op_param.h 108.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

17
#include <memory>
E
eclipsess 已提交
18
#include <string>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/log.h"
朔-望's avatar
朔-望 已提交
21
#include "common/type_define.h"
N
nhzlx 已提交
22
#include "common/types.h"
23
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
27
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
28
#include "framework/variable.h"
Z
zhangyang 已提交
29 30 31 32 33 34 35

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
36
#endif
朔-望's avatar
朔-望 已提交
37

C
Chon 已提交
38 39 40 41
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
42 43
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
44
#endif
朔-望's avatar
朔-望 已提交
45 46

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
47 48
namespace operators {

W
wangliu 已提交
49 50 51 52 53
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
54
using framework::Variable;
W
wangliu 已提交
55 56
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
57

58
using framework::DtypeTensorTrait;
L
liuruilong 已提交
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename Dtype>
class CLImageDeleter {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  void operator()(GType *ptr) {
#ifdef PADDLE_MOBILE_CL
    framework::CLImage *image = dynamic_cast<framework::CLImage *>(ptr);
    if (image) {
      delete image;
    }
#endif
  }
};

L
liuruilong 已提交
75
class OpParam {
76 77
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
78 79
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
80

81 82
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
83

C
Chon 已提交
84 85 86 87 88 89
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
90
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
91 92 93 94
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
95 96 97 98 99 100 101

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

102 103 104 105 106
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

107 108 109 110 111 112 113 114 115
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
116 117 118 119 120
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

148 149 150 151
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
152 153 154 155 156 157

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

158 159 160 161 162
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
163 164 165 166 167
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

168 169 170 171 172
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
173 174 175 176
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
177 178 179 180 181 182 183 184 185 186 187 188
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
189 190 191 192
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
209

E
eclipsess 已提交
210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
220 221 222 223
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
224

225
  template <typename T>
W
wangliu 已提交
226 227
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
228 229 230
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
231 232 233 234 235
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
236 237 238 239 240 241
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
258 259 260 261 262 263
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
264 265 266 267 268 269 270 271 272 273 274 275
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

276 277 278 279 280
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
281 282 283 284 285
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

286 287 288 289 290
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
291 292 293 294 295 296
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

297 298 299 300 301
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
302 303 304 305 306 307
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
319 320 321 322 323
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
324 325 326 327 328 329
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

330 331 332 333 334 335 336 337 338 339 340
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
341
  static const T GetAttr(const string &key, const AttributeMap &map) {
342 343
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
344 345
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
346 347
    return ((Attribute)map.at(key)).GetString();
  }
348

349 350 351 352
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

353
  template <typename T>
W
wangliu 已提交
354
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
355
                        const Scope &scope) {
W
wangliu 已提交
356 357
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
358 359 360 361 362 363
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
364
    }
365
  }
朔-望's avatar
朔-望 已提交
366

E
eclipsess 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

380
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
381
                            int index) {
382 383
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

402
  template <typename T>
W
wangliu 已提交
403 404 405
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
406 407
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
408
    vector<T *> var_res;
409 410 411
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
412
    }
413 414
    return var_res;
  }
E
eclipsess 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
428 429
};

430 431 432 433 434 435
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

456
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
471 472
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
473 474
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
475
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
476
    EXEC_GEMM_INT8,
H
hjchen2 已提交
477
    EXEC_DEPTHWISE3x3_INT8,
478
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
479 480
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
481 482 483 484 485
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
486
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
487 488 489 490
  };

  ExecMode &ExecMode() const { return exec_mode_; }

491
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
492

493 494 495 496 497 498 499
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
500
 public:
501 502 503 504
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
505 506 507
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
508
  mutable enum ExecMode exec_mode_;
509
  int groups;
510 511 512 513

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
514 515 516

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
517
 public:
Z
zhangyang 已提交
518 519 520 521 522
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
523 524 525 526 527 528 529

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
530
#endif
朔-望's avatar
朔-望 已提交
531
};
N
nhzlx 已提交
532 533
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
534

N
nhzlx 已提交
535
template <typename Dtype>
536
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
537 538 539
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
540
 public:
541
  ElementwiseAddParam(const VariableNameMap &inputs,
542
                      const VariableNameMap &outputs, const AttributeMap &attrs,
543 544 545 546 547
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
548 549 550
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
551
  const GType *InputX() const { return input_x_; }
552

xiebaiyuan's avatar
xiebaiyuan 已提交
553
  const GType *InputY() const { return input_y_; }
554

xiebaiyuan's avatar
xiebaiyuan 已提交
555
  GType *Out() const { return out_; }
556 557 558

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
559
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
560 561 562
  GType *input_x_;
  GType *input_y_;
  GType *out_;
563
  int axis_;
Z
zhangyang 已提交
564 565 566
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
567
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
568 569

 public:
H
hanbuhe 已提交
570 571
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
572 573 574 575

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
576
#endif
朔-望's avatar
朔-望 已提交
577 578
};

E
eclipsess 已提交
579
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
580
template <typename Dtype>
581
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
582 583 584 585 586 587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
588 589 590 591 592
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
609 610 611 612 613 614
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
615
};
S
suiyang 已提交
616
#endif
E
eclipsess 已提交
617

618
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
619 620
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
621 622
#endif

623
#ifdef ELEMENTWISESUB_OP
624
template <typename Dtype>
625
class ElementwiseSubParam : public OpParam {
626 627 628 629 630 631
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
632 633 634 635 636
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
654
#endif
655

L
liuruilong 已提交
656
#ifdef MUL_OP
N
nhzlx 已提交
657
template <typename Dtype>
658
class MulParam : public OpParam {
N
nhzlx 已提交
659 660 661
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
662
 public:
663
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
664 665 666 667 668
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
669 670 671
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
672

673
  GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
674

675
  GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
676

xiebaiyuan's avatar
xiebaiyuan 已提交
677
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
678

679
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
680

681
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
682

朔-望's avatar
朔-望 已提交
683
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
684 685 686
  GType *input_x_;
  GType *input_y_;
  GType *out_;
687 688
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
689
};
L
liuruilong 已提交
690
#endif
朔-望's avatar
朔-望 已提交
691

L
liuruilong 已提交
692
#ifdef CONCAT_OP
N
nhzlx 已提交
693
template <typename Dtype>
朔-望's avatar
朔-望 已提交
694
class ConcatParam : public OpParam {
N
nhzlx 已提交
695 696 697
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
698
 public:
699
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
700 701 702 703
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
704
    axis_ = GetAttr<int>("axis", attrs);
705
    original_output_dims_size_ = out_->dims().size();
706
  }
朔-望's avatar
朔-望 已提交
707

N
nhzlx 已提交
708
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
709

xiebaiyuan's avatar
xiebaiyuan 已提交
710
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
711

712
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
713

714
 public:
N
nhzlx 已提交
715
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
716
  GType *out_;
717
  int axis_;
718
  int original_output_dims_size_;
Z
zhangyang 已提交
719 720 721 722 723 724 725 726 727
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
728
};
L
liuruilong 已提交
729
#endif
朔-望's avatar
朔-望 已提交
730

E
eclipsess 已提交
731 732 733 734 735 736 737 738
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
739 740 741 742 743 744
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
763
#ifdef LRN_OP
N
nhzlx 已提交
764
template <typename Dtype>
E
eclipsess 已提交
765
class LrnParam : public OpParam {
N
nhzlx 已提交
766 767 768
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
769
 public:
770
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
771 772 773 774 775
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
776 777 778 779
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
780
    data_format_ = GetStringAttr("data_format", attrs);
781
  }
E
eclipsess 已提交
782

783
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
784

785
  GType *Out() const { return out_; }
E
eclipsess 已提交
786

787
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
788

789
  const int &N() const { return n_; }
E
eclipsess 已提交
790

791
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
792

793
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
794

795
  const float &K() const { return k_; }
E
eclipsess 已提交
796

W
wangliu 已提交
797
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
798

朔-望's avatar
朔-望 已提交
799
 private:
800 801 802
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
803 804 805 806
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
807
  string data_format_;
E
eclipsess 已提交
808
};
L
liuruilong 已提交
809 810
#endif

Z
zhaojiaying01 已提交
811 812
#ifdef NORM_OP
template <typename Dtype>
813
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
814 815 816 817 818
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
819 820 821 822 823
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
824 825 826 827
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

828
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
829

830
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
831

832
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
833 834 835 836 837 838

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
839 840 841
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
842 843 844 845 846
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
847
#ifdef BATCHNORM_OP
N
nhzlx 已提交
848
template <typename Dtype>
849
class BatchNormParam : public OpParam {
N
nhzlx 已提交
850 851 852
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
853
 public:
854
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
855 856 857 858 859 860 861 862
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
863 864
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
865
    //    is_test_ = GetAttr<bool>("is_test", attrs);
866
  }
E
eclipsess 已提交
867

868
  ~BatchNormParam() {}
869

870
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
871

872
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
873

874
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
875

876
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
877

878
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
879

880
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
881

882
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
883

884
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
885

886
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
887

W
wangliu 已提交
888
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
889

890 891 892
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
893

894 895 896
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
897

898
  const GType *NewScale() const { return new_scale_.get(); }
899

900
  const GType *NewBias() const { return new_bias_.get(); }
901

朔-望's avatar
朔-望 已提交
902
 private:
903 904 905 906 907 908
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
909 910 911
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
912
  string data_format_;
913 914
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
E
eclipsess 已提交
915
};
L
liuruilong 已提交
916 917
#endif

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
#ifdef INSTANCENORM_OP
template <typename Dtype>
class InstanceNormParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  InstanceNormParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
  }

  const GType *InputX() const { return input_x_; }

  GType *Out() const { return out_; }

  const float &Epsilon() const { return epsilon_; }

 private:
  GType *input_x_;
  GType *out_;
  float epsilon_;
};
#endif

L
liuruilong 已提交
947
#ifdef POOL_OP
N
nhzlx 已提交
948
template <typename Dtype>
949
class PoolParam : public OpParam {
N
nhzlx 已提交
950 951 952
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
953
 public:
954
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
955 956 957
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
958

959
    output_ = OutFrom<GType>(outputs, *scope);
960
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
961 962 963
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
964
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
965
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
966 967 968 969 970 971

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
972
  }
973

974
  const GType *Input() const { return input_; }
975

976
  GType *Output() const { return output_; }
977

W
wangliu 已提交
978
  const string &PoolingType() const { return pooling_type_; }
979

W
wangliu 已提交
980
  const vector<int> &Ksize() const { return ksize_; }
981

W
wangliu 已提交
982
  const vector<int> &Strides() const { return strides_; }
983

W
wangliu 已提交
984
  const vector<int> &Paddings() const { return paddings_; }
985

986
  bool isCeilMode() const { return ceil_mode_; }
987

Z
zhangyang 已提交
988
  bool isGlobalPooling() const { return global_pooling_; }
989

990 991
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
992
 private:
993 994
  GType *input_;
  GType *output_;
W
wangliu 已提交
995 996 997 998
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
999
  bool ceil_mode_;
1000
  bool global_pooling_ = false;
1001
  bool exclusive_ = true;
Z
zhangyang 已提交
1002
#ifdef PADDLE_MOBILE_FPGA
1003 1004

 private:
H
hanbuhe 已提交
1005
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
1006 1007

 public:
H
hanbuhe 已提交
1008 1009
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
1010
#endif
1011
};
L
liuruilong 已提交
1012 1013 1014
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
1015
template <typename Dtype>
E
eclipsess 已提交
1016
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
1017 1018 1019
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1020 1021
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1022 1023 1024 1025 1026 1027
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
1028 1029 1030 1031
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
1032 1033 1034 1035

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
1036 1037
    } else {
      min_max_aspect_ratios_order_ = false;
1038
    }
E
eclipsess 已提交
1039 1040 1041 1042 1043 1044
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
1045
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1046

1047
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1048

1049
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1050

1051
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1052

W
wangliu 已提交
1053
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1054

W
wangliu 已提交
1055
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1056

W
wangliu 已提交
1057
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1058

W
wangliu 已提交
1059
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1071 1072 1073 1074
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1075
 private:
1076 1077 1078 1079
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1080 1081 1082 1083
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1084 1085 1086 1087 1088
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1089
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1090
};
L
liuruilong 已提交
1091
#endif
E
eclipsess 已提交
1092

L
liuruilong 已提交
1093
#ifdef BOXCODER_OP
N
nhzlx 已提交
1094
template <typename Dtype>
E
eclipsess 已提交
1095
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1096 1097 1098
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1099 1100
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1101 1102 1103 1104 1105 1106
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1107
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1108
  }
1109
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1110

1111
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1112

1113
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1114

1115
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1116 1117 1118 1119

  const std::string &CodeType() const { return code_type_; }

 private:
1120 1121 1122 1123
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1124 1125
  std::string code_type_;
};
L
liuruilong 已提交
1126
#endif
W
wangliu 已提交
1127

L
liuruilong 已提交
1128
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1129
template <typename Dtype>
W
wangliu 已提交
1130
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1131 1132 1133
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1134 1135
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1136 1137 1138 1139
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1140
  }
H
hjchen2 已提交
1141 1142
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1143 1144

 private:
H
hjchen2 已提交
1145 1146
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1147 1148 1149

#ifdef PADDLE_MOBILE_FPGA

1150 1151
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1152
 private:
1153
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1154 1155 1156
  fpga::BypassArgs fpga_bypass_args;

 public:
1157
  GType *FloatInput() const {
H
hanbuhe 已提交
1158 1159
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1160
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1161 1162
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1175
#endif
W
wangliu 已提交
1176
};
L
liuruilong 已提交
1177
#endif
W
wangliu 已提交
1178

L
liuruilong 已提交
1179
#ifdef SIGMOID_OP
N
nhzlx 已提交
1180
template <typename Dtype>
W
wangliu 已提交
1181
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1182 1183 1184
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1185 1186
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1187 1188 1189 1190
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1191
  }
1192 1193
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1194 1195

 private:
1196 1197
  GType *input_x_;
  GType *out_;
1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1207
};
L
liuruilong 已提交
1208 1209 1210
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1211
template <typename Dtype>
E
eclipsess 已提交
1212
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1213 1214 1215
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1216 1217 1218
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1219 1220 1221 1222 1223
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1224 1225 1226 1227 1228 1229 1230 1231
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1232
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1233

1234
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1235

1236
  GType *Out() const { return out_; }
E
eclipsess 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1251 1252 1253
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1254 1255 1256 1257 1258 1259 1260
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1261
#endif
W
wangliu 已提交
1262

L
lijiancheng0614 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1272 1273 1274 1275
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1276
  }
1277 1278
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1279 1280

 private:
1281 1282
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1283 1284 1285
};
#endif

N
nhzlx 已提交
1286
template <typename Dtype>
L
liuruilong 已提交
1287
class FeedParam : public OpParam {
N
nhzlx 已提交
1288 1289 1290
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1291 1292
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1293
            const AttributeMap &attrs, Scope *scope)
1294
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1295
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1296
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1297
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1298
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1299
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1300
  }
H
hjchen2 已提交
1301
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1302
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1303
  const int Col() const { return col_; }
W
wangliu 已提交
1304
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1305

L
liuruilong 已提交
1306
 private:
H
hjchen2 已提交
1307
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1308
  GType *out_;
H
update  
hjchen2 已提交
1309
  int col_;
W
wangliu 已提交
1310
  int batch_size;
L
liuruilong 已提交
1311 1312
};

N
nhzlx 已提交
1313
template <typename Dtype>
L
liuruilong 已提交
1314
class FetchParam : public OpParam {
N
nhzlx 已提交
1315 1316 1317
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1318 1319
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1320
             const AttributeMap &attrs, Scope *scope)
1321
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1322 1323
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1324
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1325
  }
L
liuruilong 已提交
1326

H
hjchen2 已提交
1327 1328
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1329
  const int Col() const { return col_; }
L
liuruilong 已提交
1330

L
liuruilong 已提交
1331
 private:
H
hjchen2 已提交
1332 1333
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1334
  int col_;
qnqinan's avatar
qnqinan 已提交
1335
#ifdef PADDLE_MOBILE_FPGA
1336

qnqinan's avatar
qnqinan 已提交
1337
 public:
1338
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1339
  fpga::BypassArgs fpga_bypass_args;
1340
  Tensor aligned_out;
1341 1342 1343
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1344
#endif
L
liuruilong 已提交
1345 1346
};

L
lijiancheng0614 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1356 1357 1358 1359
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1360 1361 1362 1363 1364 1365 1366
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1367
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1377
  GType *out_;
L
lijiancheng0614 已提交
1378 1379 1380 1381 1382 1383
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
#ifdef FILL_CONSTANT_BATCH_SIZE_LIKE_OP
template <typename Dtype>
class FillConstantBatchSizeLikeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantBatchSizeLikeParam(const VariableNameMap &inputs,
                                 const VariableNameMap &outputs,
                                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
    input_dim_idx_ = GetAttr<int>("input_dim_idx", attrs);
    output_dim_idx_ = GetAttr<int>("output_dim_idx", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  const GType *Input() const { return input_; }

  GType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

  int InputDimIdx() const { return input_dim_idx_; }

  int OutputDimIdx() const { return output_dim_idx_; }

 private:
  GType *input_;
  Variable *out_var_;
  GType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
  int input_dim_idx_;
  int output_dim_idx_;
};
#endif

L
liuruilong 已提交
1433
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1434
template <typename Dtype>
E
eclipsess 已提交
1435
class TransposeParam : public OpParam {
N
nhzlx 已提交
1436 1437 1438
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1439 1440
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1441 1442 1443 1444
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1445 1446 1447
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1448
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1449

1450
  GType *Out() const { return out_; }
E
eclipsess 已提交
1451 1452 1453 1454

  const vector<int> &Axis() const { return axis_; }

 private:
1455 1456
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1457 1458
  vector<int> axis_;
};
L
liuruilong 已提交
1459
#endif
E
eclipsess 已提交
1460

L
lijiancheng0614 已提交
1461 1462 1463 1464 1465 1466 1467 1468
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1469 1470 1471 1472 1473
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1474 1475 1476
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1477
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1478

1479
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1480

1481
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1482 1483 1484 1485

  const vector<int> &Axis() const { return axis_; }

 private:
1486 1487 1488
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1489 1490 1491 1492
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1493 1494 1495 1496 1497 1498 1499 1500
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1501 1502 1503 1504 1505
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1532 1533
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1534
    // todo crf params
1535 1536 1537 1538
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1539 1540 1541 1542 1543 1544
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1545 1546
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1547 1548 1549 1550 1551 1552 1553 1554
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1555 1556
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1557 1558 1559 1560
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1561
#ifdef RESHAPE_OP
N
nhzlx 已提交
1562
template <typename Dtype>
E
eclipsess 已提交
1563
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1564 1565 1566
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1567 1568
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1569 1570 1571 1572 1573
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1574
    shape_ = GetAttr<vector<int>>("shape", attrs);
1575 1576 1577 1578 1579 1580 1581

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1582 1583
  }

1584
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1585

1586
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1587

1588
  GType *Out() const { return out_; }
E
eclipsess 已提交
1589 1590 1591 1592 1593 1594

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1595 1596 1597
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1598 1599 1600
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1601
#endif
E
eclipsess 已提交
1602

L
lijiancheng0614 已提交
1603 1604 1605 1606 1607 1608 1609 1610
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1611 1612 1613 1614 1615 1616
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1617 1618 1619 1620 1621 1622 1623 1624
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1625
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1626

E
eclipsess 已提交
1627
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1628

E
eclipsess 已提交
1629
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1630

E
eclipsess 已提交
1631
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1632 1633 1634 1635 1636 1637

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1638 1639 1640 1641
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1642 1643 1644 1645 1646
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1647
#ifdef SCALE_OP
N
nhzlx 已提交
1648
template <typename Dtype>
I
itminner 已提交
1649
class ScaleParam : public OpParam {
N
nhzlx 已提交
1650 1651 1652
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1653 1654
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1655 1656 1657 1658
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1659 1660
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1661 1662
  }

1663
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1664

1665
  GType *Out() const { return out_; }
I
itminner 已提交
1666

1667
  const float Scale() const { return scale_; }
I
itminner 已提交
1668

1669
  const float Bias() const { return bias_; }
I
itminner 已提交
1670 1671

 private:
1672 1673
  GType *input_x_;
  GType *out_;
1674 1675
  float scale_;
  float bias_;
I
itminner 已提交
1676
};
T
Tian 已提交
1677 1678 1679
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1680
template <typename Dtype>
I
itminner 已提交
1681
class SliceParam : public OpParam {
N
nhzlx 已提交
1682 1683 1684
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1685 1686
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1687 1688 1689 1690
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1691

1692 1693 1694
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1695 1696

    original_output_dims_size_ = output_->dims().size();
1697
  }
I
itminner 已提交
1698

1699 1700 1701 1702 1703 1704
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1705
  int original_output_dims_size_;
I
itminner 已提交
1706
};
T
Tian 已提交
1707 1708 1709
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1710
template <typename Dtype>
T
Tian 已提交
1711
class ResizeParam : public OpParam {
N
nhzlx 已提交
1712 1713 1714
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1715 1716
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1717 1718 1719 1720 1721
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1722 1723 1724 1725 1726 1727
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1728

1729
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1730

1731
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1732

1733
  GType *Out() const { return out_; }
T
Tian 已提交
1734

I
itminner 已提交
1735
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1736

I
itminner 已提交
1737
  const int &Height() const { return height_; }
T
Tian 已提交
1738

I
itminner 已提交
1739
  const int &Width() const { return width_; }
T
Tian 已提交
1740

I
itminner 已提交
1741
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1742

I
itminner 已提交
1743
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1744

I
itminner 已提交
1745
 private:
1746 1747 1748
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1749 1750 1751 1752 1753
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1754 1755 1756
};
#endif

L
liuruilong 已提交
1757
#ifdef RELU_OP
L
liuruilong 已提交
1758 1759 1760
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1761
template <typename Dtype>
D
relu  
dolphin8 已提交
1762
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1763 1764 1765
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1766
 public:
D
relu  
dolphin8 已提交
1767
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1768 1769 1770 1771
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1772 1773
  }

1774
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1775

1776
  GType *Out() const { return out_; }
E
eclipsess 已提交
1777 1778

 private:
1779 1780
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1781
};
D
relu  
dolphin8 已提交
1782 1783 1784

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1785
 public:
D
relu  
dolphin8 已提交
1786 1787 1788
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1803
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1804 1805
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1806
 public:
D
relu  
dolphin8 已提交
1807
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1808 1809 1810
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1811 1812
  framework::CLImage midImage;
};
Y
yangfei 已提交
1813
#endif
D
relu  
dolphin8 已提交
1814

L
liuruilong 已提交
1815
#endif
E
eclipsess 已提交
1816

Z
zhangyang 已提交
1817 1818 1819 1820 1821 1822 1823 1824
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1825 1826 1827 1828
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1829
  }
1830 1831
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1832 1833

 private:
1834 1835
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1836 1837 1838
#ifdef PADDLE_MOBILE_FPGA

 private:
1839
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1840 1841 1842
  fpga::BypassArgs fpga_bypass_args;

 public:
1843
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1844 1845
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1846
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1847 1848 1849
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1850
};
L
liuruilong 已提交
1851
#endif
E
eclipsess 已提交
1852

T
Tian 已提交
1853
#ifdef PRELU_OP
N
nhzlx 已提交
1854
template <typename Dtype>
T
Tian 已提交
1855
class PReluParam : public OpParam {
N
nhzlx 已提交
1856 1857 1858
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1859 1860
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1861 1862
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1863
    DLOG << "PReluParam inputs before";
1864 1865
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1866
    framework::DDim dims = alpha_->dims();
1867
    out_ = OutFrom<GType>(outputs, *scope);
1868
    mode_ = GetStringAttr("mode", attrs);
1869
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1870
  }
1871 1872 1873
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1874
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1875

I
itminner 已提交
1876
 private:
1877 1878 1879
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1880
  std::string mode_;
T
Tian 已提交
1881 1882 1883
};
#endif

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1909
template <typename Dtype>
L
liuruilong 已提交
1910
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1911 1912 1913
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1914
 public:
L
liuruilong 已提交
1915
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1916 1917 1918 1919 1920 1921
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1922 1923 1924 1925
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1926
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1927

1928
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1929

1930
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1931

xiebaiyuan's avatar
xiebaiyuan 已提交
1932
  GType *Out() const { return out_; }
E
eclipsess 已提交
1933 1934 1935 1936 1937 1938 1939 1940

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1941
  GType *input_x_;
1942 1943
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1944
  GType *out_;
E
eclipsess 已提交
1945 1946 1947
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1948

Z
ZhenWang 已提交
1949
#ifdef PADDLE_MOBILE_FPGA
1950
 private:  // NOLINT
Z
zhangyang 已提交
1951
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1952 1953

 public:
Z
zhangyang 已提交
1954 1955
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1956
#endif
E
eclipsess 已提交
1957
};
1958 1959

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1960 1961
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1962
#endif
E
eclipsess 已提交
1963

N
nhzlx 已提交
1964
template <typename Dtype>
1965
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1966 1967 1968
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1969
 public:
L
liuruilong 已提交
1970
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1971
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1972
                     Scope *scope)
1973
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1974
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1975
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1976
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1977
  }
1978
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1979 1980 1981

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1982
 protected:
1983
  GType *bias_;
W
wangliu 已提交
1984 1985 1986
  int axis_;
};

N
nhzlx 已提交
1987 1988
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1989

Z
zhangyang 已提交
1990
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1991 1992
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1993
 public:
L
liuruilong 已提交
1994
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1995
                         const VariableNameMap &outputs,
1996
                         const AttributeMap &attrs, Scope *scope)
1997
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1998 1999 2000
};
#endif

2001
#ifdef FUSION_CONVADDPRELU_OP
2002 2003 2004 2005
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2006 2007 2008 2009

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2010
                          const AttributeMap &attrs, Scope *scope)
2011
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2012
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2013
    mode_ = OpParam::GetStringAttr("mode", attrs);
2014
    framework::DDim dims = alpha_->dims();
2015
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2016
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2017
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2018
  }
2019
  const GType *InputAlpha() const { return alpha_; }
2020
  const std::string &Mode() const { return mode_; }
2021
  GType *Bias() const { return bias_; }
2022 2023 2024
  const int &Axis() const { return axis_; }

 protected:
2025
  GType *bias_;
2026
  int axis_;
2027
  GType *alpha_;
2028 2029 2030 2031 2032
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
2033 2034 2035 2036
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2037 2038 2039 2040

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2041
                             const AttributeMap &attrs, Scope *scope)
2042
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2043 2044
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2045
    mode_ = OpParam::GetStringAttr("mode", attrs);
2046
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
2047
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2048
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2049 2050 2051
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
2052
    if (keyX1_ == keyOutput_) {
2053
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
2054
    } else if (keyY1_ == keyOutput_) {
2055
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
2056
    }
H
update  
hjchen2 已提交
2057
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2058
  }
2059
  const GType *InputAlpha() const { return alpha_; }
2060
  const std::string &Mode() const { return mode_; }
2061
  const GType *Bias1() const { return bias1_; }
2062

2063
  GType *Bias() const { return bias_; }
2064 2065 2066 2067

  const int &Axis() const { return axis_; }

 protected:
2068
  GType *bias_;
2069
  int axis_;
2070
  GType *alpha_;
2071
  std::string mode_;
2072
  GType *bias1_;
2073 2074 2075 2076 2077 2078
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
2079
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
2080
template <typename Dtype>
2081
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2082 2083 2084
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2085 2086 2087
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2088
                           const AttributeMap &attrs, Scope *scope)
2089
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2090
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2091
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2092 2093 2094 2095
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2096 2097
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2098
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2099
  }
2100

2101
  ~FusionConvAddBNReluParam() {}
2102

2103
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2104 2105 2106

  const int &Axis() const { return axis_; }

2107
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2108

2109
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2110

2111
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2112

2113
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2114 2115 2116 2117 2118

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2119 2120 2121
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2122

2123 2124 2125
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2126

2127
  const GType *NewScale() const { return new_scale_.get(); }
E
eclipsess 已提交
2128

2129
  const GType *NewBias() const { return new_bias_.get(); }
E
eclipsess 已提交
2130 2131

 protected:
2132
  GType *bias_;
E
eclipsess 已提交
2133
  int axis_;
2134 2135 2136 2137
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2138 2139
  float epsilon_;
  float momentum_;
2140 2141
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2142 2143 2144 2145 2146
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2147
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2148 2149 2150 2151 2152 2153
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2154
                           const AttributeMap &attrs, Scope *scope)
2155
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2156
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2157
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2158 2159 2160 2161
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2162 2163
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2164 2165 2166
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2167
    if (keyX_ == keyBNY_) {
2168
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2169
    } else if (keyY_ == keyBNY_) {
2170
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2171
    }
H
update  
hjchen2 已提交
2172
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2173
  }
2174

2175
  ~FusionConvBNAddReluParam() {}
2176
  GType *Bias() const { return bias_; }
2177 2178 2179

  const int &Axis() const { return axis_; }

2180
  const GType *InputBias() const { return input_bias_; }
2181

2182
  const GType *InputMean() const { return input_mean_; }
2183

2184
  const GType *InputScale() const { return input_scale_; }
2185

2186
  const GType *InputVariance() const { return input_variance_; }
2187 2188 2189 2190 2191

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2192 2193 2194
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2195

2196 2197 2198
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2199

2200
  const GType *NewScale() const { return new_scale_.get(); }
2201

2202
  const GType *NewBias() const { return new_bias_.get(); }
2203 2204

 protected:
2205
  GType *bias_;
2206
  int axis_;
2207 2208 2209 2210
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2211 2212
  float epsilon_;
  float momentum_;
2213 2214
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2215 2216 2217
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2218
};
2219
#endif
E
eclipsess 已提交
2220

Z
zhangyang 已提交
2221
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2222
template <typename Dtype>
2223
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2224 2225 2226
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2227 2228 2229
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2230
                    Scope *scope)
2231
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2232 2233 2234 2235
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2236 2237
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2238
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2239 2240
  }

2241
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2242

2243
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2244

2245
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2246

2247
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2248 2249 2250 2251 2252

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2253 2254 2255
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
Z
zhangyang 已提交
2256

2257 2258 2259
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
Z
zhangyang 已提交
2260

2261
  const GType *NewScale() const { return new_scale_.get(); }
Z
zhangyang 已提交
2262

2263
  const GType *NewBias() const { return new_bias_.get(); }
Z
zhangyang 已提交
2264 2265

 protected:
2266 2267 2268 2269
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2270 2271
  float epsilon_;
  float momentum_;
2272 2273
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
Z
zhangyang 已提交
2274 2275 2276
};
#endif

2277
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2278
template <typename Dtype>
2279
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2280 2281 2282
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2283 2284 2285
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2286
                       const AttributeMap &attrs, Scope *scope)
2287
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2288
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2289
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2290 2291 2292 2293
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2294 2295
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2296
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2297
  }
2298
  GType *Bias() const { return bias_; }
2299 2300 2301

  const int &Axis() const { return axis_; }

2302
  const GType *InputBias() const { return input_bias_; }
2303

2304
  const GType *InputMean() const { return input_mean_; }
2305

2306
  const GType *InputScale() const { return input_scale_; }
2307

2308
  const GType *InputVariance() const { return input_variance_; }
2309 2310 2311 2312 2313

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2314 2315 2316
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2317

2318 2319 2320
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2321

2322
  const GType *NewScale() const { return new_scale_.get(); }
2323

2324
  const GType *NewBias() const { return new_bias_.get(); }
2325 2326

 protected:
2327
  GType *bias_;
2328
  int axis_;
2329 2330 2331 2332
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2333 2334
  float epsilon_;
  float momentum_;
2335 2336
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2337
};
E
eclipsess 已提交
2338
#endif
Y
Yao,kun 已提交
2339

E
eclipsess 已提交
2340
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2341
template <typename Dtype>
2342
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2343 2344 2345
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2346 2347 2348
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2349
                          const AttributeMap &attrs, Scope *scope)
2350
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2351 2352 2353 2354
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2355 2356
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2357
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2358 2359
  }

2360
  ~FusionDWConvBNReluParam() {}
2361

2362
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2363

2364
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2365

2366
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2367

2368
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2369 2370 2371 2372 2373

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2374 2375 2376
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2377

2378 2379 2380
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
E
eclipsess 已提交
2381

2382
  const GType *NewScale() const { return new_scale_.get(); }
E
eclipsess 已提交
2383

2384
  const GType *NewBias() const { return new_bias_.get(); }
E
eclipsess 已提交
2385 2386

 protected:
2387 2388 2389 2390
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2391 2392
  float epsilon_;
  float momentum_;
2393 2394
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
E
eclipsess 已提交
2395 2396 2397 2398
};

#endif

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2415
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2416
template <typename Dtype>
2417
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2418 2419 2420
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2421 2422 2423
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2424
                        const AttributeMap &attrs, Scope *scope)
2425
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2426 2427 2428 2429
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2430 2431
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2432
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2433 2434
  }

2435
  ~FusionConvBNReluParam() {}
2436

2437
  const GType *InputBias() const { return input_bias_; }
2438

2439
  const GType *InputMean() const { return input_mean_; }
2440

2441
  const GType *InputScale() const { return input_scale_; }
2442

2443
  const GType *InputVariance() const { return input_variance_; }
2444 2445 2446 2447 2448

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2449 2450 2451
  void SetNewScale(GType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2452

2453 2454 2455
  void SetNewBias(GType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2456

2457
  const GType *NewScale() const { return new_scale_.get(); }
2458

2459
  const GType *NewBias() const { return new_bias_.get(); }
2460 2461

 protected:
2462 2463 2464 2465
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2466 2467
  float epsilon_;
  float momentum_;
2468 2469
  std::shared_ptr<GType> new_bias_;
  std::shared_ptr<GType> new_scale_;
2470 2471 2472
};
#endif

Y
Yao,kun 已提交
2473
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2474
template <typename Dtype>
Y
Yao,kun 已提交
2475
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2476 2477 2478
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2479 2480 2481
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2482 2483 2484 2485
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2486 2487 2488 2489 2490
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2491
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2492

E
eclipsess 已提交
2493
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2494 2495 2496 2497 2498 2499 2500 2501

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2502 2503
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2504 2505 2506 2507
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2508
#endif
Y
Yao,kun 已提交
2509

2510
#ifdef DROPOUT_OP
N
nhzlx 已提交
2511
template <typename Dtype>
Y
Yao,kun 已提交
2512
class DropoutParam : public OpParam {
N
nhzlx 已提交
2513 2514 2515
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2516 2517
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2518 2519 2520 2521
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2522 2523

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2524 2525
  }

2526
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2527

2528
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2529

Y
yangfei 已提交
2530 2531
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2532
 private:
2533 2534
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2535
  float dropout_prob_;
Y
Yao,kun 已提交
2536
};
2537
#endif
Y
Yao,kun 已提交
2538

N
nhzlx 已提交
2539
template <typename Dtype>
L
liuruilong 已提交
2540
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2541 2542 2543
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2544 2545 2546
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2547 2548
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
2549 2550
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
2551
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2552
    if (outputs.count("Output")) {
2553
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2554
    }
L
liuruilong 已提交
2555 2556 2557
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
2558 2559 2560 2561
    if (HasAttr("output_size", attrs)) {
      output_size_ = GetAttr<vector<int>>("output_size", attrs);
      DLOG << "conv transpose output size: " << output_size_;
    }
L
liuruilong 已提交
2562 2563 2564
    groups = GetAttr<int>("groups", attrs);
  }

2565
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2566

2567
  GType *Filter() const { return filter_; }
L
liuruilong 已提交
2568

2569
  GType *Output() const { return output_; }
L
liuruilong 已提交
2570 2571 2572 2573 2574

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

2575 2576 2577 2578
  const vector<int> &Filters() const { return filter_; }

  const vector<int> &TransFilters() const { return transformed_filter_; }

L
liuruilong 已提交
2579 2580
  const vector<int> &Dilations() const { return dilations_; }

2581 2582
  const vector<int> &OutputSize() const { return output_size_; }

L
liuruilong 已提交
2583 2584
  const int &Groups() const { return groups; }

H
hjchen2 已提交
2585 2586 2587 2588 2589
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
2590 2591
    EXEC_DEPTHWISETRANS_FLOAT,
    EXEC_CONVTRANS3x3s2_FLOAT,
H
hjchen2 已提交
2592 2593 2594 2595
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2596
 private:
2597 2598 2599
  GType *input_;
  GType *output_;
  GType *filter_;
2600
  GType *transformed_filter_;
L
liuruilong 已提交
2601 2602 2603
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
2604
  vector<int> output_size_;
L
liuruilong 已提交
2605
  int groups;
H
hjchen2 已提交
2606
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2607 2608 2609 2610 2611

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2612
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2613 2614 2615

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2616 2617 2618
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2619
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2620 2621 2622
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2623
#endif
L
liuruilong 已提交
2624
};
Z
zhangyang 已提交
2625

qnqinan's avatar
qnqinan 已提交
2626 2627 2628 2629 2630
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2631 2632

 public:
qnqinan's avatar
qnqinan 已提交
2633
  FusionDeconvAddParam(const VariableNameMap &inputs,
2634
                       const VariableNameMap &outputs,
2635
                       const AttributeMap &attrs, Scope *scope)
2636
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2637
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2638
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2639
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2640
  }
2641
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2642 2643 2644

  const int &Axis() const { return axis_; }

2645
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2646 2647

 protected:
2648
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2649
  int axis_;
2650
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2651 2652 2653 2654 2655 2656 2657
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2658 2659 2660 2661 2662 2663 2664 2665 2666
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2667
                         const AttributeMap &attrs, Scope *scope)
2668
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2669 2670 2671 2672 2673
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2674 2675 2676 2677 2678 2679 2680
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2694 2695 2696
  void SetNewScale(RType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2697

2698 2699 2700
  void SetNewBias(RType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2701

2702
  const RType *NewScale() const { return new_scale_.get(); }
2703

2704
  const RType *NewBias() const { return new_bias_.get(); }
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
2715 2716
  std::shared_ptr<RType> new_bias_;
  std::shared_ptr<RType> new_scale_;
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2728
                          const AttributeMap &attrs, Scope *scope)
2729
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2730 2731 2732 2733 2734
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2735 2736 2737 2738 2739 2740
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2754 2755 2756
  void SetNewScale(RType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2757

2758 2759 2760
  void SetNewBias(RType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2761

2762
  const RType *NewScale() const { return new_scale_.get(); }
2763

2764
  const RType *NewBias() const { return new_bias_.get(); }
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
2775 2776
  std::shared_ptr<RType> new_bias_;
  std::shared_ptr<RType> new_scale_;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2788
                             const AttributeMap &attrs, Scope *scope)
2789
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2790 2791 2792 2793 2794
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2815 2816 2817
  void SetNewScale(RType *new_scale) {
    new_scale_.reset(new_scale, CLImageDeleter<Dtype>());
  }
2818

2819 2820 2821
  void SetNewBias(RType *new_bias) {
    new_bias_.reset(new_bias, CLImageDeleter<Dtype>());
  }
2822

2823
  const RType *NewScale() const { return new_scale_.get(); }
2824

2825
  const RType *NewBias() const { return new_bias_.get(); }
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
2836 2837
  std::shared_ptr<RType> new_bias_;
  std::shared_ptr<RType> new_scale_;
2838 2839
};
#endif
L
liuruilong 已提交
2840

Z
zhangyang 已提交
2841 2842 2843 2844 2845
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2860 2861 2862 2863 2864 2865 2866 2867
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2868
    output_batch_reset_hidden_prev_ =
2869 2870 2871
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2872 2873
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2907 2908 2909 2910 2911 2912 2913
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2914 2915 2916 2917 2918 2919 2920 2921
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2922
    output_reset_hidden_prev_ =
2923 2924
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2953 2954 2955 2956 2957 2958 2959 2960
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2961 2962 2963 2964
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2965
    axis = GetAttr<int>("axis", attrs);
2966
  }
2967 2968
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2969
  const int &Axis() const { return axis; }
2970 2971

 private:
2972 2973
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2974
  int axis;
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2986 2987 2988 2989
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2990
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2991 2992 2993 2994 2995 2996
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2997
  }
2998
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2999 3000 3001 3002 3003
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
3004 3005

 private:
3006
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3007
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3008
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
3009 3010 3011
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
3012 3013 3014 3015 3016 3017 3018 3019 3020
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3033 3034 3035 3036 3037
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
3038 3039
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
3040
  }
3041
  const GType *InputX() const { return input_x_; }
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
3074 3075
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
3076 3077
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
3078 3079

 private:
3080 3081 3082
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3083 3084
  int out_h_;
  int out_w_;
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3096 3097 3098 3099
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3100
  }
3101 3102
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
3103 3104

 private:
3105 3106
  GType *input_;
  GType *out_;
3107 3108 3109
};
#endif

H
hjchen2 已提交
3110 3111 3112 3113 3114 3115 3116 3117
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3118 3119 3120 3121 3122
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
3123 3124 3125 3126
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
3127 3128 3129
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3142 3143 3144 3145
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
3146 3147 3148 3149 3150
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
3151 3152
  GType *input_;
  GType *output_;
H
hjchen2 已提交
3153 3154 3155 3156 3157
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

3158
#ifdef QUANT_OP
3159
template <typename Dtype>
3160 3161 3162 3163 3164
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3165
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3166 3167 3168 3169
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3170 3171
    // online
    // scale = max(abs(x))
3172
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3173
    // offline
3174
    if (inputs.count("InScale")) {
3175
      offline_ = true;
3176
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3177 3178
    }
    // x = round(scale * x)
3179 3180
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3181
    }
3182 3183 3184 3185
  }

 public:
  // op input
3186
  GType *input_;
3187
  // op output
3188
  GType *output_;
3189
  GType *online_scale_;
3190
  // quantize offline scale
3191
  GType *offline_scale_;
3192 3193
  // if offine scale or not
  bool offline_ = false;
3194
  // round method type
3195 3196
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3197
};
3198
#endif
3199

3200
#ifdef DEQUANT_OP
3201
template <typename Dtype>
3202 3203 3204 3205 3206
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3207
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3208 3209 3210 3211 3212
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3213
    // dequantization is performed as x = x / static_scale / online_scale
3214 3215
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3216
    } else {
3217
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3218 3219 3220 3221 3222
    }
  }

 public:
  // op input
3223
  GType *input_;
3224
  // op output
3225
  GType *output_;
3226
  GType *activation_scale_;
3227 3228
  float weight_scale_;
};
3229
#endif
3230

3231 3232 3233 3234
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3235
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3236
template <typename Dtype>
3237
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3238 3239 3240 3241
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3242 3243
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3244
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3245 3246
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3247 3248 3249 3250
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3251 3252 3253 3254 3255
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3256 3257 3258 3259
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3260
  float epsilon_;
3261 3262 3263
};
#endif

3264 3265 3266 3267
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3268 3269 3270 3271 3272 3273 3274 3275
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3276
                          const AttributeMap &attrs, Scope *scope)
3277 3278 3279
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3280
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3281 3282 3283 3284 3285
  }

 public:
  // elementwise add
  int axis_;
3286
  GType *bias_;
3287 3288 3289
};
#endif

3290 3291 3292 3293 3294 3295 3296 3297 3298
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3299
                               const AttributeMap &attrs, Scope *scope)
3300 3301
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3302
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3303
    // offline
3304 3305
    if (inputs.count("InScale")) {
      offline_ = true;
3306
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3307 3308 3309 3310 3311 3312 3313 3314
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3315
  GType *online_scale_;
3316
  // quantize offline scale
3317
  GType *offline_scale_;
3318 3319
  // if offine scale or not
  bool offline_ = false;
3320 3321 3322 3323 3324 3325
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3326 3327 3328 3329 3330 3331 3332 3333 3334
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3335 3336 3337 3338 3339
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3363 3364 3365 3366
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3367 3368
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3369
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3380 3381 3382 3383 3384 3385 3386 3387
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3388 3389 3390 3391
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3392 3393
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3394
      input_y_ = InputYFrom<GType>(inputs, *scope);
3395 3396 3397
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
Z
zp7 已提交
3398 3399 3400
    if (HasAttr("append", attrs)) {
      append = OpParam::GetAttr<bool>("append", attrs);
    }
3401 3402 3403 3404 3405 3406 3407
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
3408
  bool append;
3409 3410 3411
};
#endif  // LOD_RESET_OP

3412 3413 3414 3415 3416 3417 3418 3419
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3420 3421 3422 3423 3424
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3436
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3437
template <typename Dtype>
Z
zhaojiaying01 已提交
3438
class LogicalBinaryParam : public OpParam {
3439 3440 3441 3442
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3443 3444
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3445 3446 3447 3448 3449
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3461
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3462 3463 3464

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3465
class LogicalUnaryParam : public OpParam {
3466 3467 3468 3469
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3470 3471
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3472 3473 3474 3475
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3487 3488 3489
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3490 3491 3492
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3493 3494 3495
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3496 3497
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3498 3499 3500
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3501 3502 3503
  }

 public:
H
hjchen2 已提交
3504 3505 3506
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3507 3508 3509 3510 3511 3512
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3513 3514 3515
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3516 3517 3518
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3519 3520
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3521 3522 3523
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3524 3525 3526
  }

 public:
H
hjchen2 已提交
3527 3528 3529
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3530 3531 3532
};
#endif

Z
zhaojiaying01 已提交
3533 3534 3535 3536 3537 3538 3539 3540
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3541 3542 3543 3544
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3564
                 const AttributeMap &attrs, Scope *scope)
3565
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3566 3567
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3568
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3569 3570 3571 3572
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3573
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3574 3575 3576 3577

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3578
  float step_;
Z
zhaojiaying01 已提交
3579 3580
};
#endif  // INCREMENT_OP
3581 3582
#ifdef PAD2D_OP
template <typename Dtype>
3583
class Pad2DParam : public OpParam {
3584 3585 3586 3587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3588
  Pad2DParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3589 3590 3591 3592
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3593 3594 3595 3596
    paddings_ = OpParam::GetAttr<std::vector<int>>("paddings", attrs);
    pad_value_ = OpParam::GetAttr<float>("pad_value", attrs);
    mode_ = OpParam::GetStringAttr("mode", attrs);
    DLOG << "mode" << mode_;
3597
  }
3598 3599 3600 3601 3602 3603
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

  std::vector<int> paddings_;
  float pad_value_;
  std::string mode_;
3604 3605

 private:
3606 3607
  GType *input_x_;
  GType *out_;
3608 3609
};
#endif
H
Huie 已提交
3610 3611 3612 3613 3614
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3615

H
Huie 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3631 3632
}  // namespace operators
}  // namespace paddle_mobile