale_var_node
)
dequantized_vars_map
[
arg_name
]
=
dequant_var_node
graph
.
update_input_link
(
in_node
,
dequant_var_node
,
op_node
)
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
arg_names
=
utils
.
_get_op_input_var_names
(
op_node
)
for
arg_name
in
arg_names
:
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
arg_name
)
if
in_node
.
persistable
():
continue
if
arg_name
in
dequantized_vars_map
:
dequant_var_node
=
dequantized_vars_map
[
arg_name
]
else
:
insert_quant_pass
=
InsertQuantizeLinear
(
self
.
_place
,
self
.
_scope
,
quant_bits
=
self
.
_quant_bits
,
quant_axis
=-
1
,
channel_wise
=
False
,
is_test
=
self
.
_is_test
)
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
graph
,
in_node
)
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
graph
,
quant_var_node
,
scale_var_node
)
dequantized_vars_map
[
arg_name
]
=
dequant_var_node
graph
.
update_input_link
(
in_node
,
dequant_var_node
,
op_node
)
t
.
update
()
# Backward stage, update input link
for
op_node
in
all_op_nodes
:
...
...
python/paddle/fluid/contrib/slim/quantization/utils.py
浏览文件 @
1c7e35dc
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
from
....framework
import
IrNode
from
....framework
import
Operator
...
...
@@ -52,7 +53,6 @@ _act_supported_quantizable_op_type = [
"leaky_relu"
,
"tanh"
,
"swish"
,
"scale"
,
"transpose"
,
"transpose2"
,
"sigmoid"
,
...
...
@@ -162,7 +162,6 @@ _op_real_in_out_name = {
"sigmoid"
:
[[
"X"
],
[
"Out"
]],
"elementwise_mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"elementwise_pow"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"scale"
:
[[
"X"
],
[
"Out"
]],
"hard_swish"
:
[[
"X"
],
[
"Out"
]],
"hard_sigmoid"
:
[[
"X"
],
[
"Out"
]],
"gru"
:
[[
"Input"
,
"Weight"
],
[
"Hidden"
]],
...
...
@@ -414,3 +413,27 @@ def calculate_quant_cos_error(orig_tensor, qdq_tensor):
cos_sim
=
np
.
inner
(
orig_tensor
.
flatten
(),
qdq_tensor
.
flatten
())
\
/
(
np
.
linalg
.
norm
(
orig_tensor
.
flatten
())
*
np
.
linalg
.
norm
(
qdq_tensor
.
flatten
()))
return
cos_sim
class
tqdm
(
object
):
def
__init__
(
self
,
total
,
bar_format
=
'Loading|{bar}'
,
ncols
=
80
):
self
.
total
=
total
self
.
bar_format
=
bar_format
self
.
ncols
=
ncols
self
.
n
=
0
def
update
(
self
,
n
=
1
):
self
.
n
+=
n
a
=
"="
*
round
((
self
.
n
/
self
.
total
)
*
self
.
ncols
)
b
=
" "
*
(
self
.
ncols
-
len
(
a
))
prefix
=
self
.
bar_format
.
split
(
'|'
)[
0
]
sys
.
stderr
.
write
(
"
\r
{}|{}=>{}| {}/{}"
.
format
(
prefix
,
a
,
b
,
self
.
n
,
self
.
total
))
sys
.
stderr
.
flush
()
def
__enter__
(
self
):
return
self
def
__exit__
(
self
,
exc_type
,
exc_val
,
exc_tb
):
sys
.
stderr
.
write
(
'
\n
'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录