op_param.h 107.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

17
#include <memory>
E
eclipsess 已提交
18
#include <string>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/log.h"
朔-望's avatar
朔-望 已提交
21
#include "common/type_define.h"
N
nhzlx 已提交
22
#include "common/types.h"
23
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
27
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
28
#include "framework/variable.h"
Z
zhangyang 已提交
29 30 31 32 33 34 35

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
36
#endif
朔-望's avatar
朔-望 已提交
37

C
Chon 已提交
38 39 40 41
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
42 43
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
44
#endif
朔-望's avatar
朔-望 已提交
45 46

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
47 48
namespace operators {

W
wangliu 已提交
49 50 51 52 53
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
54
using framework::Variable;
W
wangliu 已提交
55 56
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
57

58
using framework::DtypeTensorTrait;
L
liuruilong 已提交
59

L
liuruilong 已提交
60
class OpParam {
61 62
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
63 64
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
65

66 67
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
68

C
Chon 已提交
69 70 71 72 73 74
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
80 81 82 83 84 85 86

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

87 88 89 90 91
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

92 93 94 95 96 97 98 99 100
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
101 102 103 104 105
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

133 134 135 136
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
137 138 139 140 141 142

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
148 149 150 151 152
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

153 154 155 156 157
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
158 159 160 161
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
162 163 164 165 166 167 168 169 170 171 172 173
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
194

E
eclipsess 已提交
195 196 197 198 199 200 201 202 203 204
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
205 206 207 208
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
209

210
  template <typename T>
W
wangliu 已提交
211 212
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
213 214 215
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
216 217 218 219 220
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
221 222 223 224 225 226
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
227 228 229 230 231
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
232 233 234 235 236 237 238 239 240 241 242
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
243 244 245 246 247 248
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
249 250 251 252 253 254 255 256 257 258 259 260
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
266 267 268 269 270
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

271 272 273 274 275
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
276 277 278 279 280 281
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
287 288 289 290 291 292
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
293 294 295 296 297 298
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
299 300 301 302 303
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
304 305 306 307 308
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

315 316 317 318 319 320 321 322 323 324 325
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
326
  static const T GetAttr(const string &key, const AttributeMap &map) {
327 328
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
329 330
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
331 332
    return ((Attribute)map.at(key)).GetString();
  }
333

334 335 336 337
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

338
  template <typename T>
W
wangliu 已提交
339
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
340
                        const Scope &scope) {
W
wangliu 已提交
341 342
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
343 344 345 346 347 348
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
349
    }
350
  }
朔-望's avatar
朔-望 已提交
351

E
eclipsess 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

365
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
366
                            int index) {
367 368
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

387
  template <typename T>
W
wangliu 已提交
388 389 390
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
391 392
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
393
    vector<T *> var_res;
394 395 396
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
397
    }
398 399
    return var_res;
  }
E
eclipsess 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
413 414
};

415 416 417 418 419 420
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
421
template <typename Dtype>
422
class ConvParam : public OpParam {
N
nhzlx 已提交
423 424 425
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
426
 public:
427
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
428 429 430 431
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
432
    if (outputs.count("Output")) {
433
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
434 435 436 437 438
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
439
  }
朔-望's avatar
朔-望 已提交
440

441
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
442

443
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
444

445
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
446

W
wangliu 已提交
447
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
448

W
wangliu 已提交
449
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
450

W
wangliu 已提交
451
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
452

H
hjchen2 已提交
453 454 455
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
456 457
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
458 459
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
460
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
461
    EXEC_GEMM_INT8,
H
hjchen2 已提交
462
    EXEC_DEPTHWISE3x3_INT8,
463
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
464 465
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
466 467 468 469 470
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
471
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
472 473 474 475
  };

  ExecMode &ExecMode() const { return exec_mode_; }

476
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
477

478 479 480 481 482 483 484
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
485
 public:
486 487 488 489
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
490 491 492
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
493
  mutable enum ExecMode exec_mode_;
494
  int groups;
495 496 497 498

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
499 500 501

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
502
 public:
Z
zhangyang 已提交
503 504 505 506 507
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
508 509 510 511 512 513 514

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
515
#endif
朔-望's avatar
朔-望 已提交
516
};
N
nhzlx 已提交
517 518
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
519

N
nhzlx 已提交
520
template <typename Dtype>
521
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
522 523 524
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
525
 public:
526
  ElementwiseAddParam(const VariableNameMap &inputs,
527
                      const VariableNameMap &outputs, const AttributeMap &attrs,
528 529 530 531 532
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
533 534 535
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputX() const { return input_x_; }
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  const GType *InputY() const { return input_y_; }
539

xiebaiyuan's avatar
xiebaiyuan 已提交
540
  GType *Out() const { return out_; }
541 542 543

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
544
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
545 546 547
  GType *input_x_;
  GType *input_y_;
  GType *out_;
548
  int axis_;
Z
zhangyang 已提交
549 550 551
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
552
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
553 554

 public:
H
hanbuhe 已提交
555 556
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
557 558 559 560

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
561
#endif
朔-望's avatar
朔-望 已提交
562 563
};

E
eclipsess 已提交
564
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
565
template <typename Dtype>
566
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
567 568 569 570 571 572
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
573 574 575 576 577
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
594 595 596 597 598 599
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
600
};
S
suiyang 已提交
601
#endif
E
eclipsess 已提交
602

603
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
604 605
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
606 607
#endif

608
#ifdef ELEMENTWISESUB_OP
609
template <typename Dtype>
610
class ElementwiseSubParam : public OpParam {
611 612 613 614 615 616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
617 618 619 620 621
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
639
#endif
640

L
liuruilong 已提交
641
#ifdef MUL_OP
N
nhzlx 已提交
642
template <typename Dtype>
643
class MulParam : public OpParam {
N
nhzlx 已提交
644 645 646
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
647
 public:
648
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
649 650 651 652 653
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
654 655 656
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
657

658
  GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
659

660
  GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
661

xiebaiyuan's avatar
xiebaiyuan 已提交
662
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
663

664
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
665

666
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
667

朔-望's avatar
朔-望 已提交
668
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
669 670 671
  GType *input_x_;
  GType *input_y_;
  GType *out_;
672 673
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
674
};
L
liuruilong 已提交
675
#endif
朔-望's avatar
朔-望 已提交
676

L
liuruilong 已提交
677
#ifdef CONCAT_OP
N
nhzlx 已提交
678
template <typename Dtype>
朔-望's avatar
朔-望 已提交
679
class ConcatParam : public OpParam {
N
nhzlx 已提交
680 681 682
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
683
 public:
684
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
685 686 687 688
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
689
    axis_ = GetAttr<int>("axis", attrs);
690
    original_output_dims_size_ = out_->dims().size();
691
  }
朔-望's avatar
朔-望 已提交
692

N
nhzlx 已提交
693
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
694

xiebaiyuan's avatar
xiebaiyuan 已提交
695
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
696

697
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
698

699
 public:
N
nhzlx 已提交
700
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
701
  GType *out_;
702
  int axis_;
703
  int original_output_dims_size_;
Z
zhangyang 已提交
704 705 706 707 708 709 710 711 712
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
713
};
L
liuruilong 已提交
714
#endif
朔-望's avatar
朔-望 已提交
715

E
eclipsess 已提交
716 717 718 719 720 721 722 723
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
724 725 726 727 728 729
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
748
#ifdef LRN_OP
N
nhzlx 已提交
749
template <typename Dtype>
E
eclipsess 已提交
750
class LrnParam : public OpParam {
N
nhzlx 已提交
751 752 753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
754
 public:
755
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
756 757 758 759 760
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
761 762 763 764
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
765
    data_format_ = GetStringAttr("data_format", attrs);
766
  }
E
eclipsess 已提交
767

768
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
769

770
  GType *Out() const { return out_; }
E
eclipsess 已提交
771

772
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
773

774
  const int &N() const { return n_; }
E
eclipsess 已提交
775

776
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
777

778
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
779

780
  const float &K() const { return k_; }
E
eclipsess 已提交
781

W
wangliu 已提交
782
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
783

朔-望's avatar
朔-望 已提交
784
 private:
785 786 787
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
788 789 790 791
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
792
  string data_format_;
E
eclipsess 已提交
793
};
L
liuruilong 已提交
794 795
#endif

Z
zhaojiaying01 已提交
796 797
#ifdef NORM_OP
template <typename Dtype>
798
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
799 800 801 802 803
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
804 805 806 807 808
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
809 810 811 812
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

813
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
814

815
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
816

817
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
818 819 820 821 822 823

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
824 825 826
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
827 828 829 830 831
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
832
#ifdef BATCHNORM_OP
N
nhzlx 已提交
833
template <typename Dtype>
834
class BatchNormParam : public OpParam {
N
nhzlx 已提交
835 836 837
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
838
 public:
839
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
840 841 842 843 844 845 846 847
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
848 849
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
850
    //    is_test_ = GetAttr<bool>("is_test", attrs);
851
  }
E
eclipsess 已提交
852

853
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
854

855
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
856

857
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
858

859
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
860

861
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
862

863
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
864

865
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
866

867
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
868

869
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
870

W
wangliu 已提交
871
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
872

873
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
874

875
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
876

877
  const GType *NewScale() const { return new_scale_; }
878

879
  const GType *NewBias() const { return new_bias_; }
880

朔-望's avatar
朔-望 已提交
881
 private:
882 883 884 885 886 887
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
888 889 890
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
891
  string data_format_;
892 893
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
894
};
L
liuruilong 已提交
895 896
#endif

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
#ifdef INSTANCENORM_OP
template <typename Dtype>
class InstanceNormParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  InstanceNormParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
  }

  const GType *InputX() const { return input_x_; }

  GType *Out() const { return out_; }

  const float &Epsilon() const { return epsilon_; }

 private:
  GType *input_x_;
  GType *out_;
  float epsilon_;
};
#endif

L
liuruilong 已提交
926
#ifdef POOL_OP
N
nhzlx 已提交
927
template <typename Dtype>
928
class PoolParam : public OpParam {
N
nhzlx 已提交
929 930 931
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
932
 public:
933
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
934 935 936
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
937

938
    output_ = OutFrom<GType>(outputs, *scope);
939
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
940 941 942
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
943
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
944
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
945 946 947 948 949 950

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
951
  }
952

953
  const GType *Input() const { return input_; }
954

955
  GType *Output() const { return output_; }
956

W
wangliu 已提交
957
  const string &PoolingType() const { return pooling_type_; }
958

W
wangliu 已提交
959
  const vector<int> &Ksize() const { return ksize_; }
960

W
wangliu 已提交
961
  const vector<int> &Strides() const { return strides_; }
962

W
wangliu 已提交
963
  const vector<int> &Paddings() const { return paddings_; }
964

965
  bool isCeilMode() const { return ceil_mode_; }
966

Z
zhangyang 已提交
967
  bool isGlobalPooling() const { return global_pooling_; }
968

969 970
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
971
 private:
972 973
  GType *input_;
  GType *output_;
W
wangliu 已提交
974 975 976 977
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
978
  bool ceil_mode_;
979
  bool global_pooling_ = false;
980
  bool exclusive_ = true;
Z
zhangyang 已提交
981
#ifdef PADDLE_MOBILE_FPGA
982 983

 private:
H
hanbuhe 已提交
984
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
985 986

 public:
H
hanbuhe 已提交
987 988
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
989
#endif
990
};
L
liuruilong 已提交
991 992 993
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
994
template <typename Dtype>
E
eclipsess 已提交
995
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
996 997 998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
999 1000
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1001 1002 1003 1004 1005 1006
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
1007 1008 1009 1010
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
1011 1012 1013 1014

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
1015 1016
    } else {
      min_max_aspect_ratios_order_ = false;
1017
    }
E
eclipsess 已提交
1018 1019 1020 1021 1022 1023
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
1024
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1025

1026
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1027

1028
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1029

1030
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1031

W
wangliu 已提交
1032
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1033

W
wangliu 已提交
1034
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1035

W
wangliu 已提交
1036
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1037

W
wangliu 已提交
1038
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1050 1051 1052 1053
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1054
 private:
1055 1056 1057 1058
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1059 1060 1061 1062
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1063 1064 1065 1066 1067
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1068
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1069
};
L
liuruilong 已提交
1070
#endif
E
eclipsess 已提交
1071

L
liuruilong 已提交
1072
#ifdef BOXCODER_OP
N
nhzlx 已提交
1073
template <typename Dtype>
E
eclipsess 已提交
1074
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1075 1076 1077
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1078 1079
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1080 1081 1082 1083 1084 1085
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1086
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1087
  }
1088
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1089

1090
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1091

1092
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1093

1094
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1095 1096 1097 1098

  const std::string &CodeType() const { return code_type_; }

 private:
1099 1100 1101 1102
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1103 1104
  std::string code_type_;
};
L
liuruilong 已提交
1105
#endif
W
wangliu 已提交
1106

L
liuruilong 已提交
1107
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1108
template <typename Dtype>
W
wangliu 已提交
1109
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1110 1111 1112
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1113 1114
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1115 1116 1117 1118
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1119
  }
H
hjchen2 已提交
1120 1121
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1122 1123

 private:
H
hjchen2 已提交
1124 1125
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1126 1127 1128

#ifdef PADDLE_MOBILE_FPGA

1129 1130
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1131
 private:
1132
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1133 1134 1135
  fpga::BypassArgs fpga_bypass_args;

 public:
1136
  GType *FloatInput() const {
H
hanbuhe 已提交
1137 1138
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1139
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1140 1141
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1154
#endif
W
wangliu 已提交
1155
};
L
liuruilong 已提交
1156
#endif
W
wangliu 已提交
1157

L
liuruilong 已提交
1158
#ifdef SIGMOID_OP
N
nhzlx 已提交
1159
template <typename Dtype>
W
wangliu 已提交
1160
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1161 1162 1163
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1164 1165
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1166 1167 1168 1169
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1170
  }
1171 1172
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1173 1174

 private:
1175 1176
  GType *input_x_;
  GType *out_;
1177 1178 1179 1180 1181 1182 1183 1184 1185
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1186
};
L
liuruilong 已提交
1187 1188 1189
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1190
template <typename Dtype>
E
eclipsess 已提交
1191
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1192 1193 1194
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1195 1196 1197
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1198 1199 1200 1201 1202
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1203 1204 1205 1206 1207 1208 1209 1210
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1211
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1212

1213
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1214

1215
  GType *Out() const { return out_; }
E
eclipsess 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1230 1231 1232
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1233 1234 1235 1236 1237 1238 1239
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1240
#endif
W
wangliu 已提交
1241

L
lijiancheng0614 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1251 1252 1253 1254
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1255
  }
1256 1257
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1258 1259

 private:
1260 1261
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1262 1263 1264
};
#endif

N
nhzlx 已提交
1265
template <typename Dtype>
L
liuruilong 已提交
1266
class FeedParam : public OpParam {
N
nhzlx 已提交
1267 1268 1269
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1270 1271
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1272
            const AttributeMap &attrs, Scope *scope)
1273
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1274
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1275
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1276
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1277
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1278
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1279
  }
H
hjchen2 已提交
1280
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1281
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1282
  const int Col() const { return col_; }
W
wangliu 已提交
1283
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1284

L
liuruilong 已提交
1285
 private:
H
hjchen2 已提交
1286
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1287
  GType *out_;
H
update  
hjchen2 已提交
1288
  int col_;
W
wangliu 已提交
1289
  int batch_size;
L
liuruilong 已提交
1290 1291
};

N
nhzlx 已提交
1292
template <typename Dtype>
L
liuruilong 已提交
1293
class FetchParam : public OpParam {
N
nhzlx 已提交
1294 1295 1296
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1297 1298
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1299
             const AttributeMap &attrs, Scope *scope)
1300
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1301 1302
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1303
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1304
  }
L
liuruilong 已提交
1305

H
hjchen2 已提交
1306 1307
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1308
  const int Col() const { return col_; }
L
liuruilong 已提交
1309

L
liuruilong 已提交
1310
 private:
H
hjchen2 已提交
1311 1312
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1313
  int col_;
qnqinan's avatar
qnqinan 已提交
1314
#ifdef PADDLE_MOBILE_FPGA
1315

qnqinan's avatar
qnqinan 已提交
1316
 public:
1317
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1318
  fpga::BypassArgs fpga_bypass_args;
1319
  Tensor aligned_out;
1320 1321 1322
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1323
#endif
L
liuruilong 已提交
1324 1325
};

L
lijiancheng0614 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1335 1336 1337 1338
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1339 1340 1341 1342 1343 1344 1345
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1346
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1356
  GType *out_;
L
lijiancheng0614 已提交
1357 1358 1359 1360 1361 1362
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef FILL_CONSTANT_BATCH_SIZE_LIKE_OP
template <typename Dtype>
class FillConstantBatchSizeLikeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantBatchSizeLikeParam(const VariableNameMap &inputs,
                                 const VariableNameMap &outputs,
                                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
    input_dim_idx_ = GetAttr<int>("input_dim_idx", attrs);
    output_dim_idx_ = GetAttr<int>("output_dim_idx", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  const GType *Input() const { return input_; }

  GType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

  int InputDimIdx() const { return input_dim_idx_; }

  int OutputDimIdx() const { return output_dim_idx_; }

 private:
  GType *input_;
  Variable *out_var_;
  GType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
  int input_dim_idx_;
  int output_dim_idx_;
};
#endif

L
liuruilong 已提交
1412
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1413
template <typename Dtype>
E
eclipsess 已提交
1414
class TransposeParam : public OpParam {
N
nhzlx 已提交
1415 1416 1417
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1418 1419
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1420 1421 1422 1423
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1424 1425 1426
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1427
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1428

1429
  GType *Out() const { return out_; }
E
eclipsess 已提交
1430 1431 1432 1433

  const vector<int> &Axis() const { return axis_; }

 private:
1434 1435
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1436 1437
  vector<int> axis_;
};
L
liuruilong 已提交
1438
#endif
E
eclipsess 已提交
1439

L
lijiancheng0614 已提交
1440 1441 1442 1443 1444 1445 1446 1447
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1448 1449 1450 1451 1452
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1453 1454 1455
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1456
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1457

1458
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1459

1460
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1461 1462 1463 1464

  const vector<int> &Axis() const { return axis_; }

 private:
1465 1466 1467
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1468 1469 1470 1471
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1472 1473 1474 1475 1476 1477 1478 1479
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1480 1481 1482 1483 1484
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1511 1512
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1513
    // todo crf params
1514 1515 1516 1517
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1518 1519 1520 1521 1522 1523
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1524 1525
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1526 1527 1528 1529 1530 1531 1532 1533
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1534 1535
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1536 1537 1538 1539
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1540
#ifdef RESHAPE_OP
N
nhzlx 已提交
1541
template <typename Dtype>
E
eclipsess 已提交
1542
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1543 1544 1545
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1546 1547
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1548 1549 1550 1551 1552
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1553
    shape_ = GetAttr<vector<int>>("shape", attrs);
1554 1555 1556 1557 1558 1559 1560

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1561 1562
  }

1563
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1564

1565
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1566

1567
  GType *Out() const { return out_; }
E
eclipsess 已提交
1568 1569 1570 1571 1572 1573

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1574 1575 1576
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1577 1578 1579
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1580
#endif
E
eclipsess 已提交
1581

L
lijiancheng0614 已提交
1582 1583 1584 1585 1586 1587 1588 1589
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1590 1591 1592 1593 1594 1595
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1596 1597 1598 1599 1600 1601 1602 1603
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1604
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1605

E
eclipsess 已提交
1606
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1607

E
eclipsess 已提交
1608
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1609

E
eclipsess 已提交
1610
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1611 1612 1613 1614 1615 1616

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1617 1618 1619 1620
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1621 1622 1623 1624 1625
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1626
#ifdef SCALE_OP
N
nhzlx 已提交
1627
template <typename Dtype>
I
itminner 已提交
1628
class ScaleParam : public OpParam {
N
nhzlx 已提交
1629 1630 1631
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1632 1633
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1634 1635 1636 1637
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1638 1639
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1640 1641
  }

1642
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1643

1644
  GType *Out() const { return out_; }
I
itminner 已提交
1645

1646
  const float Scale() const { return scale_; }
I
itminner 已提交
1647

1648
  const float Bias() const { return bias_; }
I
itminner 已提交
1649 1650

 private:
1651 1652
  GType *input_x_;
  GType *out_;
1653 1654
  float scale_;
  float bias_;
I
itminner 已提交
1655
};
T
Tian 已提交
1656 1657 1658
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1659
template <typename Dtype>
I
itminner 已提交
1660
class SliceParam : public OpParam {
N
nhzlx 已提交
1661 1662 1663
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1664 1665
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1666 1667 1668 1669
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1670

1671 1672 1673
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1674 1675

    original_output_dims_size_ = output_->dims().size();
1676
  }
I
itminner 已提交
1677

1678 1679 1680 1681 1682 1683
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1684
  int original_output_dims_size_;
I
itminner 已提交
1685
};
T
Tian 已提交
1686 1687 1688
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1689
template <typename Dtype>
T
Tian 已提交
1690
class ResizeParam : public OpParam {
N
nhzlx 已提交
1691 1692 1693
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1694 1695
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1696 1697 1698 1699 1700
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1701 1702 1703 1704 1705 1706
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1707

1708
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1709

1710
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1711

1712
  GType *Out() const { return out_; }
T
Tian 已提交
1713

I
itminner 已提交
1714
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1715

I
itminner 已提交
1716
  const int &Height() const { return height_; }
T
Tian 已提交
1717

I
itminner 已提交
1718
  const int &Width() const { return width_; }
T
Tian 已提交
1719

I
itminner 已提交
1720
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1721

I
itminner 已提交
1722
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1723

I
itminner 已提交
1724
 private:
1725 1726 1727
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1728 1729 1730 1731 1732
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1733 1734 1735
};
#endif

L
liuruilong 已提交
1736
#ifdef RELU_OP
L
liuruilong 已提交
1737 1738 1739
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1740
template <typename Dtype>
D
relu  
dolphin8 已提交
1741
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1742 1743 1744
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1745
 public:
D
relu  
dolphin8 已提交
1746
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1747 1748 1749 1750
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1751 1752
  }

1753
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1754

1755
  GType *Out() const { return out_; }
E
eclipsess 已提交
1756 1757

 private:
1758 1759
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1760
};
D
relu  
dolphin8 已提交
1761 1762 1763

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1764
 public:
D
relu  
dolphin8 已提交
1765 1766 1767
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1782
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1783 1784
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1785
 public:
D
relu  
dolphin8 已提交
1786
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1787 1788 1789
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1790 1791
  framework::CLImage midImage;
};
Y
yangfei 已提交
1792
#endif
D
relu  
dolphin8 已提交
1793

L
liuruilong 已提交
1794
#endif
E
eclipsess 已提交
1795

Z
zhangyang 已提交
1796 1797 1798 1799 1800 1801 1802 1803
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1804 1805 1806 1807
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1808
  }
1809 1810
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1811 1812

 private:
1813 1814
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1815 1816 1817
#ifdef PADDLE_MOBILE_FPGA

 private:
1818
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1819 1820 1821
  fpga::BypassArgs fpga_bypass_args;

 public:
1822
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1823 1824
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1825
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1826 1827 1828
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1829
};
L
liuruilong 已提交
1830
#endif
E
eclipsess 已提交
1831

T
Tian 已提交
1832
#ifdef PRELU_OP
N
nhzlx 已提交
1833
template <typename Dtype>
T
Tian 已提交
1834
class PReluParam : public OpParam {
N
nhzlx 已提交
1835 1836 1837
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1838 1839
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1840 1841
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1842
    DLOG << "PReluParam inputs before";
1843 1844
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1845
    framework::DDim dims = alpha_->dims();
1846
    out_ = OutFrom<GType>(outputs, *scope);
1847
    mode_ = GetStringAttr("mode", attrs);
1848
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1849
  }
1850 1851 1852
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1853
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1854

I
itminner 已提交
1855
 private:
1856 1857 1858
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1859
  std::string mode_;
T
Tian 已提交
1860 1861 1862
};
#endif

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1888
template <typename Dtype>
L
liuruilong 已提交
1889
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1890 1891 1892
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1893
 public:
L
liuruilong 已提交
1894
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1895 1896 1897 1898 1899 1900
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1901 1902 1903 1904
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1905
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1906

1907
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1908

1909
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1910

xiebaiyuan's avatar
xiebaiyuan 已提交
1911
  GType *Out() const { return out_; }
E
eclipsess 已提交
1912 1913 1914 1915 1916 1917 1918 1919

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1920
  GType *input_x_;
1921 1922
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1923
  GType *out_;
E
eclipsess 已提交
1924 1925 1926
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1927

Z
ZhenWang 已提交
1928
#ifdef PADDLE_MOBILE_FPGA
1929
 private:  // NOLINT
Z
zhangyang 已提交
1930
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1931 1932

 public:
Z
zhangyang 已提交
1933 1934
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1935
#endif
E
eclipsess 已提交
1936
};
1937 1938

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1939 1940
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1941
#endif
E
eclipsess 已提交
1942

N
nhzlx 已提交
1943
template <typename Dtype>
1944
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1945 1946 1947
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1948
 public:
L
liuruilong 已提交
1949
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1950
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1951
                     Scope *scope)
1952
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1953
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1954
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1955
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1956
  }
1957
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1958 1959 1960

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1961
 protected:
1962
  GType *bias_;
W
wangliu 已提交
1963 1964 1965
  int axis_;
};

N
nhzlx 已提交
1966 1967
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1968

Z
zhangyang 已提交
1969
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1970 1971
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1972
 public:
L
liuruilong 已提交
1973
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1974
                         const VariableNameMap &outputs,
1975
                         const AttributeMap &attrs, Scope *scope)
1976
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1977 1978 1979
};
#endif

1980
#ifdef FUSION_CONVADDPRELU_OP
1981 1982 1983 1984
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1985 1986 1987 1988

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1989
                          const AttributeMap &attrs, Scope *scope)
1990
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1991
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1992
    mode_ = OpParam::GetStringAttr("mode", attrs);
1993
    framework::DDim dims = alpha_->dims();
1994
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1995
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1996
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1997
  }
1998
  const GType *InputAlpha() const { return alpha_; }
1999
  const std::string &Mode() const { return mode_; }
2000
  GType *Bias() const { return bias_; }
2001 2002 2003
  const int &Axis() const { return axis_; }

 protected:
2004
  GType *bias_;
2005
  int axis_;
2006
  GType *alpha_;
2007 2008 2009 2010 2011
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
2012 2013 2014 2015
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2016 2017 2018 2019

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2020
                             const AttributeMap &attrs, Scope *scope)
2021
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2022 2023
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
2024
    mode_ = OpParam::GetStringAttr("mode", attrs);
2025
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
2026
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2027
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2028 2029 2030
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
2031
    if (keyX1_ == keyOutput_) {
2032
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
2033
    } else if (keyY1_ == keyOutput_) {
2034
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
2035
    }
H
update  
hjchen2 已提交
2036
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2037
  }
2038
  const GType *InputAlpha() const { return alpha_; }
2039
  const std::string &Mode() const { return mode_; }
2040
  const GType *Bias1() const { return bias1_; }
2041

2042
  GType *Bias() const { return bias_; }
2043 2044 2045 2046

  const int &Axis() const { return axis_; }

 protected:
2047
  GType *bias_;
2048
  int axis_;
2049
  GType *alpha_;
2050
  std::string mode_;
2051
  GType *bias1_;
2052 2053 2054 2055 2056 2057
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
2058
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
2059
template <typename Dtype>
2060
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2061 2062 2063
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2064 2065 2066
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2067
                           const AttributeMap &attrs, Scope *scope)
2068
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2069
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2070
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2071 2072 2073 2074
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2075 2076
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2077
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2078
  }
2079
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2080 2081 2082

  const int &Axis() const { return axis_; }

2083
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2084

2085
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2086

2087
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2088

2089
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2090 2091 2092 2093 2094

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2095
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2096

2097
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2098

2099
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2100

2101
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2102 2103

 protected:
2104
  GType *bias_;
E
eclipsess 已提交
2105
  int axis_;
2106 2107 2108 2109
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2110 2111
  float epsilon_;
  float momentum_;
2112 2113
  GType *new_bias_;
  GType *new_scale_;
2114 2115 2116 2117 2118
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2119
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2120 2121 2122 2123 2124 2125
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2126
                           const AttributeMap &attrs, Scope *scope)
2127
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2128
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2129
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2130 2131 2132 2133
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2134 2135
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2136 2137 2138
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2139
    if (keyX_ == keyBNY_) {
2140
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2141
    } else if (keyY_ == keyBNY_) {
2142
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2143
    }
H
update  
hjchen2 已提交
2144
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2145
  }
2146
  GType *Bias() const { return bias_; }
2147 2148 2149

  const int &Axis() const { return axis_; }

2150
  const GType *InputBias() const { return input_bias_; }
2151

2152
  const GType *InputMean() const { return input_mean_; }
2153

2154
  const GType *InputScale() const { return input_scale_; }
2155

2156
  const GType *InputVariance() const { return input_variance_; }
2157 2158 2159 2160 2161

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2162
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2163

2164
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2165

2166
  const GType *NewScale() const { return new_scale_; }
2167

2168
  const GType *NewBias() const { return new_bias_; }
2169 2170

 protected:
2171
  GType *bias_;
2172
  int axis_;
2173 2174 2175 2176
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2177 2178
  float epsilon_;
  float momentum_;
2179 2180
  GType *new_bias_;
  GType *new_scale_;
2181 2182 2183
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2184
};
2185
#endif
E
eclipsess 已提交
2186

Z
zhangyang 已提交
2187
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2188
template <typename Dtype>
2189
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2190 2191 2192
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2193 2194 2195
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2196
                    Scope *scope)
2197
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2198 2199 2200 2201
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2202 2203
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2204
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2205 2206
  }

2207
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2208

2209
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2210

2211
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2212

2213
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2214 2215 2216 2217 2218

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2219
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2220

2221
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2222

2223
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2224

2225
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2226 2227

 protected:
2228 2229 2230 2231
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2232 2233
  float epsilon_;
  float momentum_;
2234 2235
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2236 2237 2238
};
#endif

2239
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2240
template <typename Dtype>
2241
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2242 2243 2244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2245 2246 2247
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2248
                       const AttributeMap &attrs, Scope *scope)
2249
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2250
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2251
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2252 2253 2254 2255
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2256 2257
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2258
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2259
  }
2260
  GType *Bias() const { return bias_; }
2261 2262 2263

  const int &Axis() const { return axis_; }

2264
  const GType *InputBias() const { return input_bias_; }
2265

2266
  const GType *InputMean() const { return input_mean_; }
2267

2268
  const GType *InputScale() const { return input_scale_; }
2269

2270
  const GType *InputVariance() const { return input_variance_; }
2271 2272 2273 2274 2275

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2276
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2277

2278
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2279

2280
  const GType *NewScale() const { return new_scale_; }
2281

2282
  const GType *NewBias() const { return new_bias_; }
2283 2284

 protected:
2285
  GType *bias_;
2286
  int axis_;
2287 2288 2289 2290
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2291 2292
  float epsilon_;
  float momentum_;
2293 2294
  GType *new_bias_;
  GType *new_scale_;
2295
};
E
eclipsess 已提交
2296
#endif
Y
Yao,kun 已提交
2297

E
eclipsess 已提交
2298
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2299
template <typename Dtype>
2300
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2301 2302 2303
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2304 2305 2306
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2307
                          const AttributeMap &attrs, Scope *scope)
2308
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2309 2310 2311 2312
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2313 2314
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2315
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2316 2317
  }

2318
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2319

2320
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2321

2322
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2323

2324
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2325 2326 2327 2328 2329

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2330
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2331

2332
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2333

2334
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2335

2336
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2337 2338

 protected:
2339 2340 2341 2342
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2343 2344
  float epsilon_;
  float momentum_;
2345 2346
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2347 2348 2349 2350
};

#endif

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2367
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2368
template <typename Dtype>
2369
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2370 2371 2372
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2373 2374 2375
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2376
                        const AttributeMap &attrs, Scope *scope)
2377
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2378 2379 2380 2381
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2382 2383
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2384
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2385 2386
  }

2387
  const GType *InputBias() const { return input_bias_; }
2388

2389
  const GType *InputMean() const { return input_mean_; }
2390

2391
  const GType *InputScale() const { return input_scale_; }
2392

2393
  const GType *InputVariance() const { return input_variance_; }
2394 2395 2396 2397 2398

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2399
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2400

2401
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2402

2403
  const GType *NewScale() const { return new_scale_; }
2404

2405
  const GType *NewBias() const { return new_bias_; }
2406 2407

 protected:
2408 2409 2410 2411
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2412 2413
  float epsilon_;
  float momentum_;
2414 2415
  GType *new_bias_;
  GType *new_scale_;
2416 2417 2418
};
#endif

Y
Yao,kun 已提交
2419
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2420
template <typename Dtype>
Y
Yao,kun 已提交
2421
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2422 2423 2424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2425 2426 2427
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2428 2429 2430 2431
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2432 2433 2434 2435 2436
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2437
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2438

E
eclipsess 已提交
2439
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2440 2441 2442 2443 2444 2445 2446 2447

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2448 2449
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2450 2451 2452 2453
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2454
#endif
Y
Yao,kun 已提交
2455

2456
#ifdef DROPOUT_OP
N
nhzlx 已提交
2457
template <typename Dtype>
Y
Yao,kun 已提交
2458
class DropoutParam : public OpParam {
N
nhzlx 已提交
2459 2460 2461
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2462 2463
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2464 2465 2466 2467
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2468 2469

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2470 2471
  }

2472
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2473

2474
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2475

Y
yangfei 已提交
2476 2477
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2478
 private:
2479 2480
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2481
  float dropout_prob_;
Y
Yao,kun 已提交
2482
};
2483
#endif
Y
Yao,kun 已提交
2484

N
nhzlx 已提交
2485
template <typename Dtype>
L
liuruilong 已提交
2486
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2487 2488 2489
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2490 2491 2492
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2493 2494 2495 2496
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2497
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2498
    if (outputs.count("Output")) {
2499
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2500
    }
L
liuruilong 已提交
2501 2502 2503
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
2504 2505 2506 2507
    if (HasAttr("output_size", attrs)) {
      output_size_ = GetAttr<vector<int>>("output_size", attrs);
      DLOG << "conv transpose output size: " << output_size_;
    }
L
liuruilong 已提交
2508 2509 2510
    groups = GetAttr<int>("groups", attrs);
  }

2511
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2512

2513
  GType *Filter() const { return filter_; }
L
liuruilong 已提交
2514

2515
  GType *Output() const { return output_; }
L
liuruilong 已提交
2516 2517 2518 2519 2520 2521 2522

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

2523 2524
  const vector<int> &OutputSize() const { return output_size_; }

L
liuruilong 已提交
2525 2526
  const int &Groups() const { return groups; }

H
hjchen2 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2536
 private:
2537 2538 2539
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2540 2541 2542
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
2543
  vector<int> output_size_;
L
liuruilong 已提交
2544
  int groups;
H
hjchen2 已提交
2545
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2546 2547 2548 2549 2550

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2551
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2552 2553 2554

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2555 2556 2557
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2558
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2559 2560 2561
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2562
#endif
L
liuruilong 已提交
2563
};
Z
zhangyang 已提交
2564

qnqinan's avatar
qnqinan 已提交
2565 2566 2567 2568 2569
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2570 2571

 public:
qnqinan's avatar
qnqinan 已提交
2572
  FusionDeconvAddParam(const VariableNameMap &inputs,
2573
                       const VariableNameMap &outputs,
2574
                       const AttributeMap &attrs, Scope *scope)
2575
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2576
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2577
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2578
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2579
  }
2580
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2581 2582 2583

  const int &Axis() const { return axis_; }

2584
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2585 2586

 protected:
2587
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2588
  int axis_;
2589
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2590 2591 2592 2593 2594 2595 2596
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2597 2598 2599 2600 2601 2602 2603 2604 2605
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2606
                         const AttributeMap &attrs, Scope *scope)
2607
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2608 2609 2610 2611 2612
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2613 2614 2615 2616 2617 2618 2619
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2663
                          const AttributeMap &attrs, Scope *scope)
2664
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2665 2666 2667 2668 2669
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2670 2671 2672 2673 2674 2675
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2719
                             const AttributeMap &attrs, Scope *scope)
2720
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2721 2722 2723 2724 2725
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2767

Z
zhangyang 已提交
2768 2769 2770 2771 2772
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2787 2788 2789 2790 2791 2792 2793 2794
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2795
    output_batch_reset_hidden_prev_ =
2796 2797 2798
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2799 2800
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2834 2835 2836 2837 2838 2839 2840
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2841 2842 2843 2844 2845 2846 2847 2848
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2849
    output_reset_hidden_prev_ =
2850 2851
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2880 2881 2882 2883 2884 2885 2886 2887
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2888 2889 2890 2891
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2892
    axis = GetAttr<int>("axis", attrs);
2893
  }
2894 2895
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2896
  const int &Axis() const { return axis; }
2897 2898

 private:
2899 2900
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2901
  int axis;
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2913 2914 2915 2916
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2917
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2918 2919 2920 2921 2922 2923
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2924
  }
2925
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2926 2927 2928 2929 2930
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2931 2932

 private:
2933
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2934
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2935
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2936 2937 2938
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2939 2940 2941 2942 2943 2944 2945 2946 2947
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2960 2961 2962 2963 2964
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2965 2966
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2967
  }
2968
  const GType *InputX() const { return input_x_; }
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
3001 3002
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
3003 3004
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
3005 3006

 private:
3007 3008 3009
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
3010 3011
  int out_h_;
  int out_w_;
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3023 3024 3025 3026
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3027
  }
3028 3029
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
3030 3031

 private:
3032 3033
  GType *input_;
  GType *out_;
3034 3035 3036
};
#endif

H
hjchen2 已提交
3037 3038 3039 3040 3041 3042 3043 3044
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3045 3046 3047 3048 3049
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
3050 3051 3052 3053
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
3054 3055 3056
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3069 3070 3071 3072
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
3073 3074 3075 3076 3077
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
3078 3079
  GType *input_;
  GType *output_;
H
hjchen2 已提交
3080 3081 3082 3083 3084
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

3085
#ifdef QUANT_OP
3086
template <typename Dtype>
3087 3088 3089 3090 3091
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3092
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3093 3094 3095 3096
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3097 3098
    // online
    // scale = max(abs(x))
3099
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3100
    // offline
3101
    if (inputs.count("InScale")) {
3102
      offline_ = true;
3103
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3104 3105
    }
    // x = round(scale * x)
3106 3107
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3108
    }
3109 3110 3111 3112
  }

 public:
  // op input
3113
  GType *input_;
3114
  // op output
3115
  GType *output_;
3116
  GType *online_scale_;
3117
  // quantize offline scale
3118
  GType *offline_scale_;
3119 3120
  // if offine scale or not
  bool offline_ = false;
3121
  // round method type
3122 3123
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3124
};
3125
#endif
3126

3127
#ifdef DEQUANT_OP
3128
template <typename Dtype>
3129 3130 3131 3132 3133
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3134
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3135 3136 3137 3138 3139
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3140
    // dequantization is performed as x = x / static_scale / online_scale
3141 3142
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3143
    } else {
3144
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3145 3146 3147 3148 3149
    }
  }

 public:
  // op input
3150
  GType *input_;
3151
  // op output
3152
  GType *output_;
3153
  GType *activation_scale_;
3154 3155
  float weight_scale_;
};
3156
#endif
3157

3158 3159 3160 3161
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3162
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3163
template <typename Dtype>
3164
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3165 3166 3167 3168
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3169 3170
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3171
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3172 3173
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3174 3175 3176 3177
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3178 3179 3180 3181 3182
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3183 3184 3185 3186
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3187
  float epsilon_;
3188 3189 3190
};
#endif

3191 3192 3193 3194
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3195 3196 3197 3198 3199 3200 3201 3202
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3203
                          const AttributeMap &attrs, Scope *scope)
3204 3205 3206
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3207
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3208 3209 3210 3211 3212
  }

 public:
  // elementwise add
  int axis_;
3213
  GType *bias_;
3214 3215 3216
};
#endif

3217 3218 3219 3220 3221 3222 3223 3224 3225
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3226
                               const AttributeMap &attrs, Scope *scope)
3227 3228
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3229
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3230
    // offline
3231 3232
    if (inputs.count("InScale")) {
      offline_ = true;
3233
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3234 3235 3236 3237 3238 3239 3240 3241
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3242
  GType *online_scale_;
3243
  // quantize offline scale
3244
  GType *offline_scale_;
3245 3246
  // if offine scale or not
  bool offline_ = false;
3247 3248 3249 3250 3251 3252
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3253 3254 3255 3256 3257 3258 3259 3260 3261
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3262 3263 3264 3265 3266
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3290 3291 3292 3293
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3294 3295
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3296
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3307 3308 3309 3310 3311 3312 3313 3314
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3315 3316 3317 3318
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3319 3320
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3321
      input_y_ = InputYFrom<GType>(inputs, *scope);
3322 3323 3324
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
Z
zp7 已提交
3325 3326 3327
    if (HasAttr("append", attrs)) {
      append = OpParam::GetAttr<bool>("append", attrs);
    }
3328 3329 3330 3331 3332 3333 3334
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
3335
  bool append;
3336 3337 3338
};
#endif  // LOD_RESET_OP

3339 3340 3341 3342 3343 3344 3345 3346
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3347 3348 3349 3350 3351
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3363
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3364
template <typename Dtype>
Z
zhaojiaying01 已提交
3365
class LogicalBinaryParam : public OpParam {
3366 3367 3368 3369
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3370 3371
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3372 3373 3374 3375 3376
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3388
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3389 3390 3391

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3392
class LogicalUnaryParam : public OpParam {
3393 3394 3395 3396
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3397 3398
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3399 3400 3401 3402
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3414 3415 3416
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3417 3418 3419
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3420 3421 3422
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3423 3424
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3425 3426 3427
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3428 3429 3430
  }

 public:
H
hjchen2 已提交
3431 3432 3433
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3434 3435 3436 3437 3438 3439
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3440 3441 3442
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3443 3444 3445
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3446 3447
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3448 3449 3450
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3451 3452 3453
  }

 public:
H
hjchen2 已提交
3454 3455 3456
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3457 3458 3459
};
#endif

Z
zhaojiaying01 已提交
3460 3461 3462 3463 3464 3465 3466 3467
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3468 3469 3470 3471
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3491
                 const AttributeMap &attrs, Scope *scope)
3492
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3493 3494
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3495
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3496 3497 3498 3499
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3500
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3501 3502 3503 3504

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3505
  float step_;
Z
zhaojiaying01 已提交
3506 3507
};
#endif  // INCREMENT_OP
3508 3509
#ifdef PAD2D_OP
template <typename Dtype>
3510
class Pad2DParam : public OpParam {
3511 3512 3513 3514
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3515
  Pad2DParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3516 3517 3518 3519
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3520 3521 3522 3523
    paddings_ = OpParam::GetAttr<std::vector<int>>("paddings", attrs);
    pad_value_ = OpParam::GetAttr<float>("pad_value", attrs);
    mode_ = OpParam::GetStringAttr("mode", attrs);
    DLOG << "mode" << mode_;
3524
  }
3525 3526 3527 3528 3529 3530
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

  std::vector<int> paddings_;
  float pad_value_;
  std::string mode_;
3531 3532

 private:
3533 3534
  GType *input_x_;
  GType *out_;
3535 3536
};
#endif
H
Huie 已提交
3537 3538 3539 3540 3541
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3542

H
Huie 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3558 3559
}  // namespace operators
}  // namespace paddle_mobile