Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2d8281d5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2d8281d5
编写于
9月 15, 2020
作者:
C
cc
提交者:
GitHub
9月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove the cache in post_traning_quantization, test=develop (#26450)
* Remove the cache in post_traning_quantization, test=develop
上级
3ae3b864
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
88 addition
and
84 deletion
+88
-84
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+88
-84
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
2d8281d5
...
...
@@ -143,7 +143,7 @@ class PostTrainingQuantization(object):
weight_quantize_type
=
'channel_wise_abs_max'
,
optimize_model
=
False
,
is_use_cache_file
=
False
,
cache_dir
=
"./temp_post_training"
):
cache_dir
=
None
):
'''
Constructor.
...
...
@@ -206,13 +206,8 @@ class PostTrainingQuantization(object):
`conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
be different. In address this problem, fuse the pattern before
quantization. Default False.
is_use_cache_file(bool, optional): If set is_use_cache_file as False,
all temp data will be saved in memory. If set is_use_cache_file as True,
it will save temp data to disk. When the fp32 model is complex or
the number of calibrate data is large, we should set is_use_cache_file
as True. Defalut is False.
cache_dir(str, optional): When is_use_cache_file is True, set cache_dir as
the directory for saving temp data. Default is ./temp_post_training.
is_use_cache_file(bool, optional): This param is deprecated.
cache_dir(str, optional): This param is deprecated.
Returns:
None
...
...
@@ -302,10 +297,6 @@ class PostTrainingQuantization(object):
assert
op_type
in
self
.
_support_quantize_op_type
,
\
op_type
+
" is not supported for quantization."
self
.
_optimize_model
=
optimize_model
self
.
_is_use_cache_file
=
is_use_cache_file
self
.
_cache_dir
=
cache_dir
if
self
.
_is_use_cache_file
and
not
os
.
path
.
exists
(
self
.
_cache_dir
):
os
.
mkdir
(
self
.
_cache_dir
)
# Define variables
self
.
_place
=
self
.
_executor
.
place
...
...
@@ -317,11 +308,17 @@ class PostTrainingQuantization(object):
self
.
_out_scale_op_list
=
_out_scale_op_list
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_act_var_name
=
set
()
self
.
weight_op_pairs
=
{}
self
.
_weight_op_pairs
=
{}
# The vars for alog = KL
self
.
_sampling_act_abs_min_max
=
{}
self
.
_sampling_act_histogram
=
{}
self
.
_sampling_data
=
{}
self
.
_quantized_var_kl_threshold
=
{}
self
.
_histogram_bins
=
2048
# The vars for algo = min_max
self
.
_quantized_var_min
=
{}
self
.
_quantized_var_max
=
{}
# The vars for algo = abs_max
self
.
_quantized_var_abs_max
=
{}
def
quantize
(
self
):
...
...
@@ -339,6 +336,25 @@ class PostTrainingQuantization(object):
self
.
_collect_target_varnames
()
self
.
_set_activation_persistable
()
if
self
.
_algo
==
"KL"
:
_logger
.
info
(
"Preparation stage ..."
)
batch_id
=
0
for
data
in
self
.
_data_loader
():
self
.
_executor
.
run
(
program
=
self
.
_program
,
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
,
scope
=
self
.
_scope
)
self
.
_collect_activation_abs_min_max
()
if
batch_id
%
5
==
0
:
_logger
.
info
(
"Run batch: "
+
str
(
batch_id
))
batch_id
+=
1
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"Finish preparation stage, all batch:"
+
str
(
batch_id
))
self
.
_init_sampling_act_histogram
()
_logger
.
info
(
"Sampling stage ..."
)
batch_id
=
0
for
data
in
self
.
_data_loader
():
self
.
_executor
.
run
(
program
=
self
.
_program
,
...
...
@@ -346,17 +362,13 @@ class PostTrainingQuantization(object):
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
,
scope
=
self
.
_scope
)
if
self
.
_algo
==
"KL"
:
self
.
_sample_data
(
batch_id
)
else
:
self
.
_sample_threshold
()
self
.
_sampling
()
if
batch_id
%
5
==
0
:
_logger
.
info
(
"Run batch: "
+
str
(
batch_id
))
batch_id
+=
1
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"Finish all batch: "
+
str
(
batch_id
))
_logger
.
info
(
"Finish
sampling stage,
all batch: "
+
str
(
batch_id
))
self
.
_reset_activation_persistable
()
...
...
@@ -397,6 +409,7 @@ class PostTrainingQuantization(object):
target_vars
=
self
.
_fetch_list
,
executor
=
self
.
_executor
,
main_program
=
self
.
_program
)
_logger
.
info
(
"The quantized model is saved in "
+
save_model_path
)
def
_load_model_data
(
self
):
'''
...
...
@@ -454,7 +467,7 @@ class PostTrainingQuantization(object):
for
var_name
in
var_name_list
:
if
var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
var_name
)
self
.
weight_op_pairs
[
var_name
]
=
op_type
self
.
_
weight_op_pairs
[
var_name
]
=
op_type
else
:
self
.
_quantized_act_var_name
.
add
(
var_name
)
...
...
@@ -494,20 +507,18 @@ class PostTrainingQuantization(object):
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
def
_sampl
e_threshold
(
self
):
def
_sampl
ing
(
self
):
'''
Sample the
input threshold(min, max, or abs_max)
in every iterations.
Sample the
min/max, abs_max or histogram
in every iterations.
'''
assert
self
.
_algo
in
[
"abs_max"
,
"min_max"
],
\
"The algo should be abs_max or min_max for _sample_threshold."
if
self
.
_algo
==
"abs_max"
:
self
.
_sample_
threshold_
abs_max
()
self
.
_sample_abs_max
()
elif
self
.
_algo
==
"min_max"
:
self
.
_sample_threshold_min_max
()
self
.
_sample_min_max
()
elif
self
.
_algo
==
"KL"
:
self
.
_sample_histogram
()
def
_sample_threshold_abs_max
(
self
):
assert
self
.
_algo
==
"abs_max"
,
\
"The algo should be abs_max for _sample_threshold_abs_max."
def
_sample_abs_max
(
self
):
# Only calculate abs_max value for weight for once
if
self
.
_quantized_var_abs_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
...
...
@@ -516,7 +527,7 @@ class PostTrainingQuantization(object):
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
elif
self
.
_weight_quantize_type
==
"channel_wise_abs_max"
:
abs_max_value
=
[]
if
self
.
weight_op_pairs
[
if
self
.
_
weight_op_pairs
[
var_name
]
in
_channelwise_quant_axis1_ops
:
for
i
in
range
(
var_tensor
.
shape
[
1
]):
abs_max_value
.
append
(
...
...
@@ -534,9 +545,7 @@ class PostTrainingQuantization(object):
(
abs_max_value
>
self
.
_quantized_var_abs_max
[
var_name
]):
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_value
def
_sample_threshold_min_max
(
self
):
assert
self
.
_algo
==
"min_max"
,
\
"The algo should be min_max for _sample_threshold_min_max."
def
_sample_min_max
(
self
):
if
self
.
_quantized_var_min
==
{}
and
self
.
_quantized_var_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
...
...
@@ -546,7 +555,7 @@ class PostTrainingQuantization(object):
elif
self
.
_weight_quantize_type
==
"channel_wise_abs_max"
:
min_value
=
[]
max_value
=
[]
if
self
.
weight_op_pairs
[
if
self
.
_
weight_op_pairs
[
var_name
]
in
_channelwise_quant_axis1_ops
:
for
i
in
range
(
var_tensor
.
shape
[
1
]):
min_value
.
append
(
float
(
np
.
min
(
var_tensor
[:,
i
])))
...
...
@@ -569,6 +578,14 @@ class PostTrainingQuantization(object):
(
max_value
>
self
.
_quantized_var_max
[
var_name
]):
self
.
_quantized_var_max
[
var_name
]
=
max_value
def
_sample_histogram
(
self
):
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor_abs
=
np
.
abs
(
var_tensor
)
bins
=
self
.
_sampling_act_histogram
[
var_name
][
1
]
hist
,
_
=
np
.
histogram
(
var_tensor_abs
,
bins
=
bins
)
self
.
_sampling_act_histogram
[
var_name
][
0
]
+=
hist
def
_save_input_threhold
(
self
):
'''
Save input threshold to the quantized op.
...
...
@@ -585,27 +602,36 @@ class PostTrainingQuantization(object):
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
def
_
sample_data
(
self
,
iter
):
def
_
collect_activation_abs_min_max
(
self
):
'''
Sample the tensor data of quantized variables,
applied in every iteration
.
Collect the abs_min and abs_max for all activation. When algo = KL,
get the min and max value, and then calculate the threshold
.
'''
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to sample data."
if
self
.
_is_use_cache_file
:
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
ravel
()
save_path
=
os
.
path
.
join
(
self
.
_cache_dir
,
var_name
.
replace
(
"/"
,
"."
)
+
"_"
+
str
(
iter
)
+
".npy"
)
np
.
save
(
save_path
,
var_tensor
)
else
:
for
var_name
in
self
.
_quantized_act_var_name
:
if
var_name
not
in
self
.
_sampling_data
:
self
.
_sampling_data
[
var_name
]
=
[]
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
ravel
()
self
.
_sampling_data
[
var_name
].
append
(
var_tensor
)
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
np
.
abs
(
var_tensor
)
min_value
=
float
(
np
.
min
(
var_tensor
))
max_value
=
float
(
np
.
max
(
var_tensor
))
if
var_name
not
in
self
.
_sampling_act_abs_min_max
:
self
.
_sampling_act_abs_min_max
[
var_name
]
=
[
min_value
,
max_value
]
else
:
if
min_value
<
self
.
_sampling_act_abs_min_max
[
var_name
][
0
]:
self
.
_sampling_act_abs_min_max
[
var_name
][
0
]
=
min_value
if
max_value
>
self
.
_sampling_act_abs_min_max
[
var_name
][
1
]:
self
.
_sampling_act_abs_min_max
[
var_name
][
1
]
=
max_value
def
_init_sampling_act_histogram
(
self
):
'''
Based on the min/max value, init the sampling_act_histogram.
'''
for
var_name
in
self
.
_quantized_act_var_name
:
if
var_name
not
in
self
.
_sampling_act_histogram
:
min_val
=
self
.
_sampling_act_abs_min_max
[
var_name
][
0
]
max_val
=
self
.
_sampling_act_abs_min_max
[
var_name
][
1
]
hist
,
hist_edeges
=
np
.
histogram
(
[],
bins
=
self
.
_histogram_bins
,
range
=
(
min_val
,
max_val
))
self
.
_sampling_act_histogram
[
var_name
]
=
[
hist
,
hist_edeges
]
def
_calculate_kl_threshold
(
self
):
'''
...
...
@@ -621,7 +647,7 @@ class PostTrainingQuantization(object):
weight_threshold
=
float
(
np
.
max
(
np
.
abs
(
weight_data
)))
elif
self
.
_weight_quantize_type
==
"channel_wise_abs_max"
:
weight_threshold
=
[]
if
self
.
weight_op_pairs
[
if
self
.
_
weight_op_pairs
[
var_name
]
in
_channelwise_quant_axis1_ops
:
for
i
in
range
(
weight_data
.
shape
[
1
]):
weight_threshold
.
append
(
...
...
@@ -632,25 +658,10 @@ class PostTrainingQuantization(object):
float
(
np
.
max
(
np
.
abs
(
weight_data
[
i
]))))
self
.
_quantized_var_kl_threshold
[
var_name
]
=
weight_threshold
# KL threshold for activations
if
self
.
_is_use_cache_file
:
for
var_name
in
self
.
_quantized_act_var_name
:
sampling_data
=
[]
filenames
=
[
f
for
f
in
os
.
listdir
(
self
.
_cache_dir
)
\
if
re
.
match
(
var_name
.
replace
(
"/"
,
"."
)
+
'_[0-9]+.npy'
,
f
)]
for
filename
in
filenames
:
file_path
=
os
.
path
.
join
(
self
.
_cache_dir
,
filename
)
sampling_data
.
append
(
np
.
load
(
file_path
))
os
.
remove
(
file_path
)
sampling_data
=
np
.
concatenate
(
sampling_data
)
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
sampling_data
))
else
:
for
var_name
in
self
.
_quantized_act_var_name
:
self
.
_sampling_data
[
var_name
]
=
np
.
concatenate
(
self
.
_sampling_data
[
var_name
])
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
for
var_name
in
self
.
_quantized_act_var_name
:
hist
,
hist_edeges
=
self
.
_sampling_act_histogram
[
var_name
]
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
hist
,
hist_edeges
)
def
_update_program
(
self
):
'''
...
...
@@ -765,22 +776,15 @@ class PostTrainingQuantization(object):
for
var_name
in
out_var_names
:
analysis_and_save_info
(
op
,
var_name
)
def
_get_kl_scaling_factor
(
self
,
activation_blob
,
num_quantized_bins
=
255
):
def
_get_kl_scaling_factor
(
self
,
hist
,
hist_edeges
,
num_quantized_bins
=
255
):
'''
Using the KL-divergenc method to get the more precise scaling factor.
'''
max_val
=
np
.
max
(
activation_blob
)
min_val
=
np
.
min
(
activation_blob
)
if
min_val
>=
0
:
hist
,
hist_edeges
=
np
.
histogram
(
activation_blob
,
bins
=
2048
,
range
=
(
min_val
,
max_val
))
ending_iter
=
2047
starting_iter
=
int
(
ending_iter
*
0.7
)
else
:
_logger
.
error
(
"Please first apply abs to activation_blob."
)
ending_iter
=
self
.
_histogram_bins
-
1
starting_iter
=
int
(
ending_iter
*
0.7
)
bin_width
=
hist_edeges
[
1
]
-
hist_edeges
[
0
]
P_sum
=
len
(
np
.
array
(
activation_blob
).
ravel
())
P_sum
=
np
.
sum
(
np
.
array
(
hist
).
ravel
())
min_kl_divergence
=
0
min_kl_index
=
0
kl_inited
=
False
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录