op_param.h 111.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

17
#include <memory>
E
eclipsess 已提交
18
#include <string>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/log.h"
朔-望's avatar
朔-望 已提交
21
#include "common/type_define.h"
N
nhzlx 已提交
22
#include "common/types.h"
23
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
27
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
28
#include "framework/variable.h"
Z
zhangyang 已提交
29 30 31 32 33 34 35

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
36
#endif
朔-望's avatar
朔-望 已提交
37

C
Chon 已提交
38 39 40 41
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
42 43
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
44
#endif
朔-望's avatar
朔-望 已提交
45 46

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
47 48
namespace operators {

W
wangliu 已提交
49 50 51 52 53
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
54
using framework::Variable;
W
wangliu 已提交
55 56
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
57

58
using framework::DtypeTensorTrait;
L
liuruilong 已提交
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename Dtype>
class CLImageDeleter {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  void operator()(GType *ptr) {
#ifdef PADDLE_MOBILE_CL
    framework::CLImage *image = dynamic_cast<framework::CLImage *>(ptr);
    if (image) {
      delete image;
    }
#endif
  }
};

L
liuruilong 已提交
75
class OpParam {
76 77
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
78 79
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
80

81 82
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
83

C
Chon 已提交
84 85 86 87 88 89
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
90
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
91 92 93 94
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
95 96 97 98 99 100 101

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

102 103 104 105 106
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

107 108 109 110 111 112 113 114 115
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
116 117 118 119 120
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

148 149 150 151
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
152 153 154 155 156 157

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

158 159 160 161 162
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
163 164 165 166 167
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

168 169 170 171 172
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
173 174 175 176
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
177 178 179 180 181 182 183 184 185 186 187 188
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
189 190 191 192
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
209

E
eclipsess 已提交
210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
220 221 222 223
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
224

225
  template <typename T>
W
wangliu 已提交
226 227
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
228 229 230
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
231 232 233 234 235
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
236 237 238 239 240 241
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
258 259 260 261 262 263
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
264 265 266 267 268 269 270 271 272 273 274 275
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

276 277 278 279 280
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
281 282 283 284 285
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

286 287 288 289 290
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
291 292 293 294 295 296
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

297 298 299 300 301
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
302 303 304 305 306 307
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
319 320 321 322 323
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
324 325 326 327 328 329
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

330 331 332 333 334 335 336 337 338 339 340
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
341
  static const T GetAttr(const string &key, const AttributeMap &map) {
342 343
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
344 345
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
346 347
    return ((Attribute)map.at(key)).GetString();
  }
348

349 350 351 352
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

353
  template <typename T>
W
wangliu 已提交
354
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
355
                        const Scope &scope) {
W
wangliu 已提交
356 357
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
358 359 360 361 362 363
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
364
    }
365
  }
朔-望's avatar
朔-望 已提交
366

E
eclipsess 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

380
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
381
                            int index) {
382 383
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

402
  template <typename T>
W
wangliu 已提交
403 404 405
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
406 407
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
408
    vector<T *> var_res;
409 410 411
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
412
    }
413 414
    return var_res;
  }
E
eclipsess 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
428 429
};

430 431 432 433 434 435
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

456
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
471 472
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
473 474
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
475
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
476
    EXEC_GEMM_INT8,
H
hjchen2 已提交
477
    EXEC_DEPTHWISE3x3_INT8,
478
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
479 480
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
481 482 483 484 485
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
486
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
487 488 489 490
  };

  ExecMode &ExecMode() const { return exec_mode_; }

491
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
492

493 494 495 496 497 498 499
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
500
 public:
501 502 503 504
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
505 506 507
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
508
  mutable enum ExecMode exec_mode_;
509
  int groups;
510 511 512 513

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
514 515 516

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
517
 public:
Z
zhangyang 已提交
518 519 520 521 522
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
523 524 525 526 527 528 529

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
530
#endif
朔-望's avatar
朔-望 已提交
531
};
N
nhzlx 已提交
532 533
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
534

N
nhzlx 已提交
535
template <typename Dtype>
536
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
537 538 539
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
540
 public:
541
  ElementwiseAddParam(const VariableNameMap &inputs,
542
                      const VariableNameMap &outputs, const AttributeMap &attrs,
543 544 545 546 547
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
548 549 550
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
551
  const GType *InputX() const { return input_x_; }
552

xiebaiyuan's avatar
xiebaiyuan 已提交
553
  const GType *InputY() const { return input_y_; }
554

xiebaiyuan's avatar
xiebaiyuan 已提交
555
  GType *Out() const { return out_; }
556 557 558

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
559
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
560 561 562
  GType *input_x_;
  GType *input_y_;
  GType *out_;
563
  int axis_;
Z
zhangyang 已提交
564 565 566
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
567
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
568 569

 public:
H
hanbuhe 已提交
570 571
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
572 573 574 575

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
576
#endif
朔-望's avatar
朔-望 已提交
577 578
};

E
eclipsess 已提交
579
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
580
template <typename Dtype>
581
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
582 583 584 585 586 587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
588 589 590 591 592
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
609 610 611 612 613 614
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
615
};
S
suiyang 已提交
616
#endif
E
eclipsess 已提交
617

618
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
619 620
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
621 622
#endif

623
#ifdef ELEMENTWISESUB_OP
624
template <typename Dtype>
625
class ElementwiseSubParam : public OpParam {
626 627 628 629 630 631
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
632 633 634 635 636
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
654
#endif
655

L
liuruilong 已提交
656
#ifdef MUL_OP
N
nhzlx 已提交
657
template <typename Dtype>
658
class MulParam : public OpParam {
N
nhzlx 已提交
659 660 661
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
662
 public:
663
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
664 665 666 667 668
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
669 670 671
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
672

673
  GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
674

675
  GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
676

xiebaiyuan's avatar
xiebaiyuan 已提交
677
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
678

679
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
680

681
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
682

朔-望's avatar
朔-望 已提交
683
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
684 685 686
  GType *input_x_;
  GType *input_y_;
  GType *out_;
687 688
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
689
};
L
liuruilong 已提交
690
#endif
朔-望's avatar
朔-望 已提交
691

L
liuruilong 已提交
692
#ifdef CONCAT_OP
N
nhzlx 已提交
693
template <typename Dtype>
朔-望's avatar
朔-望 已提交
694
class ConcatParam : public OpParam {
N
nhzlx 已提交
695 696 697
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
698
 public:
699
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
700 701 702 703
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
704
    axis_ = GetAttr<int>("axis", attrs);
705
    original_output_dims_size_ = out_->dims().size();
706
  }
朔-望's avatar
朔-望 已提交
707

N
nhzlx 已提交
708
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
709

xiebaiyuan's avatar
xiebaiyuan 已提交
710
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
711

712
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
713

714
 public:
N
nhzlx 已提交
715
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
716
  GType *out_;
717
  int axis_;
718
  int original_output_dims_size_;
Z
zhangyang 已提交
719 720 721 722 723 724 725 726 727
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
728
};
L
liuruilong 已提交
729
#endif
朔-望's avatar
朔-望 已提交
730

E
eclipsess 已提交
731 732 733 734 735 736 737 738
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
739 740 741 742 743 744
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
763
#ifdef LRN_OP
N
nhzlx 已提交
764
template <typename Dtype>
E
eclipsess 已提交
765
class LrnParam : public OpParam {
N
nhzlx 已提交
766 767 768
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
769
 public:
770
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
771 772 773 774 775
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
776 777 778 779
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
780
    data_format_ = GetStringAttr("data_format", attrs);
781
  }
E
eclipsess 已提交
782

783
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
784

785
  GType *Out() const { return out_; }
E
eclipsess 已提交
786

787
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
788

789
  const int &N() const { return n_; }
E
eclipsess 已提交
790

791
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
792

793
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
794

795
  const float &K() const { return k_; }
E
eclipsess 已提交
796

W
wangliu 已提交
797
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
798

朔-望's avatar
朔-望 已提交
799
 private:
800 801 802
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
803 804 805 806
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
807
  string data_format_;
E
eclipsess 已提交
808
};
L
liuruilong 已提交
809 810
#endif

Z
zhaojiaying01 已提交
811 812
#ifdef NORM_OP
template <typename Dtype>
813
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
814 815 816 817 818
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
819 820 821 822 823
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
824 825 826 827
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

828
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
829

830
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
831

832
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
833 834 835 836 837 838

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
839 840 841
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
842 843 844 845 846
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
847
#ifdef BATCHNORM_OP
N
nhzlx 已提交
848
template <typename Dtype>
849
class BatchNormParam : public OpParam {
N
nhzlx 已提交
850 851 852
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
853
 public:
854
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
855 856 857 858 859 860 861 862
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
863 864
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
865
    //    is_test_ = GetAttr<bool>("is_test", attrs);
866
  }
E
eclipsess 已提交
867

868
  ~BatchNormParam() {}
869

870
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
871

872
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
873

874
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
875

876
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
877

878
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
879

880
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
881

882
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
883

884
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
885

886
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
887

W
wangliu 已提交
888
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
889

890 891 892
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
893

894 895 896
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
897

898
  const GType *NewScale() const { return new_scale_.get(); }
899

900
  const GType *NewBias() const { return new_bias_.get(); }
901

朔-望's avatar
朔-望 已提交
902
 private:
903 904 905 906 907 908
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
909 910 911
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
912
  string data_format_;
913 914
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
E
eclipsess 已提交
915
};
L
liuruilong 已提交
916 917
#endif

918 919 920 921 922 923 924 925 926 927 928 929
#ifdef INSTANCENORM_OP
template <typename Dtype>
class InstanceNormParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  InstanceNormParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
  }

  const GType *InputX() const { return input_x_; }

  GType *OutputY() const { return output_y_; }

  const float &Epsilon() const { return epsilon_; }

 private:
  GType *input_x_;
  GType *output_y_;
  float epsilon_;
};
#endif

#ifdef FUSION_INSTANCENORM_RELU_OP
template <typename Dtype>
class FusionInstanceNormReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionInstanceNormReluParam(const VariableNameMap &inputs,
                              const VariableNameMap &outputs,
                              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    out_ = OutFrom<GType>(outputs, *scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
  }

  const GType *InputX() const { return input_x_; }

  GType *Out() const { return out_; }

  const float &Epsilon() const { return epsilon_; }

 private:
  GType *input_x_;
  GType *out_;
  float epsilon_;
};
#endif

L
liuruilong 已提交
976
#ifdef POOL_OP
N
nhzlx 已提交
977
template <typename Dtype>
978
class PoolParam : public OpParam {
N
nhzlx 已提交
979 980 981
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
982
 public:
983
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
984 985 986
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
987

988
    output_ = OutFrom<GType>(outputs, *scope);
989
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
990 991 992
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
993
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
994
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
995 996 997 998 999 1000

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
1001
  }
1002

1003
  const GType *Input() const { return input_; }
1004

1005
  GType *Output() const { return output_; }
1006

W
wangliu 已提交
1007
  const string &PoolingType() const { return pooling_type_; }
1008

W
wangliu 已提交
1009
  const vector<int> &Ksize() const { return ksize_; }
1010

W
wangliu 已提交
1011
  const vector<int> &Strides() const { return strides_; }
1012

W
wangliu 已提交
1013
  const vector<int> &Paddings() const { return paddings_; }
1014

1015
  bool isCeilMode() const { return ceil_mode_; }
1016

Z
zhangyang 已提交
1017
  bool isGlobalPooling() const { return global_pooling_; }
1018

1019 1020
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
1021
 private:
1022 1023
  GType *input_;
  GType *output_;
W
wangliu 已提交
1024 1025 1026 1027
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
1028
  bool ceil_mode_;
1029
  bool global_pooling_ = false;
1030
  bool exclusive_ = true;
Z
zhangyang 已提交
1031
#ifdef PADDLE_MOBILE_FPGA
1032 1033

 private:
H
hanbuhe 已提交
1034
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
1035 1036

 public:
H
hanbuhe 已提交
1037 1038
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
1039
#endif
1040
};
L
liuruilong 已提交
1041 1042 1043
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
1044
template <typename Dtype>
E
eclipsess 已提交
1045
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
1046 1047 1048
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1049 1050
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1051 1052 1053 1054 1055 1056
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
1057 1058 1059 1060
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
1061 1062 1063 1064

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
1065 1066
    } else {
      min_max_aspect_ratios_order_ = false;
1067
    }
E
eclipsess 已提交
1068 1069 1070 1071 1072 1073
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
1074
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1075

1076
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1077

1078
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1079

1080
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1081

W
wangliu 已提交
1082
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1083

W
wangliu 已提交
1084
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1085

W
wangliu 已提交
1086
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1087

W
wangliu 已提交
1088
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1100 1101 1102 1103
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1104
 private:
1105 1106 1107 1108
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1109 1110 1111 1112
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1113 1114 1115 1116 1117
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1118
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1119
};
L
liuruilong 已提交
1120
#endif
E
eclipsess 已提交
1121

L
liuruilong 已提交
1122
#ifdef BOXCODER_OP
N
nhzlx 已提交
1123
template <typename Dtype>
E
eclipsess 已提交
1124
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1125 1126 1127
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1128 1129
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1130 1131 1132 1133 1134 1135
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1136
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1137
  }
1138
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1139

1140
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1141

1142
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1143

1144
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1145 1146 1147 1148

  const std::string &CodeType() const { return code_type_; }

 private:
1149 1150 1151 1152
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1153 1154
  std::string code_type_;
};
L
liuruilong 已提交
1155
#endif
W
wangliu 已提交
1156

L
liuruilong 已提交
1157
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1158
template <typename Dtype>
W
wangliu 已提交
1159
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1160 1161 1162
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1163 1164
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1165 1166 1167 1168
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1169
  }
H
hjchen2 已提交
1170 1171
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1172 1173

 private:
H
hjchen2 已提交
1174 1175
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1176 1177 1178

#ifdef PADDLE_MOBILE_FPGA

1179 1180
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1181
 private:
1182
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1183 1184 1185
  fpga::BypassArgs fpga_bypass_args;

 public:
1186
  GType *FloatInput() const {
H
hanbuhe 已提交
1187 1188
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1189
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1190 1191
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1204
#endif
W
wangliu 已提交
1205
};
L
liuruilong 已提交
1206
#endif
W
wangliu 已提交
1207

L
liuruilong 已提交
1208
#ifdef SIGMOID_OP
N
nhzlx 已提交
1209
template <typename Dtype>
W
wangliu 已提交
1210
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1211 1212 1213
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1214 1215
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1216 1217 1218 1219
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1220
  }
1221 1222
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1223 1224

 private:
1225 1226
  GType *input_x_;
  GType *out_;
1227 1228 1229 1230 1231 1232 1233 1234 1235
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1236
};
L
liuruilong 已提交
1237 1238 1239
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1240
template <typename Dtype>
E
eclipsess 已提交
1241
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1242 1243 1244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1245 1246 1247
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1248 1249 1250 1251 1252
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1253 1254 1255 1256 1257 1258 1259 1260
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1261
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1262

1263
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1264

1265
  GType *Out() const { return out_; }
E
eclipsess 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1280 1281 1282
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1283 1284 1285 1286 1287 1288 1289
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1290
#endif
W
wangliu 已提交
1291

L
lijiancheng0614 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1301 1302 1303 1304
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1305
  }
1306 1307
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1308 1309

 private:
1310 1311
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1312 1313 1314
};
#endif

N
nhzlx 已提交
1315
template <typename Dtype>
L
liuruilong 已提交
1316
class FeedParam : public OpParam {
N
nhzlx 已提交
1317 1318 1319
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1320 1321
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1322
            const AttributeMap &attrs, Scope *scope)
1323
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1324
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1325
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1326
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1327
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1328
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1329
  }
H
hjchen2 已提交
1330
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1331
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1332
  const int Col() const { return col_; }
W
wangliu 已提交
1333
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1334

L
liuruilong 已提交
1335
 private:
H
hjchen2 已提交
1336
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1337
  GType *out_;
H
update  
hjchen2 已提交
1338
  int col_;
W
wangliu 已提交
1339
  int batch_size;
L
liuruilong 已提交
1340 1341
};

N
nhzlx 已提交
1342
template <typename Dtype>
L
liuruilong 已提交
1343
class FetchParam : public OpParam {
N
nhzlx 已提交
1344 1345 1346
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1347 1348
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1349
             const AttributeMap &attrs, Scope *scope)
1350
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1351 1352
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1353
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1354
  }
L
liuruilong 已提交
1355

H
hjchen2 已提交
1356 1357
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1358
  const int Col() const { return col_; }
L
liuruilong 已提交
1359

L
liuruilong 已提交
1360
 private:
H
hjchen2 已提交
1361 1362
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1363
  int col_;
qnqinan's avatar
qnqinan 已提交
1364
#ifdef PADDLE_MOBILE_FPGA
1365

qnqinan's avatar
qnqinan 已提交
1366
 public:
1367
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1368
  fpga::BypassArgs fpga_bypass_args;
1369
  Tensor aligned_out;
1370 1371 1372
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1373
#endif
L
liuruilong 已提交
1374 1375
};

L
lijiancheng0614 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1385 1386 1387 1388
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1389 1390 1391 1392 1393 1394 1395
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1396
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1406
  GType *out_;
L
lijiancheng0614 已提交
1407 1408 1409 1410 1411 1412
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#ifdef FILL_CONSTANT_BATCH_SIZE_LIKE_OP
template <typename Dtype>
class FillConstantBatchSizeLikeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantBatchSizeLikeParam(const VariableNameMap &inputs,
                                 const VariableNameMap &outputs,
                                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
    input_dim_idx_ = GetAttr<int>("input_dim_idx", attrs);
    output_dim_idx_ = GetAttr<int>("output_dim_idx", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  const GType *Input() const { return input_; }

  GType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

  int InputDimIdx() const { return input_dim_idx_; }

  int OutputDimIdx() const { return output_dim_idx_; }

 private:
  GType *input_;
  Variable *out_var_;
  GType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
  int input_dim_idx_;
  int output_dim_idx_;
};
#endif

L
liuruilong 已提交
1462
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1463
template <typename Dtype>
E
eclipsess 已提交
1464
class TransposeParam : public OpParam {
N
nhzlx 已提交
1465 1466 1467
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1468 1469
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1470 1471 1472 1473
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1474 1475 1476
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1477
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1478

1479
  GType *Out() const { return out_; }
E
eclipsess 已提交
1480 1481 1482 1483

  const vector<int> &Axis() const { return axis_; }

 private:
1484 1485
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1486 1487
  vector<int> axis_;
};
L
liuruilong 已提交
1488
#endif
E
eclipsess 已提交
1489

L
lijiancheng0614 已提交
1490 1491 1492 1493 1494 1495 1496 1497
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1498 1499 1500 1501 1502
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1503 1504 1505
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1506
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1507

1508
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1509

1510
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1511 1512 1513 1514

  const vector<int> &Axis() const { return axis_; }

 private:
1515 1516 1517
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1518 1519 1520 1521
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1522 1523 1524 1525 1526 1527 1528 1529
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1530 1531 1532 1533 1534
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1561 1562
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1563
    // todo crf params
1564 1565 1566 1567
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1568 1569 1570 1571 1572 1573
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1574 1575
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1576 1577 1578 1579 1580 1581 1582 1583
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1584 1585
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1586 1587 1588 1589
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1590
#ifdef RESHAPE_OP
N
nhzlx 已提交
1591
template <typename Dtype>
E
eclipsess 已提交
1592
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1593 1594 1595
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1596 1597
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1598 1599 1600 1601 1602
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1603
    shape_ = GetAttr<vector<int>>("shape", attrs);
1604 1605 1606 1607 1608 1609 1610

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1611 1612
  }

1613
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1614

1615
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1616

1617
  GType *Out() const { return out_; }
E
eclipsess 已提交
1618 1619 1620 1621 1622 1623

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1624 1625 1626
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1627 1628 1629
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1630
#endif
E
eclipsess 已提交
1631

L
lijiancheng0614 已提交
1632 1633 1634 1635 1636 1637 1638 1639
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1640 1641 1642 1643 1644 1645
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1646 1647 1648 1649 1650 1651 1652 1653
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1654
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1655

E
eclipsess 已提交
1656
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1657

E
eclipsess 已提交
1658
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1659

E
eclipsess 已提交
1660
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1661 1662 1663 1664 1665 1666

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1667 1668 1669 1670
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1671 1672 1673 1674 1675
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1676
#ifdef SCALE_OP
N
nhzlx 已提交
1677
template <typename Dtype>
I
itminner 已提交
1678
class ScaleParam : public OpParam {
N
nhzlx 已提交
1679 1680 1681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1682 1683
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1684 1685 1686 1687
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1688 1689
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1690 1691
  }

1692
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1693

1694
  GType *Out() const { return out_; }
I
itminner 已提交
1695

1696
  const float Scale() const { return scale_; }
I
itminner 已提交
1697

1698
  const float Bias() const { return bias_; }
I
itminner 已提交
1699 1700

 private:
1701 1702
  GType *input_x_;
  GType *out_;
1703 1704
  float scale_;
  float bias_;
I
itminner 已提交
1705
};
T
Tian 已提交
1706 1707 1708
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1709
template <typename Dtype>
I
itminner 已提交
1710
class SliceParam : public OpParam {
N
nhzlx 已提交
1711 1712 1713
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1714 1715
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1716 1717 1718 1719
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1720

1721 1722 1723
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1724 1725

    original_output_dims_size_ = output_->dims().size();
1726
  }
I
itminner 已提交
1727

1728 1729 1730 1731 1732 1733
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1734
  int original_output_dims_size_;
I
itminner 已提交
1735
};
T
Tian 已提交
1736 1737 1738
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1739
template <typename Dtype>
T
Tian 已提交
1740
class ResizeParam : public OpParam {
N
nhzlx 已提交
1741 1742 1743
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1744 1745
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1746 1747 1748 1749 1750
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1751 1752 1753 1754 1755 1756
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1757

1758
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1759

1760
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1761

1762
  GType *Out() const { return out_; }
T
Tian 已提交
1763

I
itminner 已提交
1764
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1765

I
itminner 已提交
1766
  const int &Height() const { return height_; }
T
Tian 已提交
1767

I
itminner 已提交
1768
  const int &Width() const { return width_; }
T
Tian 已提交
1769

I
itminner 已提交
1770
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1771

I
itminner 已提交
1772
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1773

I
itminner 已提交
1774
 private:
1775 1776 1777
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1778 1779 1780 1781 1782
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1783 1784 1785
};
#endif

L
liuruilong 已提交
1786
#ifdef RELU_OP
L
liuruilong 已提交
1787 1788 1789
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1790
template <typename Dtype>
D
relu  
dolphin8 已提交
1791
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1792 1793 1794
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1795
 public:
D
relu  
dolphin8 已提交
1796
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1797 1798 1799 1800
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1801 1802
  }

1803
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1804

1805
  GType *Out() const { return out_; }
E
eclipsess 已提交
1806 1807

 private:
1808 1809
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1810
};
D
relu  
dolphin8 已提交
1811 1812 1813

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1814
 public:
D
relu  
dolphin8 已提交
1815 1816 1817
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1832
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1833 1834
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1835
 public:
D
relu  
dolphin8 已提交
1836
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1837 1838 1839
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1840 1841
  framework::CLImage midImage;
};
Y
yangfei 已提交
1842
#endif
D
relu  
dolphin8 已提交
1843

L
liuruilong 已提交
1844
#endif
E
eclipsess 已提交
1845

Z
zhangyang 已提交
1846 1847 1848 1849 1850 1851 1852 1853
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1854 1855 1856 1857
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1858
  }
1859 1860
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1861 1862

 private:
1863 1864
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1865 1866 1867
#ifdef PADDLE_MOBILE_FPGA

 private:
1868
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1869 1870 1871
  fpga::BypassArgs fpga_bypass_args;

 public:
1872
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1873 1874
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1875
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1876 1877 1878
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1879
};
L
liuruilong 已提交
1880
#endif
E
eclipsess 已提交
1881

T
Tian 已提交
1882
#ifdef PRELU_OP
N
nhzlx 已提交
1883
template <typename Dtype>
T
Tian 已提交
1884
class PReluParam : public OpParam {
N
nhzlx 已提交
1885 1886 1887
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1888 1889
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1890 1891
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1892
    DLOG << "PReluParam inputs before";
1893 1894
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1895
    framework::DDim dims = alpha_->dims();
1896
    out_ = OutFrom<GType>(outputs, *scope);
1897
    mode_ = GetStringAttr("mode", attrs);
1898
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1899
  }
1900 1901 1902
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1903
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1904

I
itminner 已提交
1905
 private:
1906 1907 1908
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1909
  std::string mode_;
T
Tian 已提交
1910 1911 1912
};
#endif

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1938
template <typename Dtype>
L
liuruilong 已提交
1939
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1940 1941 1942
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1943
 public:
L
liuruilong 已提交
1944
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1945 1946 1947 1948 1949 1950
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1951 1952 1953 1954
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1955
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1956

1957
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1958

1959
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1960

xiebaiyuan's avatar
xiebaiyuan 已提交
1961
  GType *Out() const { return out_; }
E
eclipsess 已提交
1962 1963 1964 1965 1966 1967 1968 1969

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1970
  GType *input_x_;
1971 1972
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1973
  GType *out_;
E
eclipsess 已提交
1974 1975 1976
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1977

Z
ZhenWang 已提交
1978
#ifdef PADDLE_MOBILE_FPGA
1979
 private:  // NOLINT
Z
zhangyang 已提交
1980
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1981 1982

 public:
Z
zhangyang 已提交
1983 1984
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1985
#endif
E
eclipsess 已提交
1986
};
1987 1988

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1989 1990
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1991
#endif
E
eclipsess 已提交
1992

N
nhzlx 已提交
1993
template <typename Dtype>
1994
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1995 1996 1997
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1998
 public:
L
liuruilong 已提交
1999
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
2000
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2001
                     Scope *scope)
2002
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2003
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2004
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2005
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
2006
  }
2007
  GType *Bias() const { return bias_; }
W
wangliu 已提交
2008 2009 2010

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
2011
 protected:
2012
  GType *bias_;
W
wangliu 已提交
2013 2014 2015
  int axis_;
};

N
nhzlx 已提交
2016 2017
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
2018

Z
zhangyang 已提交
2019
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
2020 2021
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
2022
 public:
L
liuruilong 已提交
2023
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
2024
                         const VariableNameMap &outputs,
2025
                         const AttributeMap &attrs, Scope *scope)
2026
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
2027 2028 2029
};
#endif

2030
#ifdef FUSION_CONVADDPRELU_OP
2031 2032 2033 2034
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2035 2036 2037 2038

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2039
                          const AttributeMap &attrs, Scope *scope)
2040
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2041
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2042
    mode_ = OpParam::GetStringAttr("mode", attrs);
2043
    framework::DDim dims = alpha_->dims();
2044
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2045
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2046
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2047
  }
2048
  const GType *InputAlpha() const { return alpha_; }
2049
  const std::string &Mode() const { return mode_; }
2050
  GType *Bias() const { return bias_; }
2051 2052 2053
  const int &Axis() const { return axis_; }

 protected:
2054
  GType *bias_;
2055
  int axis_;
2056
  GType *alpha_;
2057 2058 2059 2060 2061
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
2062 2063 2064 2065
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2066 2067 2068 2069

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2070
                             const AttributeMap &attrs, Scope *scope)
2071
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2072 2073
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2074
    mode_ = OpParam::GetStringAttr("mode", attrs);
2075
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
2076
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2077
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2078 2079 2080
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
2081
    if (keyX1_ == keyOutput_) {
2082
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
2083
    } else if (keyY1_ == keyOutput_) {
2084
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
2085
    }
H
update  
hjchen2 已提交
2086
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2087
  }
2088
  const GType *InputAlpha() const { return alpha_; }
2089
  const std::string &Mode() const { return mode_; }
2090
  const GType *Bias1() const { return bias1_; }
2091

2092
  GType *Bias() const { return bias_; }
2093 2094 2095 2096

  const int &Axis() const { return axis_; }

 protected:
2097
  GType *bias_;
2098
  int axis_;
2099
  GType *alpha_;
2100
  std::string mode_;
2101
  GType *bias1_;
2102 2103 2104 2105 2106 2107
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
2108
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
2109
template <typename Dtype>
2110
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2111 2112 2113
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2114 2115 2116
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2117
                           const AttributeMap &attrs, Scope *scope)
2118
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2119
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2120
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2121 2122 2123 2124
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2125 2126
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2127
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2128
  }
2129

2130
  ~FusionConvAddBNReluParam() {}
2131

2132
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2133 2134 2135

  const int &Axis() const { return axis_; }

2136
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2137

2138
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2139

2140
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2141

2142
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2143 2144 2145 2146 2147

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2148 2149 2150
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2151

2152 2153 2154
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2155

2156
  const GType *NewScale() const { return new_scale_.get(); }
E
eclipsess 已提交
2157

2158
  const GType *NewBias() const { return new_bias_.get(); }
E
eclipsess 已提交
2159 2160

 protected:
2161
  GType *bias_;
E
eclipsess 已提交
2162
  int axis_;
2163 2164 2165 2166
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2167 2168
  float epsilon_;
  float momentum_;
2169 2170
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2171 2172 2173 2174 2175
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2176
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2177 2178 2179 2180 2181 2182
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2183
                           const AttributeMap &attrs, Scope *scope)
2184
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2185
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2186
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2187 2188 2189 2190
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2191 2192
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2193 2194 2195
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2196
    if (keyX_ == keyBNY_) {
2197
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2198
    } else if (keyY_ == keyBNY_) {
2199
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2200
    }
H
update  
hjchen2 已提交
2201
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2202
  }
2203

2204
  ~FusionConvBNAddReluParam() {}
2205
  GType *Bias() const { return bias_; }
2206 2207 2208

  const int &Axis() const { return axis_; }

2209
  const GType *InputBias() const { return input_bias_; }
2210

2211
  const GType *InputMean() const { return input_mean_; }
2212

2213
  const GType *InputScale() const { return input_scale_; }
2214

2215
  const GType *InputVariance() const { return input_variance_; }
2216 2217 2218 2219 2220

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2221 2222 2223
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2224

2225 2226 2227
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2228

2229
  const GType *NewScale() const { return new_scale_.get(); }
2230

2231
  const GType *NewBias() const { return new_bias_.get(); }
2232 2233

 protected:
2234
  GType *bias_;
2235
  int axis_;
2236 2237 2238 2239
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2240 2241
  float epsilon_;
  float momentum_;
2242 2243
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2244 2245 2246
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2247
};
2248
#endif
E
eclipsess 已提交
2249

Z
zhangyang 已提交
2250
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2251
template <typename Dtype>
2252
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2253 2254 2255
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2256 2257 2258
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2259
                    Scope *scope)
2260
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2261 2262 2263 2264
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2265 2266
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2267
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2268 2269
  }

2270
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2271

2272
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2273

2274
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2275

2276
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2277 2278 2279 2280 2281

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2282 2283 2284
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
Z
zhangyang 已提交
2285

2286 2287 2288
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
Z
zhangyang 已提交
2289

2290
  const GType *NewScale() const { return new_scale_.get(); }
Z
zhangyang 已提交
2291

2292
  const GType *NewBias() const { return new_bias_.get(); }
Z
zhangyang 已提交
2293 2294

 protected:
2295 2296 2297 2298
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2299 2300
  float epsilon_;
  float momentum_;
2301 2302
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
Z
zhangyang 已提交
2303 2304 2305
};
#endif

2306
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2307
template <typename Dtype>
2308
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2309 2310 2311
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2312 2313 2314
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2315
                       const AttributeMap &attrs, Scope *scope)
2316
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2317
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2318
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2319 2320 2321 2322
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2323 2324
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2325
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2326
  }
2327
  GType *Bias() const { return bias_; }
2328 2329 2330

  const int &Axis() const { return axis_; }

2331
  const GType *InputBias() const { return input_bias_; }
2332

2333
  const GType *InputMean() const { return input_mean_; }
2334

2335
  const GType *InputScale() const { return input_scale_; }
2336

2337
  const GType *InputVariance() const { return input_variance_; }
2338 2339 2340 2341 2342

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2343 2344 2345
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2346

2347 2348 2349
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2350

2351
  const GType *NewScale() const { return new_scale_.get(); }
2352

2353
  const GType *NewBias() const { return new_bias_.get(); }
2354 2355

 protected:
2356
  GType *bias_;
2357
  int axis_;
2358 2359 2360 2361
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2362 2363
  float epsilon_;
  float momentum_;
2364 2365
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2366
};
E
eclipsess 已提交
2367
#endif
Y
Yao,kun 已提交
2368

E
eclipsess 已提交
2369
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2370
template <typename Dtype>
2371
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2372 2373 2374
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2375 2376 2377
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2378
                          const AttributeMap &attrs, Scope *scope)
2379
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2380 2381 2382 2383
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2384 2385
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2386
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2387 2388
  }

2389
  ~FusionDWConvBNReluParam() {}
2390

2391
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2392

2393
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2394

2395
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2396

2397
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2398 2399 2400 2401 2402

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2403 2404 2405
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2406

2407 2408 2409
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2410

2411
  const GType *NewScale() const { return new_scale_.get(); }
E
eclipsess 已提交
2412

2413
  const GType *NewBias() const { return new_bias_.get(); }
E
eclipsess 已提交
2414 2415

 protected:
2416 2417 2418 2419
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2420 2421
  float epsilon_;
  float momentum_;
2422 2423
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
E
eclipsess 已提交
2424 2425 2426 2427
};

#endif

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2444
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2445
template <typename Dtype>
2446
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2447 2448 2449
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2450 2451 2452
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2453
                        const AttributeMap &attrs, Scope *scope)
2454
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2455 2456 2457 2458
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2459 2460
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2461
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2462 2463
  }

2464
  ~FusionConvBNReluParam() {}
2465

2466
  const GType *InputBias() const { return input_bias_; }
2467

2468
  const GType *InputMean() const { return input_mean_; }
2469

2470
  const GType *InputScale() const { return input_scale_; }
2471

2472
  const GType *InputVariance() const { return input_variance_; }
2473 2474 2475 2476 2477

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2478 2479 2480
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2481

2482 2483 2484
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2485

2486
  const GType *NewScale() const { return new_scale_.get(); }
2487

2488
  const GType *NewBias() const { return new_bias_.get(); }
2489 2490

 protected:
2491 2492 2493 2494
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2495 2496
  float epsilon_;
  float momentum_;
2497 2498
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2499 2500 2501
};
#endif

Y
Yao,kun 已提交
2502
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2503
template <typename Dtype>
Y
Yao,kun 已提交
2504
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2505 2506 2507
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2508 2509 2510
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2511 2512 2513 2514
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2515 2516 2517 2518 2519
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2520
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2521

E
eclipsess 已提交
2522
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2523 2524 2525 2526 2527 2528 2529 2530

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2531 2532
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2533 2534 2535 2536
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2537
#endif
Y
Yao,kun 已提交
2538

2539
#ifdef DROPOUT_OP
N
nhzlx 已提交
2540
template <typename Dtype>
Y
Yao,kun 已提交
2541
class DropoutParam : public OpParam {
N
nhzlx 已提交
2542 2543 2544
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2545 2546
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2547 2548 2549 2550
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2551 2552

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2553 2554
  }

2555
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2556

2557
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2558

Y
yangfei 已提交
2559 2560
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2561
 private:
2562 2563
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2564
  float dropout_prob_;
Y
Yao,kun 已提交
2565
};
2566
#endif
Y
Yao,kun 已提交
2567

N
nhzlx 已提交
2568
template <typename Dtype>
L
liuruilong 已提交
2569
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2570 2571 2572
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2573 2574 2575
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2576 2577
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
2578 2579
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
2580
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2581
    if (outputs.count("Output")) {
2582
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2583
    }
L
liuruilong 已提交
2584 2585 2586
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
2587 2588 2589 2590
    if (HasAttr("output_size", attrs)) {
      output_size_ = GetAttr<vector<int>>("output_size", attrs);
      DLOG << "conv transpose output size: " << output_size_;
    }
L
liuruilong 已提交
2591 2592 2593
    groups = GetAttr<int>("groups", attrs);
  }

2594
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2595

2596
  GType *Filter() const { return filter_; }
L
liuruilong 已提交
2597

2598
  GType *Output() const { return output_; }
L
liuruilong 已提交
2599 2600 2601 2602 2603

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

2604 2605 2606 2607
  const vector<int> &Filters() const { return filter_; }

  const vector<int> &TransFilters() const { return transformed_filter_; }

L
liuruilong 已提交
2608 2609
  const vector<int> &Dilations() const { return dilations_; }

2610 2611
  const vector<int> &OutputSize() const { return output_size_; }

L
liuruilong 已提交
2612 2613
  const int &Groups() const { return groups; }

H
hjchen2 已提交
2614 2615 2616 2617 2618
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
2619 2620
    EXEC_DEPTHWISETRANS_FLOAT,
    EXEC_CONVTRANS3x3s2_FLOAT,
H
hjchen2 已提交
2621 2622 2623 2624
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2625
 private:
2626 2627 2628
  GType *input_;
  GType *output_;
  GType *filter_;
2629
  GType *transformed_filter_;
L
liuruilong 已提交
2630 2631 2632
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
2633
  vector<int> output_size_;
L
liuruilong 已提交
2634
  int groups;
H
hjchen2 已提交
2635
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2636 2637 2638 2639 2640

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2641
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2642 2643 2644

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2645 2646 2647
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2648
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2649 2650 2651
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2652
#endif
L
liuruilong 已提交
2653
};
Z
zhangyang 已提交
2654

qnqinan's avatar
qnqinan 已提交
2655 2656 2657 2658 2659
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2660 2661

 public:
qnqinan's avatar
qnqinan 已提交
2662
  FusionDeconvAddParam(const VariableNameMap &inputs,
2663
                       const VariableNameMap &outputs,
2664
                       const AttributeMap &attrs, Scope *scope)
2665
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2666
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2667
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2668
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2669
  }
2670
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2671 2672 2673

  const int &Axis() const { return axis_; }

2674
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2675 2676

 protected:
2677
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2678
  int axis_;
2679
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2680 2681 2682 2683 2684 2685 2686
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2687 2688 2689 2690 2691 2692 2693 2694 2695
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2696
                         const AttributeMap &attrs, Scope *scope)
2697
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2698 2699 2700 2701 2702
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2703 2704 2705 2706 2707 2708 2709
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2723 2724 2725
  void SetNewScale(RType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2726

2727 2728 2729
  void SetNewBias(RType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2730

2731
  const RType *NewScale() const { return new_scale_.get(); }
2732

2733
  const RType *NewBias() const { return new_bias_.get(); }
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
2744 2745
  std::shared_ptr<RType> new_bias_;
  std::shared_ptr<RType> new_scale_;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2757
                          const AttributeMap &attrs, Scope *scope)
2758
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2759 2760 2761 2762 2763
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2764 2765 2766 2767 2768 2769
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2783 2784 2785
  void SetNewScale(RType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2786

2787 2788 2789
  void SetNewBias(RType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2790

2791
  const RType *NewScale() const { return new_scale_.get(); }
2792

2793
  const RType *NewBias() const { return new_bias_.get(); }
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
2804 2805
  std::shared_ptr<RType> new_bias_;
  std::shared_ptr<RType> new_scale_;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2817
                             const AttributeMap &attrs, Scope *scope)
2818
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2819 2820 2821 2822 2823
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2844 2845 2846
  void SetNewScale(RType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2847

2848 2849 2850
  void SetNewBias(RType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2851

2852
  const RType *NewScale() const { return new_scale_.get(); }
2853

2854
  const RType *NewBias() const { return new_bias_.get(); }
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
2865 2866
  std::shared_ptr<RType> new_bias_;
  std::shared_ptr<RType> new_scale_;
2867 2868
};
#endif
L
liuruilong 已提交
2869

Z
zhangyang 已提交
2870 2871 2872 2873 2874
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2889 2890 2891 2892 2893 2894 2895 2896
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2897
    output_batch_reset_hidden_prev_ =
2898 2899 2900
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2901 2902
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2936 2937 2938 2939 2940 2941 2942
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2943 2944 2945 2946 2947 2948 2949 2950
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2951
    output_reset_hidden_prev_ =
2952 2953
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2982 2983 2984 2985 2986 2987 2988 2989
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2990 2991 2992 2993
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2994
    axis = GetAttr<int>("axis", attrs);
2995
  }
2996 2997
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2998
  const int &Axis() const { return axis; }
2999 3000

 private:
3001 3002
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3003
  int axis;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3015 3016 3017 3018
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
3019
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
3020 3021 3022 3023 3024 3025
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
3026
  }
3027
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
3028 3029 3030 3031 3032
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
3033 3034

 private:
3035
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3036
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3037
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
3038 3039 3040
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
3041 3042 3043 3044 3045 3046 3047 3048 3049
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3062 3063 3064 3065 3066
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
3067 3068
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
3069
  }
3070
  const GType *InputX() const { return input_x_; }
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
3103 3104
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
3105 3106
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
3107 3108

 private:
3109 3110 3111
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3112 3113
  int out_h_;
  int out_w_;
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3125 3126 3127 3128
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3129
  }
3130 3131
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
3132 3133

 private:
3134 3135
  GType *input_;
  GType *out_;
3136 3137 3138
};
#endif

H
hjchen2 已提交
3139 3140 3141 3142 3143 3144 3145 3146
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3147 3148 3149 3150 3151
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
3152 3153 3154 3155
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
3156 3157 3158
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3171 3172 3173 3174
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
3175 3176 3177 3178 3179
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
3180 3181
  GType *input_;
  GType *output_;
H
hjchen2 已提交
3182 3183 3184 3185 3186
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

3187
#ifdef QUANT_OP
3188
template <typename Dtype>
3189 3190 3191 3192 3193
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3194
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3195 3196 3197 3198
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3199 3200
    // online
    // scale = max(abs(x))
3201
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3202
    // offline
3203
    if (inputs.count("InScale")) {
3204
      offline_ = true;
3205
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3206 3207
    }
    // x = round(scale * x)
3208 3209
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3210
    }
3211 3212 3213 3214
  }

 public:
  // op input
3215
  GType *input_;
3216
  // op output
3217
  GType *output_;
3218
  GType *online_scale_;
3219
  // quantize offline scale
3220
  GType *offline_scale_;
3221 3222
  // if offine scale or not
  bool offline_ = false;
3223
  // round method type
3224 3225
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3226
};
3227
#endif
3228

3229
#ifdef DEQUANT_OP
3230
template <typename Dtype>
3231 3232 3233 3234 3235
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3236
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3237 3238 3239 3240 3241
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3242
    // dequantization is performed as x = x / static_scale / online_scale
3243 3244
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3245
    } else {
3246
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3247 3248 3249 3250 3251
    }
  }

 public:
  // op input
3252
  GType *input_;
3253
  // op output
3254
  GType *output_;
3255
  GType *activation_scale_;
3256 3257
  float weight_scale_;
};
3258
#endif
3259

3260 3261 3262 3263
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3264
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3265
template <typename Dtype>
3266
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3267 3268 3269 3270
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3271 3272
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3273
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3274 3275
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3276 3277 3278 3279
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3280 3281 3282 3283 3284
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3285 3286 3287 3288
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3289
  float epsilon_;
3290 3291 3292
};
#endif

3293 3294 3295 3296
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3297 3298 3299 3300 3301 3302 3303 3304
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3305
                          const AttributeMap &attrs, Scope *scope)
3306 3307 3308
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3309
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3310 3311 3312 3313 3314
  }

 public:
  // elementwise add
  int axis_;
3315
  GType *bias_;
3316 3317 3318
};
#endif

3319 3320 3321 3322 3323 3324 3325 3326 3327
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3328
                               const AttributeMap &attrs, Scope *scope)
3329 3330
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3331
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3332
    // offline
3333 3334
    if (inputs.count("InScale")) {
      offline_ = true;
3335
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3336 3337 3338 3339 3340 3341 3342 3343
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3344
  GType *online_scale_;
3345
  // quantize offline scale
3346
  GType *offline_scale_;
3347 3348
  // if offine scale or not
  bool offline_ = false;
3349 3350 3351 3352 3353 3354
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3355 3356 3357 3358 3359 3360 3361 3362 3363
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3364 3365 3366 3367 3368
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3392 3393 3394 3395
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3396 3397
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3398
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3409 3410 3411 3412 3413 3414 3415 3416
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3417 3418 3419 3420
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3421 3422
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3423
      input_y_ = InputYFrom<GType>(inputs, *scope);
3424 3425 3426
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
Z
zp7 已提交
3427 3428 3429
    if (HasAttr("append", attrs)) {
      append = OpParam::GetAttr<bool>("append", attrs);
    }
3430 3431 3432 3433 3434 3435 3436
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
3437
  bool append;
3438 3439 3440
};
#endif  // LOD_RESET_OP

3441 3442 3443 3444 3445 3446 3447 3448
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3449 3450 3451 3452 3453
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3465
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3466
template <typename Dtype>
Z
zhaojiaying01 已提交
3467
class LogicalBinaryParam : public OpParam {
3468 3469 3470 3471
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3472 3473
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3474 3475 3476 3477 3478
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3490
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3491 3492 3493

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3494
class LogicalUnaryParam : public OpParam {
3495 3496 3497 3498
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3499 3500
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3501 3502 3503 3504
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3516 3517 3518
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3519 3520 3521
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3522 3523 3524
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3525 3526
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3527 3528 3529
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3530 3531 3532
  }

 public:
H
hjchen2 已提交
3533 3534 3535
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3536 3537 3538 3539 3540 3541
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3542 3543 3544
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3545 3546 3547
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3548 3549
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3550 3551 3552
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3553 3554 3555
  }

 public:
H
hjchen2 已提交
3556 3557 3558
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3559 3560 3561
};
#endif

Z
zhaojiaying01 已提交
3562 3563 3564 3565 3566 3567 3568 3569
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3570 3571 3572 3573
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3593
                 const AttributeMap &attrs, Scope *scope)
3594
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3595 3596
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3597
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3598 3599 3600 3601
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3602
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3603 3604 3605 3606

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3607
  float step_;
Z
zhaojiaying01 已提交
3608 3609
};
#endif  // INCREMENT_OP
3610 3611
#ifdef PAD2D_OP
template <typename Dtype>
3612
class Pad2DParam : public OpParam {
3613 3614 3615 3616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3617
  Pad2DParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3618 3619 3620 3621
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3622 3623 3624 3625
    paddings_ = OpParam::GetAttr<std::vector<int>>("paddings", attrs);
    pad_value_ = OpParam::GetAttr<float>("pad_value", attrs);
    mode_ = OpParam::GetStringAttr("mode", attrs);
    DLOG << "mode" << mode_;
3626
  }
3627 3628 3629 3630 3631 3632
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

  std::vector<int> paddings_;
  float pad_value_;
  std::string mode_;
3633 3634

 private:
3635 3636
  GType *input_x_;
  GType *out_;
3637 3638
};
#endif
H
Huie 已提交
3639 3640 3641 3642 3643
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3644

H
Huie 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689

#ifdef PIXEL_SHUFFLE_OP
template <typename Dtype>
class PixelShuffleParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PixelShuffleParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    upscale_factor_ = GetAttr<int>("upscale_factor", attrs);
  }

  const GType *InputX() const { return input_x_; }

  GType *Out() const { return out_; }

  const int &upscale_factor() const { return upscale_factor_; }

 private:
  GType *input_x_;
  GType *out_;
  int upscale_factor_;
};
#endif

3690 3691

#ifdef GRID_SAMPLER_OP
3692
template <typename Dtype>
3693
class GridSamplerParam : public OpParam {
3694 3695 3696 3697
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3698 3699 3700
  GridSamplerParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   Scope *scope)
3701 3702
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
3703
    output_ = OutputFrom<GType>(outputs, *scope);
3704 3705 3706 3707
  }

  const GType *InputX() const { return input_x_; }

3708
  GType *Output() const { return output_; }
3709 3710 3711

 private:
  GType *input_x_;
3712
  GType *output_;
3713 3714 3715
};
#endif

3716
#ifdef EXPAND_OP
3717
template <typename Dtype>
3718
class ExpandParam : public OpParam {
3719 3720 3721 3722
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3723 3724
  ExpandParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, Scope *scope)
3725 3726
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
3727 3728
    out_ = OutFrom<GType>(outputs, *scope);
    expand_times = OpParam::GetAttr<std::vector<int>>("expand_times", attrs);
3729 3730 3731 3732
  }

  const GType *InputX() const { return input_x_; }

3733 3734 3735
  GType *Out() const { return out_; }

  std::vector<int> expand_times;
3736 3737 3738

 private:
  GType *input_x_;
3739
  GType *out_;
3740 3741
};

3742
#endif
朔-望's avatar
朔-望 已提交
3743 3744
}  // namespace operators
}  // namespace paddle_mobile