post_training_quantization.py 71.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20 21 22 23
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
24
from inspect import isgeneratorfunction
25 26 27
from .... import io
from .... import core
from .... import framework
28
from .... import unique_name
29
from ....executor import global_scope, Executor
30 31
from ....framework import IrGraph
from ....log_helper import get_logger
32
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
33
from .cal_kl_threshold import cal_kl_threshold
34
from .adaround import run_adaround
35
from . import utils
36

37
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
38

39 40 41
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
42 43


44 45 46 47 48 49 50 51
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
92 93
            attr_values
        ), "Different number of pass attributes and their values."
94 95 96 97 98 99 100 101 102
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


103
class PostTrainingQuantization(object):
104 105 106 107 108 109
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

110
    def __init__(self,
111 112 113
                 executor=None,
                 scope=None,
                 model_dir=None,
114 115
                 model_filename=None,
                 params_filename=None,
116
                 batch_generator=None,
117
                 sample_generator=None,
118
                 data_loader=None,
119 120 121
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
122
                 hist_percent=0.99999,
123
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
124
                 round_type='round',
125
                 learning_rate=0.001,
126
                 is_full_quantize=False,
X
XGZhang 已提交
127
                 bias_correction=False,
128
                 activation_bits=8,
129 130 131
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
132
                 onnx_format=False,
133
                 optimize_model=False,
134
                 is_use_cache_file=False,
135
                 skip_tensor_list=None,
136
                 cache_dir=None):
137
        '''
138
        Constructor.
139 140

        Args:
141
            executor(fluid.Executor): The executor to load, run and save the
142
                quantized model.
143 144
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
145 146 147 148 149 150 151 152 153
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
154 155 156 157 158 159 160 161
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
162 163 164
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
165 166 167 168
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
169 170 171 172
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
173 174 175 176 177 178 179
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
180 181
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
182
                "mul"].
183
            round_type(str, optional): The method of converting the quantized weights
184
                value float->int. Currently supports ['round', 'adaround'] methods.
185 186
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
187
            learning_rate(float, optional): The learning rate of adaround method.
188
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
189
                apply quantization to all supported quantizable op type. If set
190 191
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
192 193
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
194
            activation_bits(int): quantization bit number for activation.
195 196 197 198 199 200 201 202 203 204 205 206
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
207 208
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
209
            skip_tensor_list(list): List of skip quant tensor name.
210 211 212 213 214 215 216 217
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
218 219
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
220 221 222
        Returns:
            None

223 224 225 226 227 228
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
229 230 231 232 233 234 235 236 237
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
238
            # sample generator must return a sample every time. The reference
239 240 241
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
242 243 244
            batch_size = 10
            batch_nums = 10
            algo = "KL"
245
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
246 247
            ptq = PostTrainingQuantization(
                        executor=exe,
248 249 250 251
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
252 253 254 255 256 257 258
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
259

260 261 262 263
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
264
        self._support_algo_type = [
H
handiz 已提交
265
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max', 'ptf'
X
XGZhang 已提交
266
        ]
267
        assert round_type in ['adaround', 'round']
268 269
        self._round_type = round_type
        self._learning_rate = learning_rate
270
        self._dynamic_quantize_op_type = ['lstm']
271
        self._support_quantize_op_type = \
272 273
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
274
                self._dynamic_quantize_op_type))
275 276

        # Check inputs
277 278
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
279
        assert any([gen is not None] for gen in [sample_generator,
280 281 282 283 284
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
285 286
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
H
handiz 已提交
287
            "The algo should be KL, hist, mse, avg, abs_max, min_max or ptf."
288 289 290 291 292 293 294 295
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
296
        self._bias_correction = bias_correction
297
        self._executor = executor
298
        self._scope = global_scope() if scope == None else scope
299 300 301
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
302
        self._sample_generator = sample_generator
303
        self._batch_generator = batch_generator
304 305 306
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
307
        self._hist_percent = hist_percent
308 309 310 311
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
312
        self._onnx_format = onnx_format
313
        self._skip_tensor_list = skip_tensor_list
314
        self._is_full_quantize = is_full_quantize
315
        if is_full_quantize:
316
            self._quantizable_op_type = self._support_quantize_op_type
317 318 319
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
320
                assert op_type in self._support_quantize_op_type, \
321
                    op_type + " is not supported for quantization."
322
        self._optimize_model = optimize_model
323

324
        # Define variables
325 326 327 328
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
329
        self._data_loader = data_loader
330

331
        self._out_scale_op_list = utils._out_scale_op_list
332 333
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
334
        self._weight_op_pairs = {}
X
XGZhang 已提交
335
        # The vars for alog = KL or hist
336 337
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
338
        self._sampling_data = {}
X
XGZhang 已提交
339
        self._quantized_var_threshold = {}
340 341
        self._histogram_bins = 2048
        # The vars for algo = min_max
342 343
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
344 345 346
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
347
        self._best_calibration_loss = {}
X
XGZhang 已提交
348 349
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
350 351 352

    def quantize(self):
        '''
353 354 355
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
356 357 358 359

        Args:
            None
        Returns:
360 361
            the program of quantized model.
        '''
362
        self._load_model_data()
363
        self._collect_target_varnames()
364
        self._set_activation_persistable()
365

X
XGZhang 已提交
366
        if self._algo in ["KL", "hist"]:
367
            batch_id = 0
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
            with tqdm(
                    total=self._batch_nums,
                    bar_format=
                    'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(total=self._batch_nums,
                  bar_format=
                  'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
391 392 393 394 395 396
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
397
                self._sampling()
398
                batch_id += 1
399
                t.update()
400 401
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
402

X
XGZhang 已提交
403 404 405 406 407 408
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
409

410
        if self._round_type == 'adaround':
411 412 413 414 415
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
416
            self._save_input_threhold()
417 418 419 420
        else:
            self._update_program()

        # save out_threshold for quantized ops.
421
        self._save_output_threshold()
422

423 424 425 426
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

444 445
        return self._program

446
    def _adaround_apply(self):
447
        assert self._algo != "min_max", "The algo should not be min_max."
448 449 450 451
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
452 453 454 455 456 457 458 459 460 461
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
462
                     bias_correction=self._bias_correction,
463
                     lr=self._learning_rate)
464

465 466 467 468
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
469 470 471 472
        '''
        Save the quantized model to the disk.

        Args:
473 474 475 476 477 478 479
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
480
        Returns:
481 482
            None
        '''
483
        clip_extra = True if self._onnx_format else False
484 485 486 487 488 489 490 491
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
                                clip_extra=clip_extra)
492
        _logger.info("The quantized model is saved in " + save_model_path)
493

494
    def _load_model_data(self):
495
        '''
496
        Load model and set data loader.
497
        '''
498
        _logger.info("Load model and set data loader ...")
499
        [self._program, self._feed_list, self._fetch_list] = \
500 501 502 503
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
504 505 506 507

        if self._optimize_model:
            self._optimize_fp32_model()

508 509
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
510 511 512

        if self._data_loader is not None:
            return
513 514 515 516
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
517
        if self._sample_generator is not None:
518 519 520 521
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
522
        elif self._batch_generator is not None:
523 524
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
525

526 527 528 529 530 531 532 533
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
534 535
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
536 537 538 539
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

540 541
        self._program = graph.to_program()

542
    def _collect_target_varnames(self):
543 544 545 546
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
547
        # TODO(juncaipeng), consider the name_scope of skip_quant
548
        _logger.info("Collect quantized variable names ...")
549
        self._quantized_op_pairs = {}
550

551
        def collect_var_name(var_name_list, persistable_var_names, op_type):
552 553 554
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
555
                    self._weight_op_pairs[var_name] = op_type
556 557 558
                else:
                    self._quantized_act_var_name.add(var_name)

559
        persistable_var_names = _all_persistable_var_names(self._program)
560 561
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
562 563 564 565 566 567
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

568 569 570 571 572 573 574
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
575 576 577 578
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
579
                    # collect quanted op output var name
580 581
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
582 583 584
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
585 586
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
587 588
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
589 590 591 592 593 594

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
595 596 597 598
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

599 600 601 602
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
603
        to_erase = []
604 605 606
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
607 608
                to_erase.append(var.name)
        self._scope.erase(to_erase)
609

610
    def _sampling(self):
611
        '''
612
        Sample the min/max, abs_max or histogram in every iterations.
613 614
        '''
        if self._algo == "abs_max":
615
            self._sample_abs_max()
X
XGZhang 已提交
616 617
        elif self._algo == "avg":
            self._sample_avg()
618
        elif self._algo == "min_max":
619
            self._sample_min_max()
X
XGZhang 已提交
620 621
        elif self._algo == "mse":
            self._sample_mse()
622 623
        elif self._algo == "emd":
            self._sample_emd()
H
handiz 已提交
624 625
        elif self._algo == "ptf":
            self._sample_ptf()
X
XGZhang 已提交
626
        elif self._algo in ["KL", "hist"]:
627
            self._sample_histogram()
628

X
XGZhang 已提交
629 630 631
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
632
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
633 634 635 636 637
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
638
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
639 640 641 642 643 644 645 646 647 648
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
649
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
650 651
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
652
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
653
            s = 0.3
654 655
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
656 657 658 659
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
660
                if self._onnx_format:
661
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
662 663 664 665 666 667
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
X
XGZhang 已提交
668
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
669 670 671 672 673 674 675
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
676
                var_tensor = utils.load_variable_data(self._scope, var_name)
677 678 679 680 681
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
682
                            var_name] in utils._channelwise_quant_axis1_ops:
683 684 685 686 687 688 689 690 691 692
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
693
            var_tensor = utils.load_variable_data(self._scope, var_name)
694 695 696 697 698 699 700 701 702 703
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
704
                if self._onnx_format:
705
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
706 707 708 709 710 711
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
712 713 714 715 716
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
717 718 719 720 721
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
722
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
723 724 725 726 727
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
728
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
729 730 731 732 733 734 735 736 737 738
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
739
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
740 741 742 743 744 745 746 747
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

748
    def _sample_abs_max(self):
X
XGZhang 已提交
749
        if self._quantized_threshold == {}:
750
            for var_name in self._quantized_weight_var_name:
751
                var_tensor = utils.load_variable_data(self._scope, var_name)
752 753 754 755
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
756
                    if self._weight_op_pairs[
757
                            var_name] in utils._channelwise_quant_axis1_ops:
758 759 760 761 762 763 764
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
765
                self._quantized_threshold[var_name] = abs_max_value
766 767

        for var_name in self._quantized_act_var_name:
768
            var_tensor = utils.load_variable_data(self._scope, var_name)
769
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
770 771 772
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
773

774
    def _sample_min_max(self):
775 776
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
777
                var_tensor = utils.load_variable_data(self._scope, var_name)
778 779 780 781 782 783
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
784
                    if self._weight_op_pairs[
785
                            var_name] in utils._channelwise_quant_axis1_ops:
786 787 788 789 790 791 792 793 794 795 796
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
797
            var_tensor = utils.load_variable_data(self._scope, var_name)
798 799 800 801 802 803 804 805
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
806

807 808
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
809
            var_tensor = utils.load_variable_data(self._scope, var_name)
810 811 812 813 814
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

H
handiz 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    def l2_loss(self, gt, pred):
        return ((gt - pred)**2).mean()

    def _sample_ptf(self):
        """
        The following code are modified from:
        https://github.com/megvii-research/FQ-ViT/
        """
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
                var_tensor = utils.load_variable_data(self._scope, var_name)
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in utils._channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = utils.load_variable_data(self._scope, var_name)
            abs_max_value = float(np.max(np.abs(var_tensor)))
            q_max = 2**(self._activation_bits - 1) - 1
            scale8 = abs_max_value / q_max
            scale4 = scale8 / 2
            scale2 = scale4 / 2
            scale1 = scale2 / 2
            quant_dequant_var_scale1 = np.clip(np.round(var_tensor / scale1), 0,
                                               q_max) * scale1
            quant_dequant_var_scale2 = np.clip(np.round(var_tensor / scale2), 0,
                                               q_max) * scale2
            quant_dequant_var_scale4 = np.clip(np.round(var_tensor / scale4), 0,
                                               q_max) * scale4
            quant_dequant_var_scale8 = np.clip(np.round(var_tensor / scale8), 0,
                                               q_max) * scale8
            score1 = self.l2_loss(var_tensor, quant_dequant_var_scale1)
            score2 = self.l2_loss(var_tensor, quant_dequant_var_scale2)
            score4 = self.l2_loss(var_tensor, quant_dequant_var_scale4)
            score8 = self.l2_loss(var_tensor, quant_dequant_var_scale8)
            score = [score1, score2, score4, score8]
            mask = 2**score.index(min(score))
            scale = scale1 * mask
            threshold = q_max * scale
            self._quantized_threshold[var_name] = threshold

867 868 869 870 871 872
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
873 874 875
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
876
                    for var_name in utils._get_op_input_var_names(op):
877 878 879 880 881 882 883
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
884

885
    def _collect_activation_abs_min_max(self):
886
        '''
887 888
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
889
        '''
890
        for var_name in self._quantized_act_var_name:
891
            var_tensor = utils.load_variable_data(self._scope, var_name)
892 893 894 895
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
896 897 898
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
899 900 901 902 903 904 905 906 907 908 909 910 911 912
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
913 914 915
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
916
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
917

X
XGZhang 已提交
918
    def _calculate_kl_hist_threshold(self):
919
        '''
X
XGZhang 已提交
920
        Calculate the KL or hist threshold of quantized variables.
921
        '''
X
XGZhang 已提交
922 923
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
924 925

        # Abs_max threshold for weights
926
        for var_name in self._quantized_weight_var_name:
927
            weight_data = utils.load_variable_data(self._scope, var_name)
928
            if self._weight_quantize_type == "abs_max":
929
                weight_threshold = float(np.max(np.abs(weight_data)))
930 931
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
932
                if self._weight_op_pairs[
933
                        var_name] in utils._channelwise_quant_axis1_ops:
934 935 936 937 938 939 940
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
941
            self._quantized_var_threshold[var_name] = weight_threshold
942

943 944
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
945
            if self._algo == "KL":
946
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
947
                self._quantized_var_threshold[var_name] = \
948
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
949 950 951
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
952 953 954

    def _update_program(self):
        '''
955 956
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
957
        Besides, save all threshold to the scale var node.
958
        '''
959
        _logger.info("Update the program ...")
960 961
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

962
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
963
        major_quantizable_op_types = []
964
        for op_type in utils._weight_supported_quantizable_op_type:
965
            if op_type in self._quantizable_op_type:
966
                major_quantizable_op_types.append(op_type)
967 968 969 970 971 972 973 974
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
975
                quantizable_op_type=major_quantizable_op_types)
976 977 978 979 980 981 982 983
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
984
                quantizable_op_type=major_quantizable_op_types)
985 986 987 988 989 990

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
991 992

        # use AddQuantDequantPass to insert fake_quant_dequant op
993
        minor_quantizable_op_types = []
994
        for op_type in utils._act_supported_quantizable_op_type:
995
            if op_type in self._quantizable_op_type:
996
                minor_quantizable_op_types.append(op_type)
997 998 999 1000
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
1001
                quantizable_op_type=minor_quantizable_op_types)
1002 1003 1004 1005 1006
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
1007
                is_full_quantized=self._is_full_quantize)
1008 1009 1010 1011

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
1012

X
XGZhang 已提交
1013 1014 1015
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
1016
        else:
X
XGZhang 已提交
1017
            scale_dict = self._quantized_threshold
1018
        for key, val in scale_dict.items():
H
handiz 已提交
1019
            utils.set_variable_data(self._scope, self._place, key + "@scale",
1020 1021
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
H
handiz 已提交
1022
                                    key + ".quant_dequant@scale",
1023
                                    np.array([val], dtype=np.float32))
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
            freeze_pass = QuantizationFreezePass(
                scope=self._scope,
                place=self._place,
                bias_correction=self._bias_correction,
                weight_bits=self._weight_bits,
                round_type=self._round_type,
                activation_bits=self._activation_bits,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)

            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                freeze_pass.apply(sub_graph)
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
1045

1046 1047
        self._program = graph.to_program()

1048
    def _save_output_threshold(self):
1049
        '''
1050
        Save output threshold to the quantized op.
1051
        '''
1052
        self._calibration_scales = {}
1053 1054 1055 1056 1057 1058

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
            if self._onnx_format:
                # For easy extension, every var_node set a dict to save parameters of quant.
                self._calibration_scales[var_name] = {}
                self._calibration_scales[var_name]['scale'] = threshold_map[
                    var_name]
            else:
                op_node._set_attr(out_info_name, threshold_map[var_name])
                op_node._set_attr("with_quant_attr", True)
                if op_node.type in self._quantizable_op_type:
                    op._set_attr("quantization_type", quantized_type)
1069 1070

        def analysis_and_save_info(op_node, out_var_name):
1071
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1072 1073
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1074
            if self._algo == "KL":
1075
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1076 1077
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1078
                save_info(
X
XGZhang 已提交
1079
                    op_node, out_var_name, self._quantized_var_threshold,
1080 1081
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1082 1083 1084 1085
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1086
                save_info(
X
XGZhang 已提交
1087
                    op_node, out_var_name, self._quantized_var_threshold,
1088
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1089 1090
                    "post_hist")

H
handiz 已提交
1091
            elif self._algo in ["avg", "abs_max", "mse", "emd", "ptf"]:
X
XGZhang 已提交
1092 1093 1094 1095 1096 1097
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1098 1099 1100 1101 1102 1103
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1104 1105
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1106 1107
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1108
                    out_var_names = utils._get_op_output_var_names(op)
1109 1110
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1131
            for var_name in utils._get_op_input_var_names(op):
1132
                if var_name in persistable_var_names:
1133
                    var_data = utils.load_variable_data(self._scope, var_name)
1134
                    threshold = float(np.max(np.abs(var_data)))
1135
                    argname, index = utils._get_input_name_index(op, var_name)
1136 1137 1138
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1139
                    op._set_attr("with_quant_attr", True)
1140

X
XGZhang 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1157 1158 1159

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1160
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1187
                               weight_bits=8,
1188 1189
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1209 1210
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1211 1212 1213 1214 1215 1216 1217
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1218 1219 1220 1221 1222 1223 1224 1225 1226
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1227
                "Input error:" + op_type + \
1228
                " is not supported for weight quantization."
1229
        assert weight_bits in [8, 16], \
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1243 1244 1245 1246 1247
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1307 1308 1309 1310 1311 1312 1313 1314 1315
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1327 1328 1329 1330 1331 1332 1333 1334
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1335 1336 1337 1338 1339 1340 1341 1342 1343
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1363

1364 1365 1366 1367 1368 1369 1370
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1381
        weight_data = utils.load_variable_data(scope, var_name)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1395 1396
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1397 1398 1399
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1400 1401
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1402 1403 1404 1405 1406

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1407
        op._set_attr("with_quant_attr", True)
1408

1409 1410 1411
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1412 1413 1414 1415 1416 1417 1418
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1419
        weight_data = utils.load_variable_data(scope, var_name)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1433 1434
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1445 1446
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1447 1448 1449 1450 1451

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1452
        op._set_attr("with_quant_attr", True)
1453 1454 1455 1456 1457 1458 1459 1460

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1461 1462
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1475 1476
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1489 1490
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1503 1504
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1505 1506 1507 1508 1509
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1510 1511
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1512 1513 1514
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width