cpuset.c 77.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71 72 73 74 75 76 77 78 79
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
80
struct cpuset {
81 82
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
83
	unsigned long flags;		/* "unsigned long" so bitops work */
84
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
85 86
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

87 88 89 90 91 92 93 94 95 96 97 98
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

99
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
100

101 102 103 104 105 106
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
107 108
	/* partition number for rebuild_sched_domains() */
	int pn;
109

110 111
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
112 113
};

114 115 116 117 118
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
{
	return css ? container_of(css, struct cpuset, css) : NULL;
}

119 120 121
/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
122
	return css_cs(task_css(task, cpuset_subsys_id));
123 124
}

125
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
126
{
T
Tejun Heo 已提交
127
	return css_cs(css_parent(&cs->css));
T
Tejun Heo 已提交
128 129
}

130 131 132 133 134 135 136 137 138 139 140 141 142
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
143 144
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
145
	CS_ONLINE,
L
Linus Torvalds 已提交
146 147
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
148
	CS_MEM_HARDWALL,
149
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
150
	CS_SCHED_LOAD_BALANCE,
151 152
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
153 154 155
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
156 157 158 159 160
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
161 162
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
163
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
164 165 166 167
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
168
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
169 170
}

171 172 173 174 175
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
176 177 178 179 180
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

181 182
static inline int is_memory_migrate(const struct cpuset *cs)
{
183
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 185
}

186 187 188 189 190 191 192 193 194 195
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
196
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
197 198
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
199 200
};

201 202 203
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
204
 * @pos_css: used for iteration
205 206 207 208 209
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
210 211 212
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
213

214 215 216
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
217
 * @pos_css: used for iteration
218 219 220
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
221
 * with RCU read locked.  The caller may modify @pos_css by calling
222 223
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
224
 */
225 226 227
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
228

L
Linus Torvalds 已提交
229
/*
230 231 232 233 234 235 236 237 238 239 240 241 242 243
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
244 245
 *
 * Calls to the kernel memory allocator can not be made while holding
246
 * callback_mutex, as that would risk double tripping on callback_mutex
247 248 249
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
250
 * If a task is only holding callback_mutex, then it has read-only
251 252
 * access to cpusets.
 *
253 254 255
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
256
 *
257
 * The cpuset_common_file_read() handlers only hold callback_mutex across
258 259 260
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
261 262
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
263 264
 */

265
static DEFINE_MUTEX(cpuset_mutex);
266
static DEFINE_MUTEX(callback_mutex);
267

268 269 270 271 272 273
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

274 275
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

276 277
/*
 * This is ugly, but preserves the userspace API for existing cpuset
278
 * users. If someone tries to mount the "cpuset" filesystem, we
279 280
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
281 282
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
283
{
284
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
285
	struct dentry *ret = ERR_PTR(-ENODEV);
286 287 288 289
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
290 291
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
292 293 294
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
295 296 297 298
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
299
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
300 301 302
};

/*
303
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
304
 * are online.  If none are online, walk up the cpuset hierarchy
305 306
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
307 308
 *
 * One way or another, we guarantee to return some non-empty subset
309
 * of cpu_online_mask.
L
Linus Torvalds 已提交
310
 *
311
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
312
 */
313
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
314
{
315
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
316
		cs = parent_cs(cs);
317
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
318 319 320 321
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
322 323
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
324
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
325 326
 *
 * One way or another, we guarantee to return some non-empty subset
327
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
328
 *
329
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
330
 */
331
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
332
{
333
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
334
		cs = parent_cs(cs);
335
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
336 337
}

338 339 340
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
341
 * Called with callback_mutex/cpuset_mutex held
342 343 344 345 346 347 348 349 350 351 352 353 354 355
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
356 357 358 359 360
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
361
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
362 363 364 365
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
366
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
367 368 369 370 371
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

372 373 374 375
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
376
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
377
{
378 379 380 381 382 383 384 385 386 387 388 389 390
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
391 392 393 394 395 396 397 398
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
399
	free_cpumask_var(trial->cpus_allowed);
400 401 402
	kfree(trial);
}

L
Linus Torvalds 已提交
403 404 405 406 407 408 409
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
410
 * cpuset_mutex held.
L
Linus Torvalds 已提交
411 412 413 414 415 416 417 418 419 420 421 422
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

423
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
424
{
425
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
426
	struct cpuset *c, *par;
427 428 429
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
430 431

	/* Each of our child cpusets must be a subset of us */
432
	ret = -EBUSY;
433
	cpuset_for_each_child(c, css, cur)
434 435
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
436 437

	/* Remaining checks don't apply to root cpuset */
438
	ret = 0;
439
	if (cur == &top_cpuset)
440
		goto out;
L
Linus Torvalds 已提交
441

T
Tejun Heo 已提交
442
	par = parent_cs(cur);
443

L
Linus Torvalds 已提交
444
	/* We must be a subset of our parent cpuset */
445
	ret = -EACCES;
L
Linus Torvalds 已提交
446
	if (!is_cpuset_subset(trial, par))
447
		goto out;
L
Linus Torvalds 已提交
448

449 450 451 452
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
453
	ret = -EINVAL;
454
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
455 456
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
457
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
458
			goto out;
L
Linus Torvalds 已提交
459 460 461
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
462
			goto out;
L
Linus Torvalds 已提交
463 464
	}

465 466 467 468
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
469
	ret = -ENOSPC;
470
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
471
	    (cpumask_empty(trial->cpus_allowed) &&
472 473
	     nodes_empty(trial->mems_allowed)))
		goto out;
474

475 476 477 478
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
479 480
}

481
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
482
/*
483
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
484 485 486 487
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
488
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
489 490
}

491 492 493 494 495 496 497 498
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

499 500
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
501
{
502
	struct cpuset *cp;
503
	struct cgroup_subsys_state *pos_css;
504

505
	rcu_read_lock();
506
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
507 508 509
		if (cp == root_cs)
			continue;

510 511
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
512
			pos_css = css_rightmost_descendant(pos_css);
513
			continue;
514
		}
515 516 517 518

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
519
	rcu_read_unlock();
520 521
}

P
Paul Jackson 已提交
522
/*
523 524 525 526 527
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
528
 * The output of this function needs to be passed to kernel/sched/core.c
529 530 531
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
532
 *
L
Li Zefan 已提交
533
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
534 535 536 537 538 539 540
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
541
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
542 543
 *
 * The three key local variables below are:
544
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
545 546 547 548 549 550 551 552 553 554 555 556
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
557
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
576
static int generate_sched_domains(cpumask_var_t **domains,
577
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
578 579 580 581 582
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
583
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
584
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
585
	int ndoms = 0;		/* number of sched domains in result */
586
	int nslot;		/* next empty doms[] struct cpumask slot */
587
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
588 589

	doms = NULL;
590
	dattr = NULL;
591
	csa = NULL;
P
Paul Jackson 已提交
592 593 594

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
595 596
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
597
		if (!doms)
598 599
			goto done;

600 601 602
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
603
			update_domain_attr_tree(dattr, &top_cpuset);
604
		}
605
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
606 607

		goto done;
P
Paul Jackson 已提交
608 609 610 611 612 613 614
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

615
	rcu_read_lock();
616
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
617 618
		if (cp == &top_cpuset)
			continue;
619
		/*
620 621 622 623 624 625
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
626
		 */
627 628
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
629
			continue;
630

631 632 633 634
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
635
		pos_css = css_rightmost_descendant(pos_css);
636 637
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

666 667 668 669
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
670
	doms = alloc_sched_domains(ndoms);
671
	if (!doms)
672 673 674 675 676 677
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
678
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
679 680 681

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
682
		struct cpumask *dp;
P
Paul Jackson 已提交
683 684
		int apn = a->pn;

685 686 687 688 689
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

690
		dp = doms[nslot];
691 692 693 694 695 696 697 698 699 700

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
701
			}
702 703
			continue;
		}
P
Paul Jackson 已提交
704

705
		cpumask_clear(dp);
706 707 708 709 710 711
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
712
				cpumask_or(dp, dp, b->cpus_allowed);
713 714 715 716 717
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
718 719
			}
		}
720
		nslot++;
P
Paul Jackson 已提交
721 722 723
	}
	BUG_ON(nslot != ndoms);

724 725 726
done:
	kfree(csa);

727 728 729 730 731 732 733
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

734 735 736 737 738 739 740 741
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
742 743 744 745 746
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
747
 *
748
 * Call with cpuset_mutex held.  Takes get_online_cpus().
749
 */
750
static void rebuild_sched_domains_locked(void)
751 752
{
	struct sched_domain_attr *attr;
753
	cpumask_var_t *doms;
754 755
	int ndoms;

756
	lockdep_assert_held(&cpuset_mutex);
757
	get_online_cpus();
758

759 760 761 762 763 764 765 766
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

767 768 769 770 771
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
772
out:
773
	put_online_cpus();
774
}
775
#else /* !CONFIG_SMP */
776
static void rebuild_sched_domains_locked(void)
777 778 779
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
780

781 782
void rebuild_sched_domains(void)
{
783
	mutex_lock(&cpuset_mutex);
784
	rebuild_sched_domains_locked();
785
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
786 787
}

788 789 790
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
791
 *
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
819
 */
820
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
821
{
822 823 824
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
825
}
826

C
Cliff Wickman 已提交
827 828 829
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
T
Tejun Heo 已提交
830
 * @data: cpuset to @tsk belongs to
C
Cliff Wickman 已提交
831
 *
832 833
 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
 * mask needs to be changed.
C
Cliff Wickman 已提交
834 835
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
836
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
837
 */
T
Tejun Heo 已提交
838
static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
C
Cliff Wickman 已提交
839
{
T
Tejun Heo 已提交
840 841
	struct cpuset *cs = data;
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
842 843

	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
C
Cliff Wickman 已提交
844 845
}

846 847 848
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
849
 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
850
 *
851
 * Called with cpuset_mutex held
852
 *
853
 * The css_scan_tasks() function will scan all the tasks in a cgroup,
854 855
 * calling callback functions for each.
 *
856
 * No return value. It's guaranteed that css_scan_tasks() always returns 0
857
 * if @heap != NULL.
858
 */
859
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
860
{
861
	css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
862 863
}

864 865 866 867
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
868
 * @heap: the heap used by css_scan_tasks()
869 870 871 872 873 874 875 876 877 878
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_cpumask_hier(struct cpuset *root_cs,
				      bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
879
	struct cgroup_subsys_state *pos_css;
880 881

	rcu_read_lock();
882
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
883 884 885 886 887 888 889 890 891
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!cpumask_empty(cp->cpus_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
892 893 894 895 896 897 898 899 900 901 902 903 904
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_cpumask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
905 906 907 908 909
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
910 911
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
912
{
913
	struct ptr_heap heap;
C
Cliff Wickman 已提交
914 915
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
916

917
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
918 919 920
	if (cs == &top_cpuset)
		return -EACCES;

921
	/*
922
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
923 924 925
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
926
	 */
927
	if (!*buf) {
928
		cpumask_clear(trialcs->cpus_allowed);
929
	} else {
930
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
931 932
		if (retval < 0)
			return retval;
933

934
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
935
			return -EINVAL;
936
	}
P
Paul Jackson 已提交
937

P
Paul Menage 已提交
938
	/* Nothing to do if the cpus didn't change */
939
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
940
		return 0;
C
Cliff Wickman 已提交
941

942 943 944 945
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

946 947 948 949
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

950
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
951

952
	mutex_lock(&callback_mutex);
953
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
954
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
955

956
	update_tasks_cpumask_hier(cs, true, &heap);
957 958

	heap_free(&heap);
C
Cliff Wickman 已提交
959

P
Paul Menage 已提交
960
	if (is_load_balanced)
961
		rebuild_sched_domains_locked();
962
	return 0;
L
Linus Torvalds 已提交
963 964
}

965 966 967 968 969 970 971 972
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
973
 *    Call holding cpuset_mutex, so current's cpuset won't change
974
 *    during this call, as manage_mutex holds off any cpuset_attach()
975 976
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
977
 *    our task's cpuset.
978 979 980 981 982 983 984 985 986 987 988
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
989
	struct cpuset *mems_cs;
990 991 992 993 994

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

995 996
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
997 998
}

999
/*
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1011
	bool need_loop;
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1023 1024 1025 1026 1027 1028 1029 1030
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1031

1032 1033
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
1034

1035 1036
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1037 1038

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1039
	tsk->mems_allowed = *newmems;
1040 1041 1042 1043

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1044
	task_unlock(tsk);
1045 1046
}

T
Tejun Heo 已提交
1047 1048 1049 1050 1051
struct cpuset_change_nodemask_arg {
	struct cpuset		*cs;
	nodemask_t		*newmems;
};

1052 1053 1054
/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1055
 * memory_migrate flag is set. Called with cpuset_mutex held.
1056
 */
T
Tejun Heo 已提交
1057
static void cpuset_change_nodemask(struct task_struct *p, void *data)
1058
{
T
Tejun Heo 已提交
1059 1060
	struct cpuset_change_nodemask_arg *arg = data;
	struct cpuset *cs = arg->cs;
1061 1062
	struct mm_struct *mm;
	int migrate;
1063

T
Tejun Heo 已提交
1064
	cpuset_change_task_nodemask(p, arg->newmems);
1065

1066 1067 1068 1069 1070 1071 1072 1073
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
T
Tejun Heo 已提交
1074
		cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
1075 1076 1077
	mmput(mm);
}

1078 1079
static void *cpuset_being_rebound;

1080 1081 1082
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1083
 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1084
 *
1085 1086
 * Called with cpuset_mutex held.  No return value. It's guaranteed that
 * css_scan_tasks() always returns 0 if @heap != NULL.
1087
 */
1088
static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
L
Linus Torvalds 已提交
1089
{
1090
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1091
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
T
Tejun Heo 已提交
1092 1093
	struct cpuset_change_nodemask_arg arg = { .cs = cs,
						  .newmems = &newmems };
1094

1095
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1096

1097
	guarantee_online_mems(mems_cs, &newmems);
1098

1099
	/*
1100 1101 1102 1103
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1104
	 * the global cpuset_mutex, we know that no other rebind effort
1105
	 * will be contending for the global variable cpuset_being_rebound.
1106
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1107
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1108
	 */
1109
	css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
1110

1111 1112 1113 1114 1115 1116
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1117
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1118
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1119 1120
}

1121 1122 1123 1124
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
1125
 * @heap: the heap used by css_scan_tasks()
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_nodemask_hier(struct cpuset *root_cs,
				       bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
1136
	struct cgroup_subsys_state *pos_css;
1137 1138

	rcu_read_lock();
1139
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1140 1141 1142 1143 1144 1145 1146 1147 1148
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!nodes_empty(cp->mems_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_nodemask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1162 1163 1164
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1165 1166 1167 1168
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1169
 *
1170
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1171 1172 1173 1174
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1175 1176
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1177 1178
{
	int retval;
1179
	struct ptr_heap heap;
1180 1181

	/*
1182
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1183 1184
	 * it's read-only
	 */
1185 1186 1187 1188
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1189 1190 1191 1192 1193 1194 1195 1196

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1197
		nodes_clear(trialcs->mems_allowed);
1198
	} else {
1199
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1200 1201 1202
		if (retval < 0)
			goto done;

1203
		if (!nodes_subset(trialcs->mems_allowed,
1204
				node_states[N_MEMORY])) {
1205 1206 1207
			retval =  -EINVAL;
			goto done;
		}
1208
	}
1209 1210

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1211 1212 1213
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1214
	retval = validate_change(cs, trialcs);
1215 1216 1217
	if (retval < 0)
		goto done;

1218 1219 1220 1221
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1222
	mutex_lock(&callback_mutex);
1223
	cs->mems_allowed = trialcs->mems_allowed;
1224 1225
	mutex_unlock(&callback_mutex);

1226
	update_tasks_nodemask_hier(cs, true, &heap);
1227 1228

	heap_free(&heap);
1229 1230 1231 1232
done:
	return retval;
}

1233 1234 1235 1236 1237
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1238
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1239
{
1240
#ifdef CONFIG_SMP
1241
	if (val < -1 || val >= sched_domain_level_max)
1242
		return -EINVAL;
1243
#endif
1244 1245 1246

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1247 1248
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1249
			rebuild_sched_domains_locked();
1250 1251 1252 1253 1254
	}

	return 0;
}

1255
/**
1256 1257
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
T
Tejun Heo 已提交
1258
 * @data: cpuset to @tsk belongs to
1259
 *
1260
 * Called by css_scan_tasks() for each task in a cgroup.
1261 1262
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1263
 * holding cpuset_mutex at this point.
1264
 */
T
Tejun Heo 已提交
1265
static void cpuset_change_flag(struct task_struct *tsk, void *data)
1266
{
T
Tejun Heo 已提交
1267 1268 1269
	struct cpuset *cs = data;

	cpuset_update_task_spread_flag(cs, tsk);
1270 1271
}

1272
/**
1273 1274
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
1275
 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1276
 *
1277
 * Called with cpuset_mutex held
1278
 *
1279
 * The css_scan_tasks() function will scan all the tasks in a cgroup,
1280 1281
 * calling callback functions for each.
 *
1282
 * No return value. It's guaranteed that css_scan_tasks() always returns 0
1283 1284 1285 1286
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
1287
	css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
1288 1289
}

L
Linus Torvalds 已提交
1290 1291
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1292 1293 1294
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1295
 *
1296
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1297 1298
 */

1299 1300
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1301
{
1302
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1303
	int balance_flag_changed;
1304 1305 1306
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1307

1308 1309 1310 1311
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1312
	if (turning_on)
1313
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1314
	else
1315
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1316

1317
	err = validate_change(cs, trialcs);
1318
	if (err < 0)
1319
		goto out;
P
Paul Jackson 已提交
1320

1321 1322 1323 1324
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1325
	balance_flag_changed = (is_sched_load_balance(cs) !=
1326
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1327

1328 1329 1330
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1331
	mutex_lock(&callback_mutex);
1332
	cs->flags = trialcs->flags;
1333
	mutex_unlock(&callback_mutex);
1334

1335
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1336
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1337

1338 1339 1340
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1341 1342 1343
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1344 1345
}

1346
/*
A
Adrian Bunk 已提交
1347
 * Frequency meter - How fast is some event occurring?
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1444
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1445 1446
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1447
{
1448
	struct cpuset *cs = css_cs(css);
1449 1450
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1451

1452 1453
	mutex_lock(&cpuset_mutex);

1454 1455 1456 1457
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1458
	ret = -ENOSPC;
1459
	if (!cgroup_sane_behavior(css->cgroup) &&
1460
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1461
		goto out_unlock;
1462

1463
	cgroup_taskset_for_each(task, css, tset) {
1464
		/*
1465 1466 1467 1468 1469 1470 1471
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1472
		 */
1473
		ret = -EINVAL;
1474
		if (task->flags & PF_NO_SETAFFINITY)
1475 1476 1477 1478
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1479
	}
1480

1481 1482 1483 1484 1485
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1486 1487 1488 1489
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1490
}
1491

1492
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1493 1494
				 struct cgroup_taskset *tset)
{
1495
	mutex_lock(&cpuset_mutex);
1496
	css_cs(css)->attach_in_progress--;
1497
	mutex_unlock(&cpuset_mutex);
1498
}
L
Linus Torvalds 已提交
1499

1500
/*
1501
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1502 1503 1504 1505 1506
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1507 1508
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1509
{
1510
	/* static buf protected by cpuset_mutex */
1511
	static nodemask_t cpuset_attach_nodemask_to;
1512
	struct mm_struct *mm;
1513 1514
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1515 1516
	struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
							cpuset_subsys_id);
1517
	struct cpuset *cs = css_cs(css);
1518
	struct cpuset *oldcs = css_cs(oldcss);
1519 1520
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1521

1522 1523
	mutex_lock(&cpuset_mutex);

1524 1525 1526 1527
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1528
		guarantee_online_cpus(cpus_cs, cpus_attach);
1529

1530
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1531

1532
	cgroup_taskset_for_each(task, css, tset) {
1533 1534 1535 1536 1537 1538 1539 1540 1541
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1542

1543 1544 1545 1546 1547
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1548
	mm = get_task_mm(leader);
1549
	if (mm) {
1550 1551
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1552
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1563
					  &cpuset_attach_nodemask_to);
1564
		}
1565 1566
		mmput(mm);
	}
1567

1568
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1569

1570
	cs->attach_in_progress--;
1571 1572
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1573 1574

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1580
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1581 1582 1583 1584
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1585
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1586
	FILE_SCHED_LOAD_BALANCE,
1587
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1588 1589
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1590 1591
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1592 1593
} cpuset_filetype_t;

1594 1595
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1596
{
1597
	struct cpuset *cs = css_cs(css);
1598
	cpuset_filetype_t type = cft->private;
1599
	int retval = -ENODEV;
1600

1601 1602 1603
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1604 1605

	switch (type) {
L
Linus Torvalds 已提交
1606
	case FILE_CPU_EXCLUSIVE:
1607
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1608 1609
		break;
	case FILE_MEM_EXCLUSIVE:
1610
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1611
		break;
1612 1613 1614
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1615
	case FILE_SCHED_LOAD_BALANCE:
1616
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1617
		break;
1618
	case FILE_MEMORY_MIGRATE:
1619
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1620
		break;
1621
	case FILE_MEMORY_PRESSURE_ENABLED:
1622
		cpuset_memory_pressure_enabled = !!val;
1623 1624 1625 1626
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1627
	case FILE_SPREAD_PAGE:
1628
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1629 1630
		break;
	case FILE_SPREAD_SLAB:
1631
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1632
		break;
L
Linus Torvalds 已提交
1633 1634
	default:
		retval = -EINVAL;
1635
		break;
L
Linus Torvalds 已提交
1636
	}
1637 1638
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1639 1640 1641
	return retval;
}

1642 1643
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1644
{
1645
	struct cpuset *cs = css_cs(css);
1646
	cpuset_filetype_t type = cft->private;
1647
	int retval = -ENODEV;
1648

1649 1650 1651
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1652

1653 1654 1655 1656 1657 1658 1659 1660
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1661 1662
out_unlock:
	mutex_unlock(&cpuset_mutex);
1663 1664 1665
	return retval;
}

1666 1667 1668
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1669 1670
static int cpuset_write_resmask(struct cgroup_subsys_state *css,
				struct cftype *cft, const char *buf)
1671
{
1672
	struct cpuset *cs = css_cs(css);
1673
	struct cpuset *trialcs;
1674
	int retval = -ENODEV;
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1689 1690 1691
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1692

1693
	trialcs = alloc_trial_cpuset(cs);
1694 1695
	if (!trialcs) {
		retval = -ENOMEM;
1696
		goto out_unlock;
1697
	}
1698

1699 1700
	switch (cft->private) {
	case FILE_CPULIST:
1701
		retval = update_cpumask(cs, trialcs, buf);
1702 1703
		break;
	case FILE_MEMLIST:
1704
		retval = update_nodemask(cs, trialcs, buf);
1705 1706 1707 1708 1709
		break;
	default:
		retval = -EINVAL;
		break;
	}
1710 1711

	free_trial_cpuset(trialcs);
1712 1713
out_unlock:
	mutex_unlock(&cpuset_mutex);
1714 1715 1716
	return retval;
}

L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1729
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1730
{
1731
	size_t count;
L
Linus Torvalds 已提交
1732

1733
	mutex_lock(&callback_mutex);
1734
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1735
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1736

1737
	return count;
L
Linus Torvalds 已提交
1738 1739
}

1740
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1741
{
1742
	size_t count;
L
Linus Torvalds 已提交
1743

1744
	mutex_lock(&callback_mutex);
1745
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1746
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1747

1748
	return count;
L
Linus Torvalds 已提交
1749 1750
}

1751 1752 1753 1754
static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
				       struct cftype *cft, struct file *file,
				       char __user *buf, size_t nbytes,
				       loff_t *ppos)
L
Linus Torvalds 已提交
1755
{
1756
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1762
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1780
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785
out:
	free_page((unsigned long)page);
	return retval;
}

1786
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1787
{
1788
	struct cpuset *cs = css_cs(css);
1789 1790 1791 1792 1793 1794
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1795 1796
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1812 1813 1814

	/* Unreachable but makes gcc happy */
	return 0;
1815
}
L
Linus Torvalds 已提交
1816

1817
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1818
{
1819
	struct cpuset *cs = css_cs(css);
1820 1821 1822 1823 1824 1825 1826
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1827 1828 1829

	/* Unrechable but makes gcc happy */
	return 0;
1830 1831
}

L
Linus Torvalds 已提交
1832 1833 1834 1835 1836

/*
 * for the common functions, 'private' gives the type of file
 */

1837 1838 1839 1840
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1841 1842
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1843 1844 1845 1846 1847 1848
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1849 1850
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1868 1869 1870 1871 1872 1873 1874
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1875 1876 1877 1878 1879 1880 1881 1882 1883
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1884 1885
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1901
		.mode = S_IRUGO,
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1917

1918 1919 1920 1921 1922 1923 1924
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1925

1926 1927
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1928 1929

/*
1930
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1931
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1932 1933
 */

1934 1935
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1936
{
T
Tejun Heo 已提交
1937
	struct cpuset *cs;
L
Linus Torvalds 已提交
1938

1939
	if (!parent_css)
1940
		return &top_cpuset.css;
1941

T
Tejun Heo 已提交
1942
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1943
	if (!cs)
1944
		return ERR_PTR(-ENOMEM);
1945 1946 1947 1948
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1949

P
Paul Jackson 已提交
1950
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1951
	cpumask_clear(cs->cpus_allowed);
1952
	nodes_clear(cs->mems_allowed);
1953
	fmeter_init(&cs->fmeter);
1954
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1955

T
Tejun Heo 已提交
1956 1957 1958
	return &cs->css;
}

1959
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1960
{
1961
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1962
	struct cpuset *parent = parent_cs(cs);
1963
	struct cpuset *tmp_cs;
1964
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1965 1966 1967 1968

	if (!parent)
		return 0;

1969 1970
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1971
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1972 1973 1974 1975
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1976

1977
	number_of_cpusets++;
1978

1979
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1980
		goto out_unlock;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1995
	rcu_read_lock();
1996
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1997 1998
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1999
			goto out_unlock;
2000
		}
2001
	}
2002
	rcu_read_unlock();
2003 2004 2005 2006 2007

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
2008 2009
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2010 2011 2012
	return 0;
}

2013 2014 2015 2016 2017 2018
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2019
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2020
{
2021
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2022

2023
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2024 2025 2026 2027 2028

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
2029
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2030

2031
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2032 2033
}

2034
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2035
{
2036
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2037

2038
	free_cpumask_var(cs->cpus_allowed);
2039
	kfree(cs);
L
Linus Torvalds 已提交
2040 2041
}

2042 2043
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
2044
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
2045 2046
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
2047
	.css_free = cpuset_css_free,
2048
	.can_attach = cpuset_can_attach,
2049
	.cancel_attach = cpuset_cancel_attach,
2050 2051
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
2052
	.base_cftypes = files,
2053 2054 2055
	.early_init = 1,
};

L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061 2062 2063
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2064
	int err = 0;
L
Linus Torvalds 已提交
2065

2066 2067 2068
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

2069
	cpumask_setall(top_cpuset.cpus_allowed);
2070
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
2071

2072
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2073
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2074
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2075 2076 2077

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2078 2079
		return err;

2080 2081 2082
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2083
	number_of_cpusets = 1;
2084
	return 0;
L
Linus Torvalds 已提交
2085 2086
}

2087
/*
2088
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2089 2090
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2091 2092
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2093
 */
2094 2095 2096 2097 2098 2099 2100 2101
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2102
	parent = parent_cs(cs);
2103
	while (cpumask_empty(parent->cpus_allowed) ||
2104
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2105
		parent = parent_cs(parent);
2106

2107 2108 2109 2110 2111 2112
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2113 2114
}

2115
/**
2116
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2117
 * @cs: cpuset in interest
2118
 *
2119 2120 2121
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2122
 */
2123
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2124
{
2125
	static cpumask_t off_cpus;
2126
	static nodemask_t off_mems;
2127
	bool is_empty;
2128
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2129

2130 2131
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2132

2133
	mutex_lock(&cpuset_mutex);
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2144 2145
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2146

2147 2148 2149 2150 2151 2152
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
2153 2154 2155
	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
	 * call update_tasks_cpumask() if the cpuset becomes empty, as
	 * the tasks in it will be migrated to an ancestor.
2156 2157
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2158
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2159
		update_tasks_cpumask(cs, NULL);
2160

2161 2162 2163 2164 2165 2166
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
2167 2168 2169
	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
	 * call update_tasks_nodemask() if the cpuset becomes empty, as
	 * the tasks in it will be migratd to an ancestor.
2170 2171
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
2172
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2173
		update_tasks_nodemask(cs, NULL);
2174

2175 2176
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2177

2178 2179 2180
	mutex_unlock(&cpuset_mutex);

	/*
2181 2182 2183 2184
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2185 2186
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2187
	if (!sane && is_empty)
2188
		remove_tasks_in_empty_cpuset(cs);
2189 2190
}

2191
/**
2192
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2193
 *
2194 2195 2196 2197 2198
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2199
 *
2200
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2201 2202
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2203
 *
2204 2205
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2206
 */
2207
static void cpuset_hotplug_workfn(struct work_struct *work)
2208
{
2209 2210
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2211
	bool cpus_updated, mems_updated;
2212

2213
	mutex_lock(&cpuset_mutex);
2214

2215 2216 2217
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2218

2219 2220
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2221

2222 2223 2224 2225 2226 2227 2228
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2229

2230 2231 2232 2233 2234
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2235
		update_tasks_nodemask(&top_cpuset, NULL);
2236
	}
2237

2238 2239
	mutex_unlock(&cpuset_mutex);

2240 2241
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2242
		struct cpuset *cs;
2243
		struct cgroup_subsys_state *pos_css;
2244

2245
		rcu_read_lock();
2246
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2247
			if (cs == &top_cpuset || !css_tryget(&cs->css))
2248 2249
				continue;
			rcu_read_unlock();
2250

2251
			cpuset_hotplug_update_tasks(cs);
2252

2253 2254 2255 2256 2257
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2258

2259
	/* rebuild sched domains if cpus_allowed has changed */
2260 2261
	if (cpus_updated)
		rebuild_sched_domains();
2262 2263
}

2264
void cpuset_update_active_cpus(bool cpu_online)
2265
{
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2278 2279
}

2280
/*
2281 2282
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2283
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2284
 */
2285 2286
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2287
{
2288
	schedule_work(&cpuset_hotplug_work);
2289
	return NOTIFY_OK;
2290
}
2291 2292 2293 2294 2295

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2296

L
Linus Torvalds 已提交
2297 2298 2299 2300
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2301
 */
L
Linus Torvalds 已提交
2302 2303
void __init cpuset_init_smp(void)
{
2304
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2305
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2306
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2307

2308
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2314
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2315
 *
2316
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2317
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2318
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2319 2320 2321
 * tasks cpuset.
 **/

2322
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2323
{
2324 2325
	struct cpuset *cpus_cs;

2326
	mutex_lock(&callback_mutex);
2327
	task_lock(tsk);
2328 2329
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2330
	task_unlock(tsk);
2331
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2332 2333
}

2334
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2335
{
2336
	struct cpuset *cpus_cs;
2337 2338

	rcu_read_lock();
2339 2340
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2356 2357 2358
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2359 2360 2361
	 */
}

L
Linus Torvalds 已提交
2362 2363
void cpuset_init_current_mems_allowed(void)
{
2364
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2365 2366
}

2367 2368 2369 2370 2371 2372
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2373
 * subset of node_states[N_MEMORY], even if this means going outside the
2374 2375 2376 2377 2378
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2379
	struct cpuset *mems_cs;
2380 2381
	nodemask_t mask;

2382
	mutex_lock(&callback_mutex);
2383
	task_lock(tsk);
2384 2385
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2386
	task_unlock(tsk);
2387
	mutex_unlock(&callback_mutex);
2388 2389 2390 2391

	return mask;
}

2392
/**
2393 2394
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2395
 *
2396
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2397
 */
2398
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2399
{
2400
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2401 2402
}

2403
/*
2404 2405 2406 2407
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2408
 */
2409
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2410
{
T
Tejun Heo 已提交
2411 2412
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2413 2414 2415
	return cs;
}

2416
/**
2417 2418
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2419
 * @gfp_mask: memory allocation flags
2420
 *
2421 2422 2423 2424 2425 2426
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2427 2428
 * Otherwise, no.
 *
2429 2430 2431
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2432
 *
2433 2434
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2435 2436 2437 2438 2439 2440 2441
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2442
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2443 2444
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2445
 * GFP_KERNEL allocations are not so marked, so can escape to the
2446
 * nearest enclosing hardwalled ancestor cpuset.
2447
 *
2448 2449 2450 2451 2452 2453 2454
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2455
 *
2456
 * The first call here from mm/page_alloc:get_page_from_freelist()
2457 2458 2459
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2460 2461 2462 2463 2464 2465
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2466 2467
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2468
 *	TIF_MEMDIE   - any node ok
2469
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2470
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2471 2472
 *
 * Rule:
2473
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2474 2475
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2476
 */
2477
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2478
{
2479
	struct cpuset *cs;		/* current cpuset ancestors */
2480
	int allowed;			/* is allocation in zone z allowed? */
2481

2482
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2483
		return 1;
2484
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2485 2486
	if (node_isset(node, current->mems_allowed))
		return 1;
2487 2488 2489 2490 2491 2492
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2493 2494 2495
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2496 2497 2498
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2499
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2500
	mutex_lock(&callback_mutex);
2501 2502

	task_lock(current);
2503
	cs = nearest_hardwall_ancestor(task_cs(current));
2504 2505
	task_unlock(current);

2506
	allowed = node_isset(node, cs->mems_allowed);
2507
	mutex_unlock(&callback_mutex);
2508
	return allowed;
L
Linus Torvalds 已提交
2509 2510
}

2511
/*
2512 2513
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2514 2515
 * @gfp_mask: memory allocation flags
 *
2516 2517 2518 2519 2520
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2521 2522 2523 2524 2525 2526 2527
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2528 2529
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2530 2531 2532 2533
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2534
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2535 2536 2537 2538 2539
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2540 2541 2542 2543 2544 2545
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2546 2547 2548
	return 0;
}

2549
/**
2550 2551
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2576
static int cpuset_spread_node(int *rotor)
2577 2578 2579
{
	int node;

2580
	node = next_node(*rotor, current->mems_allowed);
2581 2582
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2583
	*rotor = node;
2584 2585
	return node;
}
2586 2587 2588

int cpuset_mem_spread_node(void)
{
2589 2590 2591 2592
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2593 2594 2595 2596 2597
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2598 2599 2600 2601
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2602 2603 2604
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2605 2606
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2607
/**
2608 2609 2610 2611 2612 2613 2614 2615
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2616 2617
 **/

2618 2619
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2620
{
2621
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2622 2623
}

2624 2625
#define CPUSET_NODELIST_LEN	(256)

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2636 2637 2638
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2639

2640
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2641

2642
	rcu_read_lock();
2643
	spin_lock(&cpuset_buffer_lock);
2644

2645 2646 2647
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2648 2649
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2650
	spin_unlock(&cpuset_buffer_lock);
2651
	rcu_read_unlock();
2652 2653
}

2654 2655 2656 2657 2658 2659
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2660
int cpuset_memory_pressure_enabled __read_mostly;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2683
	fmeter_markevent(&task_cs(current)->fmeter);
2684 2685 2686
	task_unlock(current);
}

2687
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2688 2689 2690 2691
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2692 2693
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2694
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2695
 *    anyway.
L
Linus Torvalds 已提交
2696
 */
2697
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2698
{
2699
	struct pid *pid;
L
Linus Torvalds 已提交
2700 2701
	struct task_struct *tsk;
	char *buf;
2702
	struct cgroup_subsys_state *css;
2703
	int retval;
L
Linus Torvalds 已提交
2704

2705
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2706 2707
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2708 2709 2710
		goto out;

	retval = -ESRCH;
2711 2712
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2713 2714
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2715

L
Li Zefan 已提交
2716
	rcu_read_lock();
2717
	css = task_css(tsk, cpuset_subsys_id);
2718
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2719
	rcu_read_unlock();
L
Linus Torvalds 已提交
2720
	if (retval < 0)
L
Li Zefan 已提交
2721
		goto out_put_task;
L
Linus Torvalds 已提交
2722 2723
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2724
out_put_task:
2725 2726
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2727
	kfree(buf);
2728
out:
L
Linus Torvalds 已提交
2729 2730
	return retval;
}
2731
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2732

2733
/* Display task mems_allowed in /proc/<pid>/status file. */
2734 2735 2736
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2737
	seq_nodemask(m, &task->mems_allowed);
2738
	seq_printf(m, "\n");
2739
	seq_printf(m, "Mems_allowed_list:\t");
2740
	seq_nodemask_list(m, &task->mems_allowed);
2741
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2742
}