post_training_quantization.py 64.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20
from inspect import isgeneratorfunction
21 22 23
from .... import io
from .... import core
from .... import framework
24
from .... import unique_name
25
from ....executor import global_scope, Executor
26 27 28 29 30
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
31 32 33
from .quantization_pass import _out_scale_op_list
from .quantization_pass import _get_op_input_var_names
from .quantization_pass import _get_op_output_var_names
34
from .quantization_pass import _get_output_name_index
35
from .quantization_pass import _get_input_name_index
36
from .quantization_pass import _channelwise_quant_axis1_ops
37
from .cal_kl_threshold import cal_kl_threshold
38 39
from .adaround import run_adaround
from .utils import load_variable_data, set_variable_data
40

41
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
42 43 44 45 46

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


47 48 49 50 51 52 53 54
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


105
class PostTrainingQuantization(object):
106 107 108 109 110 111
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

112
    def __init__(self,
113 114 115
                 executor=None,
                 scope=None,
                 model_dir=None,
116 117
                 model_filename=None,
                 params_filename=None,
118
                 batch_generator=None,
119
                 sample_generator=None,
120
                 data_loader=None,
121 122 123
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
124
                 hist_percent=0.99999,
125
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
126 127
                 round_type='round',
                 learning_rate=0.001,
128
                 is_full_quantize=False,
X
XGZhang 已提交
129
                 bias_correction=False,
130
                 activation_bits=8,
131 132 133
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
134
                 optimize_model=False,
135
                 is_use_cache_file=False,
136
                 cache_dir=None):
137
        '''
138
        Constructor.
139 140

        Args:
141
            executor(fluid.Executor): The executor to load, run and save the
142
                quantized model.
143 144
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
145 146 147 148 149 150 151 152 153
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
154 155 156 157 158 159 160 161
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
162 163 164
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
165 166 167 168
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
169 170 171 172
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
173 174 175 176 177 178 179
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
180 181
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
182
                "mul"].
183 184 185 186
            round_type(str, optional): The method of converting the quantized weights
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the nearest whole number.
            learning_rate(float, optional): The learning rate of adaround method.
187
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
188
                apply quantization to all supported quantizable op type. If set
189 190
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
191 192
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
193
            activation_bits(int): quantization bit number for activation.
194 195 196 197 198 199 200 201 202 203 204 205
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
206 207 208 209 210 211 212 213
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
214 215
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
216 217 218
        Returns:
            None

219 220 221 222 223 224
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
225 226 227 228 229 230 231 232 233
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
234
            # sample generator must return a sample every time. The reference
235 236 237
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
238 239 240
            batch_size = 10
            batch_nums = 10
            algo = "KL"
241
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
242 243
            ptq = PostTrainingQuantization(
                        executor=exe,
244 245 246 247
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
248 249 250 251 252 253 254
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
255

256 257 258 259
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
260
        self._support_algo_type = [
261
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max'
X
XGZhang 已提交
262
        ]
263 264 265
        assert round_type in ['adaround', 'round']
        self._round_type = round_type
        self._learning_rate = learning_rate
266
        self._dynamic_quantize_op_type = ['lstm']
267 268
        self._support_quantize_op_type = \
            list(set(QuantizationTransformPass._supported_quantizable_op_type +
269 270
                AddQuantDequantPass._supported_quantizable_op_type +
                self._dynamic_quantize_op_type))
271 272

        # Check inputs
273 274
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
275
        assert any([gen is not None] for gen in [sample_generator,
276 277 278 279 280
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
281 282
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
X
XGZhang 已提交
283
            "The algo should be KL, hist, mse, avg, abs_max or min_max."
284 285 286 287 288 289 290 291
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
292
        self._bias_correction = bias_correction
293
        self._executor = executor
294
        self._scope = global_scope() if scope == None else scope
295 296 297
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
298
        self._sample_generator = sample_generator
299
        self._batch_generator = batch_generator
300 301 302
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
303
        self._hist_percent = hist_percent
304 305 306 307 308
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._is_full_quantize = is_full_quantize
309
        if is_full_quantize:
310
            self._quantizable_op_type = self._support_quantize_op_type
311 312 313
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
314
                assert op_type in self._support_quantize_op_type, \
315
                    op_type + " is not supported for quantization."
316
        self._optimize_model = optimize_model
317

318
        # Define variables
319 320 321 322
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
323
        self._data_loader = data_loader
324

325
        self._out_scale_op_list = _out_scale_op_list
326 327
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
328
        self._weight_op_pairs = {}
X
XGZhang 已提交
329
        # The vars for alog = KL or hist
330 331
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
332
        self._sampling_data = {}
X
XGZhang 已提交
333
        self._quantized_var_threshold = {}
334 335
        self._histogram_bins = 2048
        # The vars for algo = min_max
336 337
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
338 339 340
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
341
        self._best_calibration_loss = {}
X
XGZhang 已提交
342 343
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
344 345 346

    def quantize(self):
        '''
347 348 349
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
350 351 352 353

        Args:
            None
        Returns:
354 355
            the program of quantized model.
        '''
356
        self._load_model_data()
357
        self._collect_target_varnames()
358
        self._set_activation_persistable()
359

X
XGZhang 已提交
360
        if self._algo in ["KL", "hist"]:
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            _logger.info("Preparation stage ...")
            batch_id = 0
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
                self._collect_activation_abs_min_max()
                if batch_id % 5 == 0:
                    _logger.info("Run batch: " + str(batch_id))
                batch_id += 1
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
            _logger.info("Finish preparation stage, all batch:" + str(batch_id))
            self._init_sampling_act_histogram()

        _logger.info("Sampling stage ...")
379 380 381 382
        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
383
                               fetch_list=self._fetch_list,
384 385
                               return_numpy=False,
                               scope=self._scope)
386
            self._sampling()
387
            if batch_id % 5 == 0:
388
                _logger.info("Run batch: " + str(batch_id))
389 390 391
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
392
        _logger.info("Finish sampling stage, all batch: " + str(batch_id))
393 394 395 396

        if self._round_type == 'adaround':
            self._adaround_apply()

397
        self._reset_activation_persistable()
X
XGZhang 已提交
398 399 400 401 402 403
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
404
        if self._algo in ["KL", "abs_max", "hist", "avg", "mse", "emd"]:
405 406 407 408 409
            self._update_program()
        else:
            self._save_input_threhold()

        self._save_output_threshold()
410 411 412 413
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

431 432
        return self._program

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def _adaround_apply(self):
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
        run_adaround(
            self._data_loader,
            self._program,
            self._fetch_list,
            self._executor,
            self._scope,
            self._place,
            self._quantized_op_pairs,
            self._weight_op_pairs,
            scale_dict,
            num_iterations=self._batch_nums,
            lr=self._learning_rate)

451 452 453 454
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
455 456 457 458
        '''
        Save the quantized model to the disk.

        Args:
459 460 461 462 463 464 465
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
466
        Returns:
467 468 469 470
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
471 472
            model_filename=model_filename,
            params_filename=params_filename,
473 474 475 476
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)
477
        _logger.info("The quantized model is saved in " + save_model_path)
478

479
    def _load_model_data(self):
480
        '''
481
        Load model and set data loader.
482
        '''
483
        _logger.info("Load model and set data loader ...")
484
        [self._program, self._feed_list, self._fetch_list] = \
485 486 487 488
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
489 490 491 492

        if self._optimize_model:
            self._optimize_fp32_model()

493 494
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
495 496 497

        if self._data_loader is not None:
            return
498 499
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
500 501 502 503 504 505 506 507 508 509
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

510 511 512 513 514 515 516 517
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
518 519
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
520 521 522 523
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

524 525
        self._program = graph.to_program()

526
    def _collect_target_varnames(self):
527 528 529 530
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
531
        # TODO(juncaipeng), consider the name_scope of skip_quant
532
        _logger.info("Collect quantized variable names ...")
533
        self._quantized_op_pairs = {}
534

535
        def collect_var_name(var_name_list, persistable_var_names, op_type):
536 537 538
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
539
                    self._weight_op_pairs[var_name] = op_type
540 541 542
                else:
                    self._quantized_act_var_name.add(var_name)

543
        persistable_var_names = _all_persistable_var_names(self._program)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
                    collect_var_name(
                        _get_op_input_var_names(op), persistable_var_names,
                        op_type)
                    collect_var_name(
                        _get_op_output_var_names(op), persistable_var_names,
                        op_type)
559 560 561 562 563 564
                    # collect quanted op output var name
                    for out_var_name in _get_op_output_var_names(op):
                        for in_var_name in _get_op_input_var_names(op):
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
565 566 567 568 569
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
                    collect_var_name(
                        _get_op_output_var_names(op), persistable_var_names,
                        op_type)
570 571 572 573 574 575

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
576 577 578 579
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

580 581 582 583
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
584
        to_erase = []
585 586 587
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
588 589
                to_erase.append(var.name)
        self._scope.erase(to_erase)
590

591
    def _sampling(self):
592
        '''
593
        Sample the min/max, abs_max or histogram in every iterations.
594 595
        '''
        if self._algo == "abs_max":
596
            self._sample_abs_max()
X
XGZhang 已提交
597 598
        elif self._algo == "avg":
            self._sample_avg()
599
        elif self._algo == "min_max":
600
            self._sample_min_max()
X
XGZhang 已提交
601 602
        elif self._algo == "mse":
            self._sample_mse()
603 604
        elif self._algo == "emd":
            self._sample_emd()
X
XGZhang 已提交
605
        elif self._algo in ["KL", "hist"]:
606
            self._sample_histogram()
607

X
XGZhang 已提交
608 609 610
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
611
                var_tensor = load_variable_data(self._scope, var_name)
X
XGZhang 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
628
            var_tensor = load_variable_data(self._scope, var_name)
X
XGZhang 已提交
629 630
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
631
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
632
            s = 0.3
633 634
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
635 636 637 638 639 640 641 642
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
643 644 645 646 647 648 649
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
650
                var_tensor = load_variable_data(self._scope, var_name)
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
667
            var_tensor = load_variable_data(self._scope, var_name)
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
686 687 688 689 690
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
691
                var_tensor = load_variable_data(self._scope, var_name)
X
XGZhang 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
708
            var_tensor = load_variable_data(self._scope, var_name)
X
XGZhang 已提交
709 710 711 712 713 714 715 716
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

717
    def _sample_abs_max(self):
X
XGZhang 已提交
718
        if self._quantized_threshold == {}:
719
            for var_name in self._quantized_weight_var_name:
720
                var_tensor = load_variable_data(self._scope, var_name)
721 722 723 724
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
725
                    if self._weight_op_pairs[
726 727 728 729 730 731 732 733
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
734
                self._quantized_threshold[var_name] = abs_max_value
735 736

        for var_name in self._quantized_act_var_name:
737
            var_tensor = load_variable_data(self._scope, var_name)
738
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
739 740 741
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
742

743
    def _sample_min_max(self):
744 745
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
746
                var_tensor = load_variable_data(self._scope, var_name)
747 748 749 750 751 752
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
753
                    if self._weight_op_pairs[
754 755 756 757 758 759 760 761 762 763 764 765
                            var_name] in _channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
766
            var_tensor = load_variable_data(self._scope, var_name)
767 768 769 770 771 772 773 774
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
775

776 777
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
778
            var_tensor = load_variable_data(self._scope, var_name)
779 780 781 782 783
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

784 785 786 787 788 789
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
790 791 792 793 794 795 796 797 798 799 800
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
                    for var_name in _get_op_input_var_names(op):
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
801

802
    def _collect_activation_abs_min_max(self):
803
        '''
804 805
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
806
        '''
807
        for var_name in self._quantized_act_var_name:
808
            var_tensor = load_variable_data(self._scope, var_name)
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
                self._sampling_act_abs_min_max[
                    var_name] = [min_value, max_value]
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
                hist, hist_edeges = np.histogram(
                    [], bins=self._histogram_bins, range=(min_val, max_val))
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
832

X
XGZhang 已提交
833
    def _calculate_kl_hist_threshold(self):
834
        '''
X
XGZhang 已提交
835
        Calculate the KL or hist threshold of quantized variables.
836
        '''
X
XGZhang 已提交
837 838
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
839 840

        # Abs_max threshold for weights
841
        for var_name in self._quantized_weight_var_name:
842
            weight_data = load_variable_data(self._scope, var_name)
843
            if self._weight_quantize_type == "abs_max":
844
                weight_threshold = float(np.max(np.abs(weight_data)))
845 846
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
847
                if self._weight_op_pairs[
848 849 850 851 852 853 854 855
                        var_name] in _channelwise_quant_axis1_ops:
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
856
            self._quantized_var_threshold[var_name] = weight_threshold
857

858 859
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
860
            if self._algo == "KL":
861
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
862
                self._quantized_var_threshold[var_name] = \
863
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
864 865 866
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
867 868 869

    def _update_program(self):
        '''
870 871
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
872
        Besides, save all threshold to the scale var node.
873
        '''
874
        _logger.info("Update the program ...")
875 876
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

877
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
878 879
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
880
            if op_type in self._quantizable_op_type:
881
                major_quantizable_op_types.append(op_type)
882 883 884
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
885 886 887 888
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            activation_quantize_type=self._activation_quantize_type,
            weight_quantize_type=self._weight_quantize_type,
889
            quantizable_op_type=major_quantizable_op_types)
890 891 892 893 894 895

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
896 897

        # use AddQuantDequantPass to insert fake_quant_dequant op
898 899
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
900
            if op_type in self._quantizable_op_type:
901
                minor_quantizable_op_types.append(op_type)
902 903 904
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
905
            quantizable_op_type=minor_quantizable_op_types)
906 907 908 909

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
910

X
XGZhang 已提交
911 912 913
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
914
        else:
X
XGZhang 已提交
915
            scale_dict = self._quantized_threshold
916
        for key, val in scale_dict.items():
917
            set_variable_data(
918 919 920 921
                self._scope,
                self._place,
                key + ".scale",
                np.array(
922
                    [val], dtype=np.float32))
923
            set_variable_data(
924 925 926 927
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
928 929 930 931 932 933
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
X
XGZhang 已提交
934
            bias_correction=self._bias_correction,
935
            weight_bits=self._weight_bits,
936
            round_type=self._round_type,
937 938
            activation_bits=self._activation_bits,
            weight_quantize_type=self._weight_quantize_type,
939
            quantizable_op_type=major_quantizable_op_types)
940 941 942 943 944

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            freeze_pass.apply(sub_graph)

945 946
        self._program = graph.to_program()

947
    def _save_output_threshold(self):
948
        '''
949
        Save output threshold to the quantized op.
950
        '''
951 952 953 954 955 956 957

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
958
            op_node._set_attr("with_quant_attr", True)
959 960 961 962
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
963 964 965
            argname_index = _get_output_name_index(op_node, out_var_name)
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
966
            if self._algo == "KL":
967
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
968 969
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
970
                save_info(
X
XGZhang 已提交
971
                    op_node, out_var_name, self._quantized_var_threshold,
972 973
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
974 975 976 977
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
978
                save_info(
X
XGZhang 已提交
979
                    op_node, out_var_name, self._quantized_var_threshold,
980
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
981 982
                    "post_hist")

983
            elif self._algo in ["avg", "abs_max", "mse", "emd"]:
X
XGZhang 已提交
984 985 986 987 988 989
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
990 991 992 993 994 995
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

996 997 998 999 1000 1001 1002
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in (
                        self._quantizable_op_type + self._out_scale_op_list):
                    out_var_names = _get_op_output_var_names(op)
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
            for var_name in _get_op_input_var_names(op):
                if var_name in persistable_var_names:
1025
                    var_data = load_variable_data(self._scope, var_name)
1026 1027 1028 1029 1030
                    threshold = float(np.max(np.abs(var_data)))
                    argname, index = _get_input_name_index(op, var_name)
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1031
                    op._set_attr("with_quant_attr", True)
1032

X
XGZhang 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1049 1050 1051

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1052
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1079
                               weight_bits=8,
1080 1081
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1101 1102
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1103 1104 1105 1106 1107 1108 1109
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1110 1111 1112 1113 1114 1115 1116 1117 1118
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1119
                "Input error:" + op_type + \
1120
                " is not supported for weight quantization."
1121
        assert weight_bits in [8, 16], \
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
                save_file_path = os.path.join(
                    os.path.normpath(save_model_dir), new_var.name)
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={
                        'file_path': os.path.normpath(save_file_path),
                        'save_as_fp16': True
                    })

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

            save_path = os.path.join(
                os.path.normpath(save_model_dir), self._params_filename)
            save_block.append_op(
                type='save_combine',
                inputs={'X': save_var_list},
                outputs={'Y': saved_params_var},
                attrs={'file_path': save_path,
                       'save_as_fp16': True})

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1216 1217 1218 1219 1220 1221 1222 1223
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1224 1225 1226 1227 1228 1229 1230 1231 1232
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

1262 1263 1264 1265 1266 1267 1268 1269 1270
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1271
        weight_data = load_variable_data(scope, var_name)
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1285
            set_variable_data(scope, place, var_name, quantized_weight_data)
1286 1287 1288
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1289
            set_variable_data(scope, place, var_name, dequantized_weight_data)
1290 1291 1292 1293 1294

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1295
        op._set_attr("with_quant_attr", True)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1306
        weight_data = load_variable_data(scope, var_name)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1320
            set_variable_data(scope, place, var_name, quantized_weight_data)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1331
            set_variable_data(scope, place, var_name, dequantized_weight_data)
1332 1333 1334 1335 1336

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1337
        op._set_attr("with_quant_attr", True)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width