op_param.h 107.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

17
#include <memory>
E
eclipsess 已提交
18
#include <string>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/log.h"
朔-望's avatar
朔-望 已提交
21
#include "common/type_define.h"
N
nhzlx 已提交
22
#include "common/types.h"
23
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
27
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
28
#include "framework/variable.h"
Z
zhangyang 已提交
29 30 31 32 33 34 35

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
36
#endif
朔-望's avatar
朔-望 已提交
37

C
Chon 已提交
38 39 40 41
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
42 43
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
44
#endif
朔-望's avatar
朔-望 已提交
45 46

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
47 48
namespace operators {

W
wangliu 已提交
49 50 51 52 53
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
54
using framework::Variable;
W
wangliu 已提交
55 56
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
57

58
using framework::DtypeTensorTrait;
L
liuruilong 已提交
59

L
liuruilong 已提交
60
class OpParam {
61 62
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
63 64
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
65

66 67
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
68

C
Chon 已提交
69 70 71 72 73 74
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
80 81 82 83 84 85 86

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

87 88 89 90 91
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

92 93 94 95 96 97 98 99 100
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
101 102 103 104 105
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

133 134 135 136
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
137 138 139 140 141 142

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
148 149 150 151 152
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

153 154 155 156 157
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
158 159 160 161
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
162 163 164 165 166 167 168 169 170 171 172 173
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
194

E
eclipsess 已提交
195 196 197 198 199 200 201 202 203 204
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
205 206 207 208
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
209

210
  template <typename T>
W
wangliu 已提交
211 212
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
213 214 215
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
216 217 218 219 220
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
221 222 223 224 225 226
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
227 228 229 230 231
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
232 233 234 235 236 237 238 239 240 241 242
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
243 244 245 246 247 248
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
249 250 251 252 253 254 255 256 257 258 259 260
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
266 267 268 269 270
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

271 272 273 274 275
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
276 277 278 279 280 281
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
287 288 289 290 291 292
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
293 294 295 296 297 298
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
299 300 301 302 303
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
304 305 306 307 308
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

315 316 317 318 319 320 321 322 323 324 325
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
326
  static const T GetAttr(const string &key, const AttributeMap &map) {
327 328
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
329 330
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
331 332
    return ((Attribute)map.at(key)).GetString();
  }
333

334 335 336 337
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

338
  template <typename T>
W
wangliu 已提交
339
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
340
                        const Scope &scope) {
W
wangliu 已提交
341 342
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
343 344 345 346 347 348
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
349
    }
350
  }
朔-望's avatar
朔-望 已提交
351

E
eclipsess 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

365
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
366
                            int index) {
367 368
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

387
  template <typename T>
W
wangliu 已提交
388 389 390
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
391 392
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
393
    vector<T *> var_res;
394 395 396
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
397
    }
398 399
    return var_res;
  }
E
eclipsess 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
413 414
};

415 416 417 418 419 420
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
421
template <typename Dtype>
422
class ConvParam : public OpParam {
N
nhzlx 已提交
423 424 425
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
426
 public:
427
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
428 429 430 431
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
432
    if (outputs.count("Output")) {
433
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
434 435 436 437 438
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
439
  }
朔-望's avatar
朔-望 已提交
440

441
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
442

443
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
444

445
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
446

W
wangliu 已提交
447
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
448

W
wangliu 已提交
449
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
450

W
wangliu 已提交
451
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
452

H
hjchen2 已提交
453 454 455
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
456 457
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
458 459
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
460
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
461
    EXEC_GEMM_INT8,
H
hjchen2 已提交
462
    EXEC_DEPTHWISE3x3_INT8,
463
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
464 465
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
466 467 468 469 470
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
471
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
472 473 474 475
  };

  ExecMode &ExecMode() const { return exec_mode_; }

476
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
477

478 479 480 481 482 483 484
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
485
 public:
486 487 488 489
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
490 491 492
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
493
  mutable enum ExecMode exec_mode_;
494
  int groups;
495 496 497 498

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
499 500 501

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
502
 public:
Z
zhangyang 已提交
503 504 505 506 507
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
508 509 510 511 512 513 514

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
515
#endif
朔-望's avatar
朔-望 已提交
516
};
N
nhzlx 已提交
517 518
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
519

N
nhzlx 已提交
520
template <typename Dtype>
521
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
522 523 524
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
525
 public:
526
  ElementwiseAddParam(const VariableNameMap &inputs,
527
                      const VariableNameMap &outputs, const AttributeMap &attrs,
528 529 530 531 532
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
533 534 535
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputX() const { return input_x_; }
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  const GType *InputY() const { return input_y_; }
539

xiebaiyuan's avatar
xiebaiyuan 已提交
540
  GType *Out() const { return out_; }
541 542 543

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
544
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
545 546 547
  GType *input_x_;
  GType *input_y_;
  GType *out_;
548
  int axis_;
Z
zhangyang 已提交
549 550 551
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
552
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
553 554

 public:
H
hanbuhe 已提交
555 556
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
557 558 559 560

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
561
#endif
朔-望's avatar
朔-望 已提交
562 563
};

E
eclipsess 已提交
564
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
565
template <typename Dtype>
566
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
567 568 569 570 571 572
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
573 574 575 576 577
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
594 595 596 597 598 599
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
600
};
S
suiyang 已提交
601
#endif
E
eclipsess 已提交
602

603
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
604 605
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
606 607
#endif

608
#ifdef ELEMENTWISESUB_OP
609
template <typename Dtype>
610
class ElementwiseSubParam : public OpParam {
611 612 613 614 615 616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
617 618 619 620 621
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
639
#endif
640

L
liuruilong 已提交
641
#ifdef MUL_OP
N
nhzlx 已提交
642
template <typename Dtype>
643
class MulParam : public OpParam {
N
nhzlx 已提交
644 645 646
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
647
 public:
648
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
649 650 651 652 653
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
654 655 656
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
657

658
  GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
659

660
  GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
661

xiebaiyuan's avatar
xiebaiyuan 已提交
662
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
663

664
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
665

666
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
667

朔-望's avatar
朔-望 已提交
668
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
669 670 671
  GType *input_x_;
  GType *input_y_;
  GType *out_;
672 673
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
674
};
L
liuruilong 已提交
675
#endif
朔-望's avatar
朔-望 已提交
676

L
liuruilong 已提交
677
#ifdef CONCAT_OP
N
nhzlx 已提交
678
template <typename Dtype>
朔-望's avatar
朔-望 已提交
679
class ConcatParam : public OpParam {
N
nhzlx 已提交
680 681 682
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
683
 public:
684
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
685 686 687 688
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
689
    axis_ = GetAttr<int>("axis", attrs);
690
    original_output_dims_size_ = out_->dims().size();
691
  }
朔-望's avatar
朔-望 已提交
692

N
nhzlx 已提交
693
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
694

xiebaiyuan's avatar
xiebaiyuan 已提交
695
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
696

697
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
698

699
 public:
N
nhzlx 已提交
700
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
701
  GType *out_;
702
  int axis_;
703
  int original_output_dims_size_;
Z
zhangyang 已提交
704 705 706 707 708 709 710 711 712
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
713
};
L
liuruilong 已提交
714
#endif
朔-望's avatar
朔-望 已提交
715

E
eclipsess 已提交
716 717 718 719 720 721 722 723
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
724 725 726 727 728 729
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
748
#ifdef LRN_OP
N
nhzlx 已提交
749
template <typename Dtype>
E
eclipsess 已提交
750
class LrnParam : public OpParam {
N
nhzlx 已提交
751 752 753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
754
 public:
755
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
756 757 758 759 760
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
761 762 763 764
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
765
    data_format_ = GetStringAttr("data_format", attrs);
766
  }
E
eclipsess 已提交
767

768
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
769

770
  GType *Out() const { return out_; }
E
eclipsess 已提交
771

772
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
773

774
  const int &N() const { return n_; }
E
eclipsess 已提交
775

776
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
777

778
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
779

780
  const float &K() const { return k_; }
E
eclipsess 已提交
781

W
wangliu 已提交
782
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
783

朔-望's avatar
朔-望 已提交
784
 private:
785 786 787
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
788 789 790 791
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
792
  string data_format_;
E
eclipsess 已提交
793
};
L
liuruilong 已提交
794 795
#endif

Z
zhaojiaying01 已提交
796 797
#ifdef NORM_OP
template <typename Dtype>
798
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
799 800 801 802 803
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
804 805 806 807 808
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
809 810 811 812
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

813
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
814

815
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
816

817
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
818 819 820 821 822 823

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
824 825 826
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
827 828 829 830 831
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
832
#ifdef BATCHNORM_OP
N
nhzlx 已提交
833
template <typename Dtype>
834
class BatchNormParam : public OpParam {
N
nhzlx 已提交
835 836 837
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
838
 public:
839
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
840 841 842 843 844 845 846 847
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
848 849
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
850
    //    is_test_ = GetAttr<bool>("is_test", attrs);
851
  }
E
eclipsess 已提交
852

853 854 855 856 857 858 859 860 861
  ~BatchNormParam() {
    if (new_bias_) {
      delete new_bias_;
    }
    if (new_scale_) {
      delete new_scale_;
    }
  }

862
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
863

864
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
865

866
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
867

868
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
869

870
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
871

872
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
873

874
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
875

876
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
877

878
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
879

W
wangliu 已提交
880
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
881

882
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
883

884
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
885

886
  const GType *NewScale() const { return new_scale_; }
887

888
  const GType *NewBias() const { return new_bias_; }
889

朔-望's avatar
朔-望 已提交
890
 private:
891 892 893 894 895 896
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
897 898 899
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
900
  string data_format_;
901 902
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
903
};
L
liuruilong 已提交
904 905
#endif

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
#ifdef INSTANCENORM_OP
template <typename Dtype>
class InstanceNormParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  InstanceNormParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
  }

  const GType *InputX() const { return input_x_; }

  GType *Out() const { return out_; }

  const float &Epsilon() const { return epsilon_; }

 private:
  GType *input_x_;
  GType *out_;
  float epsilon_;
};
#endif

L
liuruilong 已提交
935
#ifdef POOL_OP
N
nhzlx 已提交
936
template <typename Dtype>
937
class PoolParam : public OpParam {
N
nhzlx 已提交
938 939 940
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
941
 public:
942
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
943 944 945
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
946

947
    output_ = OutFrom<GType>(outputs, *scope);
948
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
949 950 951
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
952
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
953
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
954 955 956 957 958 959

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
960
  }
961

962
  const GType *Input() const { return input_; }
963

964
  GType *Output() const { return output_; }
965

W
wangliu 已提交
966
  const string &PoolingType() const { return pooling_type_; }
967

W
wangliu 已提交
968
  const vector<int> &Ksize() const { return ksize_; }
969

W
wangliu 已提交
970
  const vector<int> &Strides() const { return strides_; }
971

W
wangliu 已提交
972
  const vector<int> &Paddings() const { return paddings_; }
973

974
  bool isCeilMode() const { return ceil_mode_; }
975

Z
zhangyang 已提交
976
  bool isGlobalPooling() const { return global_pooling_; }
977

978 979
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
980
 private:
981 982
  GType *input_;
  GType *output_;
W
wangliu 已提交
983 984 985 986
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
987
  bool ceil_mode_;
988
  bool global_pooling_ = false;
989
  bool exclusive_ = true;
Z
zhangyang 已提交
990
#ifdef PADDLE_MOBILE_FPGA
991 992

 private:
H
hanbuhe 已提交
993
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
994 995

 public:
H
hanbuhe 已提交
996 997
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
998
#endif
999
};
L
liuruilong 已提交
1000 1001 1002
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
1003
template <typename Dtype>
E
eclipsess 已提交
1004
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
1005 1006 1007
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1008 1009
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1010 1011 1012 1013 1014 1015
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
1016 1017 1018 1019
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
1020 1021 1022 1023

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
1024 1025
    } else {
      min_max_aspect_ratios_order_ = false;
1026
    }
E
eclipsess 已提交
1027 1028 1029 1030 1031 1032
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
1033
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1034

1035
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1036

1037
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1038

1039
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1040

W
wangliu 已提交
1041
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1042

W
wangliu 已提交
1043
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1044

W
wangliu 已提交
1045
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1046

W
wangliu 已提交
1047
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1059 1060 1061 1062
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1063
 private:
1064 1065 1066 1067
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1068 1069 1070 1071
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1072 1073 1074 1075 1076
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1077
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1078
};
L
liuruilong 已提交
1079
#endif
E
eclipsess 已提交
1080

L
liuruilong 已提交
1081
#ifdef BOXCODER_OP
N
nhzlx 已提交
1082
template <typename Dtype>
E
eclipsess 已提交
1083
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1084 1085 1086
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1087 1088
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1089 1090 1091 1092 1093 1094
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1095
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1096
  }
1097
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1098

1099
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1100

1101
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1102

1103
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1104 1105 1106 1107

  const std::string &CodeType() const { return code_type_; }

 private:
1108 1109 1110 1111
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1112 1113
  std::string code_type_;
};
L
liuruilong 已提交
1114
#endif
W
wangliu 已提交
1115

L
liuruilong 已提交
1116
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1117
template <typename Dtype>
W
wangliu 已提交
1118
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1119 1120 1121
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1122 1123
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1124 1125 1126 1127
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1128
  }
H
hjchen2 已提交
1129 1130
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1131 1132

 private:
H
hjchen2 已提交
1133 1134
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1135 1136 1137

#ifdef PADDLE_MOBILE_FPGA

1138 1139
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1140
 private:
1141
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1142 1143 1144
  fpga::BypassArgs fpga_bypass_args;

 public:
1145
  GType *FloatInput() const {
H
hanbuhe 已提交
1146 1147
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1148
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1149 1150
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1163
#endif
W
wangliu 已提交
1164
};
L
liuruilong 已提交
1165
#endif
W
wangliu 已提交
1166

L
liuruilong 已提交
1167
#ifdef SIGMOID_OP
N
nhzlx 已提交
1168
template <typename Dtype>
W
wangliu 已提交
1169
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1170 1171 1172
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1173 1174
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1175 1176 1177 1178
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1179
  }
1180 1181
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1182 1183

 private:
1184 1185
  GType *input_x_;
  GType *out_;
1186 1187 1188 1189 1190 1191 1192 1193 1194
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1195
};
L
liuruilong 已提交
1196 1197 1198
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1199
template <typename Dtype>
E
eclipsess 已提交
1200
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1201 1202 1203
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1204 1205 1206
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1207 1208 1209 1210 1211
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1212 1213 1214 1215 1216 1217 1218 1219
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1220
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1221

1222
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1223

1224
  GType *Out() const { return out_; }
E
eclipsess 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1239 1240 1241
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1242 1243 1244 1245 1246 1247 1248
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1249
#endif
W
wangliu 已提交
1250

L
lijiancheng0614 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1260 1261 1262 1263
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1264
  }
1265 1266
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1267 1268

 private:
1269 1270
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1271 1272 1273
};
#endif

N
nhzlx 已提交
1274
template <typename Dtype>
L
liuruilong 已提交
1275
class FeedParam : public OpParam {
N
nhzlx 已提交
1276 1277 1278
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1279 1280
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1281
            const AttributeMap &attrs, Scope *scope)
1282
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1283
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1284
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1285
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1286
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1287
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1288
  }
H
hjchen2 已提交
1289
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1290
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1291
  const int Col() const { return col_; }
W
wangliu 已提交
1292
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1293

L
liuruilong 已提交
1294
 private:
H
hjchen2 已提交
1295
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1296
  GType *out_;
H
update  
hjchen2 已提交
1297
  int col_;
W
wangliu 已提交
1298
  int batch_size;
L
liuruilong 已提交
1299 1300
};

N
nhzlx 已提交
1301
template <typename Dtype>
L
liuruilong 已提交
1302
class FetchParam : public OpParam {
N
nhzlx 已提交
1303 1304 1305
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1306 1307
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1308
             const AttributeMap &attrs, Scope *scope)
1309
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1310 1311
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1312
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1313
  }
L
liuruilong 已提交
1314

H
hjchen2 已提交
1315 1316
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1317
  const int Col() const { return col_; }
L
liuruilong 已提交
1318

L
liuruilong 已提交
1319
 private:
H
hjchen2 已提交
1320 1321
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1322
  int col_;
qnqinan's avatar
qnqinan 已提交
1323
#ifdef PADDLE_MOBILE_FPGA
1324

qnqinan's avatar
qnqinan 已提交
1325
 public:
1326
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1327
  fpga::BypassArgs fpga_bypass_args;
1328
  Tensor aligned_out;
1329 1330 1331
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1332
#endif
L
liuruilong 已提交
1333 1334
};

L
lijiancheng0614 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1344 1345 1346 1347
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1348 1349 1350 1351 1352 1353 1354
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1355
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1365
  GType *out_;
L
lijiancheng0614 已提交
1366 1367 1368 1369 1370 1371
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef FILL_CONSTANT_BATCH_SIZE_LIKE_OP
template <typename Dtype>
class FillConstantBatchSizeLikeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantBatchSizeLikeParam(const VariableNameMap &inputs,
                                 const VariableNameMap &outputs,
                                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
    input_dim_idx_ = GetAttr<int>("input_dim_idx", attrs);
    output_dim_idx_ = GetAttr<int>("output_dim_idx", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  const GType *Input() const { return input_; }

  GType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

  int InputDimIdx() const { return input_dim_idx_; }

  int OutputDimIdx() const { return output_dim_idx_; }

 private:
  GType *input_;
  Variable *out_var_;
  GType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
  int input_dim_idx_;
  int output_dim_idx_;
};
#endif

L
liuruilong 已提交
1421
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1422
template <typename Dtype>
E
eclipsess 已提交
1423
class TransposeParam : public OpParam {
N
nhzlx 已提交
1424 1425 1426
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1427 1428
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1429 1430 1431 1432
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1433 1434 1435
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1436
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1437

1438
  GType *Out() const { return out_; }
E
eclipsess 已提交
1439 1440 1441 1442

  const vector<int> &Axis() const { return axis_; }

 private:
1443 1444
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1445 1446
  vector<int> axis_;
};
L
liuruilong 已提交
1447
#endif
E
eclipsess 已提交
1448

L
lijiancheng0614 已提交
1449 1450 1451 1452 1453 1454 1455 1456
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1457 1458 1459 1460 1461
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1462 1463 1464
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1465
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1466

1467
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1468

1469
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1470 1471 1472 1473

  const vector<int> &Axis() const { return axis_; }

 private:
1474 1475 1476
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1477 1478 1479 1480
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1481 1482 1483 1484 1485 1486 1487 1488
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1489 1490 1491 1492 1493
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1520 1521
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1522
    // todo crf params
1523 1524 1525 1526
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1527 1528 1529 1530 1531 1532
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1533 1534
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1535 1536 1537 1538 1539 1540 1541 1542
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1543 1544
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1545 1546 1547 1548
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1549
#ifdef RESHAPE_OP
N
nhzlx 已提交
1550
template <typename Dtype>
E
eclipsess 已提交
1551
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1552 1553 1554
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1555 1556
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1557 1558 1559 1560 1561
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1562
    shape_ = GetAttr<vector<int>>("shape", attrs);
1563 1564 1565 1566 1567 1568 1569

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1570 1571
  }

1572
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1573

1574
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1575

1576
  GType *Out() const { return out_; }
E
eclipsess 已提交
1577 1578 1579 1580 1581 1582

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1583 1584 1585
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1586 1587 1588
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1589
#endif
E
eclipsess 已提交
1590

L
lijiancheng0614 已提交
1591 1592 1593 1594 1595 1596 1597 1598
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1599 1600 1601 1602 1603 1604
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1605 1606 1607 1608 1609 1610 1611 1612
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1613
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1614

E
eclipsess 已提交
1615
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1616

E
eclipsess 已提交
1617
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1618

E
eclipsess 已提交
1619
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1620 1621 1622 1623 1624 1625

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1626 1627 1628 1629
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1630 1631 1632 1633 1634
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1635
#ifdef SCALE_OP
N
nhzlx 已提交
1636
template <typename Dtype>
I
itminner 已提交
1637
class ScaleParam : public OpParam {
N
nhzlx 已提交
1638 1639 1640
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1641 1642
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1643 1644 1645 1646
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1647 1648
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1649 1650
  }

1651
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1652

1653
  GType *Out() const { return out_; }
I
itminner 已提交
1654

1655
  const float Scale() const { return scale_; }
I
itminner 已提交
1656

1657
  const float Bias() const { return bias_; }
I
itminner 已提交
1658 1659

 private:
1660 1661
  GType *input_x_;
  GType *out_;
1662 1663
  float scale_;
  float bias_;
I
itminner 已提交
1664
};
T
Tian 已提交
1665 1666 1667
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1668
template <typename Dtype>
I
itminner 已提交
1669
class SliceParam : public OpParam {
N
nhzlx 已提交
1670 1671 1672
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1673 1674
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1675 1676 1677 1678
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1679

1680 1681 1682
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1683 1684

    original_output_dims_size_ = output_->dims().size();
1685
  }
I
itminner 已提交
1686

1687 1688 1689 1690 1691 1692
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1693
  int original_output_dims_size_;
I
itminner 已提交
1694
};
T
Tian 已提交
1695 1696 1697
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1698
template <typename Dtype>
T
Tian 已提交
1699
class ResizeParam : public OpParam {
N
nhzlx 已提交
1700 1701 1702
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1703 1704
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1705 1706 1707 1708 1709
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1710 1711 1712 1713 1714 1715
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1716

1717
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1718

1719
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1720

1721
  GType *Out() const { return out_; }
T
Tian 已提交
1722

I
itminner 已提交
1723
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1724

I
itminner 已提交
1725
  const int &Height() const { return height_; }
T
Tian 已提交
1726

I
itminner 已提交
1727
  const int &Width() const { return width_; }
T
Tian 已提交
1728

I
itminner 已提交
1729
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1730

I
itminner 已提交
1731
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1732

I
itminner 已提交
1733
 private:
1734 1735 1736
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1737 1738 1739 1740 1741
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1742 1743 1744
};
#endif

L
liuruilong 已提交
1745
#ifdef RELU_OP
L
liuruilong 已提交
1746 1747 1748
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1749
template <typename Dtype>
D
relu  
dolphin8 已提交
1750
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1751 1752 1753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1754
 public:
D
relu  
dolphin8 已提交
1755
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1756 1757 1758 1759
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1760 1761
  }

1762
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1763

1764
  GType *Out() const { return out_; }
E
eclipsess 已提交
1765 1766

 private:
1767 1768
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1769
};
D
relu  
dolphin8 已提交
1770 1771 1772

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1773
 public:
D
relu  
dolphin8 已提交
1774 1775 1776
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1791
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1792 1793
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1794
 public:
D
relu  
dolphin8 已提交
1795
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1796 1797 1798
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1799 1800
  framework::CLImage midImage;
};
Y
yangfei 已提交
1801
#endif
D
relu  
dolphin8 已提交
1802

L
liuruilong 已提交
1803
#endif
E
eclipsess 已提交
1804

Z
zhangyang 已提交
1805 1806 1807 1808 1809 1810 1811 1812
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1813 1814 1815 1816
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1817
  }
1818 1819
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1820 1821

 private:
1822 1823
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1824 1825 1826
#ifdef PADDLE_MOBILE_FPGA

 private:
1827
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1828 1829 1830
  fpga::BypassArgs fpga_bypass_args;

 public:
1831
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1832 1833
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1834
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1835 1836 1837
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1838
};
L
liuruilong 已提交
1839
#endif
E
eclipsess 已提交
1840

T
Tian 已提交
1841
#ifdef PRELU_OP
N
nhzlx 已提交
1842
template <typename Dtype>
T
Tian 已提交
1843
class PReluParam : public OpParam {
N
nhzlx 已提交
1844 1845 1846
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1847 1848
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1849 1850
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1851
    DLOG << "PReluParam inputs before";
1852 1853
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1854
    framework::DDim dims = alpha_->dims();
1855
    out_ = OutFrom<GType>(outputs, *scope);
1856
    mode_ = GetStringAttr("mode", attrs);
1857
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1858
  }
1859 1860 1861
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1862
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1863

I
itminner 已提交
1864
 private:
1865 1866 1867
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1868
  std::string mode_;
T
Tian 已提交
1869 1870 1871
};
#endif

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1897
template <typename Dtype>
L
liuruilong 已提交
1898
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1899 1900 1901
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1902
 public:
L
liuruilong 已提交
1903
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1904 1905 1906 1907 1908 1909
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1910 1911 1912 1913
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1914
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1915

1916
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1917

1918
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1919

xiebaiyuan's avatar
xiebaiyuan 已提交
1920
  GType *Out() const { return out_; }
E
eclipsess 已提交
1921 1922 1923 1924 1925 1926 1927 1928

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1929
  GType *input_x_;
1930 1931
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1932
  GType *out_;
E
eclipsess 已提交
1933 1934 1935
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1936

Z
ZhenWang 已提交
1937
#ifdef PADDLE_MOBILE_FPGA
1938
 private:  // NOLINT
Z
zhangyang 已提交
1939
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1940 1941

 public:
Z
zhangyang 已提交
1942 1943
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1944
#endif
E
eclipsess 已提交
1945
};
1946 1947

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1948 1949
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1950
#endif
E
eclipsess 已提交
1951

N
nhzlx 已提交
1952
template <typename Dtype>
1953
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1954 1955 1956
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1957
 public:
L
liuruilong 已提交
1958
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1959
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1960
                     Scope *scope)
1961
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1962
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1963
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1964
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1965
  }
1966
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1967 1968 1969

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1970
 protected:
1971
  GType *bias_;
W
wangliu 已提交
1972 1973 1974
  int axis_;
};

N
nhzlx 已提交
1975 1976
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1977

Z
zhangyang 已提交
1978
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1979 1980
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1981
 public:
L
liuruilong 已提交
1982
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1983
                         const VariableNameMap &outputs,
1984
                         const AttributeMap &attrs, Scope *scope)
1985
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1986 1987 1988
};
#endif

1989
#ifdef FUSION_CONVADDPRELU_OP
1990 1991 1992 1993
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1994 1995 1996 1997

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1998
                          const AttributeMap &attrs, Scope *scope)
1999
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2000
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2001
    mode_ = OpParam::GetStringAttr("mode", attrs);
2002
    framework::DDim dims = alpha_->dims();
2003
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2004
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2005
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2006
  }
2007
  const GType *InputAlpha() const { return alpha_; }
2008
  const std::string &Mode() const { return mode_; }
2009
  GType *Bias() const { return bias_; }
2010 2011 2012
  const int &Axis() const { return axis_; }

 protected:
2013
  GType *bias_;
2014
  int axis_;
2015
  GType *alpha_;
2016 2017 2018 2019 2020
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
2021 2022 2023 2024
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2025 2026 2027 2028

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2029
                             const AttributeMap &attrs, Scope *scope)
2030
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2031 2032
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2033
    mode_ = OpParam::GetStringAttr("mode", attrs);
2034
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
2035
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2036
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2037 2038 2039
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
2040
    if (keyX1_ == keyOutput_) {
2041
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
2042
    } else if (keyY1_ == keyOutput_) {
2043
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
2044
    }
H
update  
hjchen2 已提交
2045
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2046
  }
2047
  const GType *InputAlpha() const { return alpha_; }
2048
  const std::string &Mode() const { return mode_; }
2049
  const GType *Bias1() const { return bias1_; }
2050

2051
  GType *Bias() const { return bias_; }
2052 2053 2054 2055

  const int &Axis() const { return axis_; }

 protected:
2056
  GType *bias_;
2057
  int axis_;
2058
  GType *alpha_;
2059
  std::string mode_;
2060
  GType *bias1_;
2061 2062 2063 2064 2065 2066
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
2067
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
2068
template <typename Dtype>
2069
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2070 2071 2072
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2073 2074 2075
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2076
                           const AttributeMap &attrs, Scope *scope)
2077
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2078
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2079
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2080 2081 2082 2083
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2084 2085
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2086
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2087
  }
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

  ~FusionConvAddBNReluParam() {
    if (new_bias_) {
      delete new_bias_;
    }
    if (new_scale_) {
      delete new_scale_;
    }
  }

2098
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2099 2100 2101

  const int &Axis() const { return axis_; }

2102
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2103

2104
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2105

2106
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2107

2108
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2109 2110 2111 2112 2113

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2114
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2115

2116
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2117

2118
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2119

2120
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2121 2122

 protected:
2123
  GType *bias_;
E
eclipsess 已提交
2124
  int axis_;
2125 2126 2127 2128
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2129 2130
  float epsilon_;
  float momentum_;
2131 2132
  GType *new_bias_;
  GType *new_scale_;
2133 2134 2135 2136 2137
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2138
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2139 2140 2141 2142 2143 2144
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2145
                           const AttributeMap &attrs, Scope *scope)
2146
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2147
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2148
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2149 2150 2151 2152
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2153 2154
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2155 2156 2157
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2158
    if (keyX_ == keyBNY_) {
2159
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2160
    } else if (keyY_ == keyBNY_) {
2161
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2162
    }
H
update  
hjchen2 已提交
2163
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2164
  }
2165 2166 2167 2168 2169 2170 2171 2172 2173

  ~FusionConvBNAddReluParam() {
    if (new_bias_) {
      delete new_bias_;
    }
    if (new_scale_) {
      delete new_scale_;
    }
  }
2174
  GType *Bias() const { return bias_; }
2175 2176 2177

  const int &Axis() const { return axis_; }

2178
  const GType *InputBias() const { return input_bias_; }
2179

2180
  const GType *InputMean() const { return input_mean_; }
2181

2182
  const GType *InputScale() const { return input_scale_; }
2183

2184
  const GType *InputVariance() const { return input_variance_; }
2185 2186 2187 2188 2189

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2190
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2191

2192
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2193

2194
  const GType *NewScale() const { return new_scale_; }
2195

2196
  const GType *NewBias() const { return new_bias_; }
2197 2198

 protected:
2199
  GType *bias_;
2200
  int axis_;
2201 2202 2203 2204
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2205 2206
  float epsilon_;
  float momentum_;
2207 2208
  GType *new_bias_;
  GType *new_scale_;
2209 2210 2211
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2212
};
2213
#endif
E
eclipsess 已提交
2214

Z
zhangyang 已提交
2215
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2216
template <typename Dtype>
2217
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2218 2219 2220
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2221 2222 2223
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2224
                    Scope *scope)
2225
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2226 2227 2228 2229
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2230 2231
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2232
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2233 2234
  }

2235
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2236

2237
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2238

2239
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2240

2241
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2242 2243 2244 2245 2246

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2247
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2248

2249
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2250

2251
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2252

2253
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2254 2255

 protected:
2256 2257 2258 2259
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2260 2261
  float epsilon_;
  float momentum_;
2262 2263
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2264 2265 2266
};
#endif

2267
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2268
template <typename Dtype>
2269
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2270 2271 2272
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2273 2274 2275
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2276
                       const AttributeMap &attrs, Scope *scope)
2277
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2278
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2279
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2280 2281 2282 2283
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2284 2285
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2286
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2287
  }
2288
  GType *Bias() const { return bias_; }
2289 2290 2291

  const int &Axis() const { return axis_; }

2292
  const GType *InputBias() const { return input_bias_; }
2293

2294
  const GType *InputMean() const { return input_mean_; }
2295

2296
  const GType *InputScale() const { return input_scale_; }
2297

2298
  const GType *InputVariance() const { return input_variance_; }
2299 2300 2301 2302 2303

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2304
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2305

2306
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2307

2308
  const GType *NewScale() const { return new_scale_; }
2309

2310
  const GType *NewBias() const { return new_bias_; }
2311 2312

 protected:
2313
  GType *bias_;
2314
  int axis_;
2315 2316 2317 2318
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2319 2320
  float epsilon_;
  float momentum_;
2321 2322
  GType *new_bias_;
  GType *new_scale_;
2323
};
E
eclipsess 已提交
2324
#endif
Y
Yao,kun 已提交
2325

E
eclipsess 已提交
2326
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2327
template <typename Dtype>
2328
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2329 2330 2331
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2332 2333 2334
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2335
                          const AttributeMap &attrs, Scope *scope)
2336
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2337 2338 2339 2340
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2341 2342
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2343
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2344 2345
  }

2346 2347 2348 2349 2350 2351 2352 2353 2354
  ~FusionDWConvBNReluParam() {
    if (new_bias_) {
      delete new_bias_;
    }
    if (new_scale_) {
      delete new_scale_;
    }
  }

2355
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2356

2357
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2358

2359
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2360

2361
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2362 2363 2364 2365 2366

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2367
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2368

2369
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2370

2371
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2372

2373
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2374 2375

 protected:
2376 2377 2378 2379
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2380 2381
  float epsilon_;
  float momentum_;
2382 2383
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2384 2385 2386 2387
};

#endif

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2404
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2405
template <typename Dtype>
2406
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2407 2408 2409
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2410 2411 2412
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2413
                        const AttributeMap &attrs, Scope *scope)
2414
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2415 2416 2417 2418
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2419 2420
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2421
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2422 2423
  }

2424 2425 2426 2427 2428 2429 2430 2431 2432
  ~FusionConvBNReluParam() {
    if (new_bias_) {
      delete new_bias_;
    }
    if (new_scale_) {
      delete new_scale_;
    }
  }

2433
  const GType *InputBias() const { return input_bias_; }
2434

2435
  const GType *InputMean() const { return input_mean_; }
2436

2437
  const GType *InputScale() const { return input_scale_; }
2438

2439
  const GType *InputVariance() const { return input_variance_; }
2440 2441 2442 2443 2444

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2445
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2446

2447
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2448

2449
  const GType *NewScale() const { return new_scale_; }
2450

2451
  const GType *NewBias() const { return new_bias_; }
2452 2453

 protected:
2454 2455 2456 2457
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2458 2459
  float epsilon_;
  float momentum_;
2460 2461
  GType *new_bias_;
  GType *new_scale_;
2462 2463 2464
};
#endif

Y
Yao,kun 已提交
2465
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2466
template <typename Dtype>
Y
Yao,kun 已提交
2467
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2468 2469 2470
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2471 2472 2473
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2474 2475 2476 2477
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2478 2479 2480 2481 2482
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2483
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2484

E
eclipsess 已提交
2485
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2486 2487 2488 2489 2490 2491 2492 2493

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2494 2495
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2496 2497 2498 2499
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2500
#endif
Y
Yao,kun 已提交
2501

2502
#ifdef DROPOUT_OP
N
nhzlx 已提交
2503
template <typename Dtype>
Y
Yao,kun 已提交
2504
class DropoutParam : public OpParam {
N
nhzlx 已提交
2505 2506 2507
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2508 2509
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2510 2511 2512 2513
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2514 2515

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2516 2517
  }

2518
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2519

2520
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2521

Y
yangfei 已提交
2522 2523
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2524
 private:
2525 2526
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2527
  float dropout_prob_;
Y
Yao,kun 已提交
2528
};
2529
#endif
Y
Yao,kun 已提交
2530

N
nhzlx 已提交
2531
template <typename Dtype>
L
liuruilong 已提交
2532
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2533 2534 2535
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2536 2537 2538
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2539 2540
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
2541 2542
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
2543
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2544
    if (outputs.count("Output")) {
2545
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2546
    }
L
liuruilong 已提交
2547 2548 2549
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
2550 2551 2552 2553
    if (HasAttr("output_size", attrs)) {
      output_size_ = GetAttr<vector<int>>("output_size", attrs);
      DLOG << "conv transpose output size: " << output_size_;
    }
L
liuruilong 已提交
2554 2555 2556
    groups = GetAttr<int>("groups", attrs);
  }

2557
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2558

2559
  GType *Filter() const { return filter_; }
L
liuruilong 已提交
2560

2561
  GType *Output() const { return output_; }
L
liuruilong 已提交
2562 2563 2564 2565 2566

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

2567 2568 2569 2570
  const vector<int> &Filters() const { return filter_; }

  const vector<int> &TransFilters() const { return transformed_filter_; }

L
liuruilong 已提交
2571 2572
  const vector<int> &Dilations() const { return dilations_; }

2573 2574
  const vector<int> &OutputSize() const { return output_size_; }

L
liuruilong 已提交
2575 2576
  const int &Groups() const { return groups; }

H
hjchen2 已提交
2577 2578 2579 2580 2581
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
2582 2583
    EXEC_DEPTHWISETRANS_FLOAT,
    EXEC_CONVTRANS3x3s2_FLOAT,
H
hjchen2 已提交
2584 2585 2586 2587
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2588
 private:
2589 2590 2591
  GType *input_;
  GType *output_;
  GType *filter_;
2592
  GType *transformed_filter_;
L
liuruilong 已提交
2593 2594 2595
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
2596
  vector<int> output_size_;
L
liuruilong 已提交
2597
  int groups;
H
hjchen2 已提交
2598
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2599 2600 2601 2602 2603

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2604
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2605 2606 2607

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2608 2609 2610
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2611
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2612 2613 2614
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2615
#endif
L
liuruilong 已提交
2616
};
Z
zhangyang 已提交
2617

qnqinan's avatar
qnqinan 已提交
2618 2619 2620 2621 2622
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2623 2624

 public:
qnqinan's avatar
qnqinan 已提交
2625
  FusionDeconvAddParam(const VariableNameMap &inputs,
2626
                       const VariableNameMap &outputs,
2627
                       const AttributeMap &attrs, Scope *scope)
2628
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2629
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2630
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2631
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2632
  }
2633
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2634 2635 2636

  const int &Axis() const { return axis_; }

2637
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2638 2639

 protected:
2640
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2641
  int axis_;
2642
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2643 2644 2645 2646 2647 2648 2649
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2650 2651 2652 2653 2654 2655 2656 2657 2658
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2659
                         const AttributeMap &attrs, Scope *scope)
2660
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2661 2662 2663 2664 2665
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2666 2667 2668 2669 2670 2671 2672
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2716
                          const AttributeMap &attrs, Scope *scope)
2717
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2718 2719 2720 2721 2722
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2723 2724 2725 2726 2727 2728
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2772
                             const AttributeMap &attrs, Scope *scope)
2773
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2774 2775 2776 2777 2778
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2820

Z
zhangyang 已提交
2821 2822 2823 2824 2825
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2840 2841 2842 2843 2844 2845 2846 2847
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2848
    output_batch_reset_hidden_prev_ =
2849 2850 2851
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2852 2853
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2887 2888 2889 2890 2891 2892 2893
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2894 2895 2896 2897 2898 2899 2900 2901
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2902
    output_reset_hidden_prev_ =
2903 2904
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2933 2934 2935 2936 2937 2938 2939 2940
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2941 2942 2943 2944
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2945
    axis = GetAttr<int>("axis", attrs);
2946
  }
2947 2948
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2949
  const int &Axis() const { return axis; }
2950 2951

 private:
2952 2953
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2954
  int axis;
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2966 2967 2968 2969
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2970
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2971 2972 2973 2974 2975 2976
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2977
  }
2978
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2979 2980 2981 2982 2983
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2984 2985

 private:
2986
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2987
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2988
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2989 2990 2991
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2992 2993 2994 2995 2996 2997 2998 2999 3000
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3013 3014 3015 3016 3017
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
3018 3019
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
3020
  }
3021
  const GType *InputX() const { return input_x_; }
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
3054 3055
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
3056 3057
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
3058 3059

 private:
3060 3061 3062
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3063 3064
  int out_h_;
  int out_w_;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3076 3077 3078 3079
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3080
  }
3081 3082
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
3083 3084

 private:
3085 3086
  GType *input_;
  GType *out_;
3087 3088 3089
};
#endif

H
hjchen2 已提交
3090 3091 3092 3093 3094 3095 3096 3097
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3098 3099 3100 3101 3102
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
3103 3104 3105 3106
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
3107 3108 3109
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3122 3123 3124 3125
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
3126 3127 3128 3129 3130
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
3131 3132
  GType *input_;
  GType *output_;
H
hjchen2 已提交
3133 3134 3135 3136 3137
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

3138
#ifdef QUANT_OP
3139
template <typename Dtype>
3140 3141 3142 3143 3144
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3145
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3146 3147 3148 3149
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3150 3151
    // online
    // scale = max(abs(x))
3152
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3153
    // offline
3154
    if (inputs.count("InScale")) {
3155
      offline_ = true;
3156
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3157 3158
    }
    // x = round(scale * x)
3159 3160
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3161
    }
3162 3163 3164 3165
  }

 public:
  // op input
3166
  GType *input_;
3167
  // op output
3168
  GType *output_;
3169
  GType *online_scale_;
3170
  // quantize offline scale
3171
  GType *offline_scale_;
3172 3173
  // if offine scale or not
  bool offline_ = false;
3174
  // round method type
3175 3176
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3177
};
3178
#endif
3179

3180
#ifdef DEQUANT_OP
3181
template <typename Dtype>
3182 3183 3184 3185 3186
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3187
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3188 3189 3190 3191 3192
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3193
    // dequantization is performed as x = x / static_scale / online_scale
3194 3195
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3196
    } else {
3197
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3198 3199 3200 3201 3202
    }
  }

 public:
  // op input
3203
  GType *input_;
3204
  // op output
3205
  GType *output_;
3206
  GType *activation_scale_;
3207 3208
  float weight_scale_;
};
3209
#endif
3210

3211 3212 3213 3214
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3215
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3216
template <typename Dtype>
3217
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3218 3219 3220 3221
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3222 3223
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3224
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3225 3226
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3227 3228 3229 3230
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3231 3232 3233 3234 3235
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3236 3237 3238 3239
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3240
  float epsilon_;
3241 3242 3243
};
#endif

3244 3245 3246 3247
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3248 3249 3250 3251 3252 3253 3254 3255
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3256
                          const AttributeMap &attrs, Scope *scope)
3257 3258 3259
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3260
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3261 3262 3263 3264 3265
  }

 public:
  // elementwise add
  int axis_;
3266
  GType *bias_;
3267 3268 3269
};
#endif

3270 3271 3272 3273 3274 3275 3276 3277 3278
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3279
                               const AttributeMap &attrs, Scope *scope)
3280 3281
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3282
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3283
    // offline
3284 3285
    if (inputs.count("InScale")) {
      offline_ = true;
3286
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3287 3288 3289 3290 3291 3292 3293 3294
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3295
  GType *online_scale_;
3296
  // quantize offline scale
3297
  GType *offline_scale_;
3298 3299
  // if offine scale or not
  bool offline_ = false;
3300 3301 3302 3303 3304 3305
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3306 3307 3308 3309 3310 3311 3312 3313 3314
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3315 3316 3317 3318 3319
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3343 3344 3345 3346
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3347 3348
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3349
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3360 3361 3362 3363 3364 3365 3366 3367
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3368 3369 3370 3371
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3372 3373
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3374
      input_y_ = InputYFrom<GType>(inputs, *scope);
3375 3376 3377
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
Z
zp7 已提交
3378 3379 3380
    if (HasAttr("append", attrs)) {
      append = OpParam::GetAttr<bool>("append", attrs);
    }
3381 3382 3383 3384 3385 3386 3387
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
3388
  bool append;
3389 3390 3391
};
#endif  // LOD_RESET_OP

3392 3393 3394 3395 3396 3397 3398 3399
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3400 3401 3402 3403 3404
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3416
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3417
template <typename Dtype>
Z
zhaojiaying01 已提交
3418
class LogicalBinaryParam : public OpParam {
3419 3420 3421 3422
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3423 3424
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3425 3426 3427 3428 3429
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3441
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3442 3443 3444

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3445
class LogicalUnaryParam : public OpParam {
3446 3447 3448 3449
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3450 3451
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3452 3453 3454 3455
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3467 3468 3469
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3470 3471 3472
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3473 3474 3475
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3476 3477
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3478 3479 3480
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3481 3482 3483
  }

 public:
H
hjchen2 已提交
3484 3485 3486
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3487 3488 3489 3490 3491 3492
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3493 3494 3495
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3496 3497 3498
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3499 3500
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3501 3502 3503
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3504 3505 3506
  }

 public:
H
hjchen2 已提交
3507 3508 3509
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3510 3511 3512
};
#endif

Z
zhaojiaying01 已提交
3513 3514 3515 3516 3517 3518 3519 3520
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3521 3522 3523 3524
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3544
                 const AttributeMap &attrs, Scope *scope)
3545
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3546 3547
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3548
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3549 3550 3551 3552
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3553
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3554 3555 3556 3557

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3558
  float step_;
Z
zhaojiaying01 已提交
3559 3560
};
#endif  // INCREMENT_OP
3561 3562
#ifdef PAD2D_OP
template <typename Dtype>
3563
class Pad2DParam : public OpParam {
3564 3565 3566 3567
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3568
  Pad2DParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3569 3570 3571 3572
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3573 3574 3575 3576
    paddings_ = OpParam::GetAttr<std::vector<int>>("paddings", attrs);
    pad_value_ = OpParam::GetAttr<float>("pad_value", attrs);
    mode_ = OpParam::GetStringAttr("mode", attrs);
    DLOG << "mode" << mode_;
3577
  }
3578 3579 3580 3581 3582 3583
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

  std::vector<int> paddings_;
  float pad_value_;
  std::string mode_;
3584 3585

 private:
3586 3587
  GType *input_x_;
  GType *out_;
3588 3589
};
#endif
H
Huie 已提交
3590 3591 3592 3593 3594
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3595

H
Huie 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3611 3612
}  // namespace operators
}  // namespace paddle_mobile