hrtimer.c 43.2 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50 51 52

#include <asm/uaccess.h>

/*
 * The timer bases:
53 54 55 56 57 58
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
59
 */
60
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
61
{
62 63

	.clock_base =
64
	{
65 66 67
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
68
			.resolution = KTIME_LOW_RES,
69 70 71 72
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
73
			.resolution = KTIME_LOW_RES,
74 75
		},
	}
76 77
};

78 79 80 81
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
82
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
83 84
{
	ktime_t xtim, tomono;
85
	struct timespec xts, tom;
86 87 88 89
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
90
		xts = current_kernel_time();
91
		tom = wall_to_monotonic;
92 93
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
94
	xtim = timespec_to_ktime(xts);
95
	tomono = timespec_to_ktime(tom);
96 97 98
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
119 120 121
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
122
{
123
	struct hrtimer_clock_base *base;
124 125 126 127

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
128
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
129 130 131
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
132
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
133 134 135 136 137 138 139 140
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
141
static inline struct hrtimer_clock_base *
142 143
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
144
{
145 146
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
147 148 149 150 151 152 153 154 155 156
	int cpu, preferred_cpu = -1;

	cpu = smp_processor_id();
#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
		preferred_cpu = get_nohz_load_balancer();
		if (preferred_cpu >= 0)
			cpu = preferred_cpu;
	}
#endif
157

158 159
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
160
	new_base = &new_cpu_base->clock_base[base->index];
161 162 163 164 165 166 167 168 169 170 171

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
172
		if (unlikely(hrtimer_callback_running(timer)))
173 174 175 176
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
177 178
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

		/* Optimized away for NOHZ=n SMP=n */
		if (cpu == preferred_cpu) {
			/* Calculate clock monotonic expiry time */
#ifdef CONFIG_HIGH_RES_TIMERS
			ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
							new_base->offset);
#else
			ktime_t expires = hrtimer_get_expires(timer);
#endif

			/*
			 * Get the next event on target cpu from the
			 * clock events layer.
			 * This covers the highres=off nohz=on case as well.
			 */
			ktime_t next = clockevents_get_next_event(cpu);

			ktime_t delta = ktime_sub(expires, next);

			/*
			 * We do not migrate the timer when it is expiring
			 * before the next event on the target cpu because
			 * we cannot reprogram the target cpu hardware and
			 * we would cause it to fire late.
			 */
			if (delta.tv64 < 0) {
				cpu = smp_processor_id();
				spin_unlock(&new_base->cpu_base->lock);
				spin_lock(&base->cpu_base->lock);
				timer->base = base;
				goto again;
			}
		}
213 214 215 216 217 218 219
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

220
static inline struct hrtimer_clock_base *
221 222
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
223
	struct hrtimer_clock_base *base = timer->base;
224

225
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
226 227 228 229

	return base;
}

230
# define switch_hrtimer_base(t, b, p)	(b)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
261 262

EXPORT_SYMBOL_GPL(ktime_add_ns);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
287 288 289 290 291
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
292
u64 ktime_divns(const ktime_t kt, s64 div)
293
{
294
	u64 dclc;
295 296
	int sft = 0;

297
	dclc = ktime_to_ns(kt);
298 299 300 301 302 303 304 305
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
306
	return dclc;
307 308 309
}
#endif /* BITS_PER_LONG >= 64 */

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

327 328
EXPORT_SYMBOL_GPL(ktime_add_safe);

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
497
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
498 499 500 501 502 503 504
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
526
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 528
	int res;

529
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
530

531 532 533
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
534
	 * the callback is executed in the hrtimer_interrupt context. The
535 536 537 538 539 540
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

541 542 543 544 545 546 547 548 549
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
609
	on_each_cpu(retrigger_next_event, NULL, 1);
610 611
}

612 613 614 615 616 617
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
618 619 620
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

621 622 623
	retrigger_next_event(NULL);
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

640

641 642 643 644 645 646 647
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
648 649
					    struct hrtimer_clock_base *base,
					    int wakeup)
650 651
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
652 653 654 655 656 657 658
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

659
		return 1;
660
	}
661

662 663 664 665 666 667
	return 0;
}

/*
 * Switch to high resolution mode
 */
668
static int hrtimer_switch_to_hres(void)
669
{
I
Ingo Molnar 已提交
670 671
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
672 673 674
	unsigned long flags;

	if (base->hres_active)
675
		return 1;
676 677 678 679 680

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
681 682
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
683
		return 0;
684 685 686 687 688 689 690 691 692 693
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
694
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
695
	       smp_processor_id());
696
	return 1;
697 698 699 700 701 702
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
703
static inline int hrtimer_switch_to_hres(void) { return 0; }
704 705
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
706 707
					    struct hrtimer_clock_base *base,
					    int wakeup)
708 709 710 711 712 713 714 715
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

716 717 718 719 720 721 722 723 724 725 726 727
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

728
/*
729
 * Counterpart to lock_hrtimer_base above:
730 731 732 733
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
734
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
735 736 737 738 739
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
740
 * @now:	forward past this time
741 742 743
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
744
 * Returns the number of overruns.
745
 */
D
Davide Libenzi 已提交
746
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
747
{
D
Davide Libenzi 已提交
748
	u64 orun = 1;
749
	ktime_t delta;
750

751
	delta = ktime_sub(now, hrtimer_get_expires(timer));
752 753 754 755

	if (delta.tv64 < 0)
		return 0;

756 757 758
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

759
	if (unlikely(delta.tv64 >= interval.tv64)) {
760
		s64 incr = ktime_to_ns(interval);
761 762

		orun = ktime_divns(delta, incr);
763 764
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
765 766 767 768 769 770 771
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
772
	hrtimer_add_expires(timer, interval);
773 774 775

	return orun;
}
S
Stas Sergeev 已提交
776
EXPORT_SYMBOL_GPL(hrtimer_forward);
777 778 779 780 781 782

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
783 784
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
785
 */
786 787
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
788 789 790 791
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
792
	int leftmost = 1;
793

794 795
	debug_hrtimer_activate(timer);

796 797 798 799 800 801 802 803 804 805
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
806 807
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
808
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
809
		} else {
810
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
811 812
			leftmost = 0;
		}
813 814 815
	}

	/*
816 817
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
818
	 */
819
	if (leftmost)
820 821
		base->first = &timer->node;

822 823
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
824 825 826 827 828
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
829 830

	return leftmost;
831
}
832 833 834 835 836

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
837 838 839 840 841
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
842
 */
843
static void __remove_hrtimer(struct hrtimer *timer,
844
			     struct hrtimer_clock_base *base,
845
			     unsigned long newstate, int reprogram)
846
{
847
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
848 849 850 851 852 853 854 855 856 857 858 859
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
860
	timer->state = newstate;
861 862 863 864 865 866
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
867
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
868
{
869
	if (hrtimer_is_queued(timer)) {
870 871 872 873 874 875 876 877 878 879
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
880
		debug_hrtimer_deactivate(timer);
881
		timer_stats_hrtimer_clear_start_info(timer);
882 883 884
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
885 886 887 888 889
		return 1;
	}
	return 0;
}

890 891 892
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
893
{
894
	struct hrtimer_clock_base *base, *new_base;
895
	unsigned long flags;
896
	int ret, leftmost;
897 898 899 900 901 902 903

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
904
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
905

906
	if (mode & HRTIMER_MODE_REL) {
907
		tim = ktime_add_safe(tim, new_base->get_time());
908 909 910 911 912 913 914 915
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
916
		tim = ktime_add_safe(tim, base->resolution);
917 918
#endif
	}
919

920
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
921

922 923
	timer_stats_hrtimer_set_start_info(timer);

924 925
	leftmost = enqueue_hrtimer(timer, new_base);

926 927 928
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
929 930
	 *
	 * XXX send_remote_softirq() ?
931
	 */
932
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
933
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
934 935 936 937 938

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
956 957 958
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
959
 * hrtimer_start - (re)start an hrtimer on the current CPU
960 961 962 963 964 965 966 967 968 969 970
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
971
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
972
}
973
EXPORT_SYMBOL_GPL(hrtimer_start);
974

975

976 977 978 979 980 981 982 983
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
984
 *    cannot be stopped
985 986 987
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
988
	struct hrtimer_clock_base *base;
989 990 991 992 993
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

994
	if (!hrtimer_callback_running(timer))
995 996 997 998 999 1000 1001
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1002
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1019
		cpu_relax();
1020 1021
	}
}
1022
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1023 1024 1025 1026 1027 1028 1029

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1030
	struct hrtimer_clock_base *base;
1031 1032 1033 1034
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1035
	rem = hrtimer_expires_remaining(timer);
1036 1037 1038 1039
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1040
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1041

1042
#ifdef CONFIG_NO_HZ
1043 1044 1045 1046 1047 1048 1049 1050
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1051 1052
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1053 1054 1055 1056
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1057 1058
	spin_lock_irqsave(&cpu_base->lock, flags);

1059 1060 1061
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1062

1063 1064
			if (!base->first)
				continue;
1065

1066
			timer = rb_entry(base->first, struct hrtimer, node);
1067
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1068 1069 1070 1071
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1072
	}
1073 1074 1075

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1076 1077 1078 1079 1080 1081
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1082 1083
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1084
{
1085
	struct hrtimer_cpu_base *cpu_base;
1086

1087 1088
	memset(timer, 0, sizeof(struct hrtimer));

1089
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1090

1091
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1092 1093
		clock_id = CLOCK_MONOTONIC;

1094
	timer->base = &cpu_base->clock_base[clock_id];
1095
	hrtimer_init_timer_hres(timer);
1096 1097 1098 1099 1100 1101

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1102
}
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1116
EXPORT_SYMBOL_GPL(hrtimer_init);
1117 1118 1119 1120 1121 1122

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1123 1124
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1125 1126 1127
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1128
	struct hrtimer_cpu_base *cpu_base;
1129

1130 1131
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1132 1133 1134

	return 0;
}
1135
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1136

1137 1138 1139 1140 1141 1142 1143
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1144 1145
	WARN_ON(!irqs_disabled());

1146
	debug_hrtimer_deactivate(timer);
1147 1148 1149
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1150 1151 1152 1153 1154 1155 1156 1157 1158

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1159 1160

	/*
T
Thomas Gleixner 已提交
1161 1162 1163
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1164 1165 1166
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1167
		enqueue_hrtimer(timer, base);
1168 1169 1170 1171
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1172 1173
#ifdef CONFIG_HIGH_RES_TIMERS

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1206
	int nr_retries = 0;
1207
	int i;
1208 1209 1210 1211 1212 1213

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1214 1215 1216 1217
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1251 1252
				ktime_t expires;

1253
				expires = ktime_sub(hrtimer_get_expires(timer),
1254 1255 1256 1257 1258 1259
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1260
			__run_hrtimer(timer);
1261 1262 1263 1264 1265 1266 1267 1268 1269
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1270
		if (tick_program_event(expires_next, force_clock_reprogram))
1271 1272 1273 1274
			goto retry;
	}
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1302
	unsigned long flags;
1303

1304
	local_irq_save(flags);
1305
	__hrtimer_peek_ahead_timers();
1306 1307 1308
	local_irq_restore(flags);
}

1309 1310 1311 1312 1313
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1314 1315 1316 1317 1318
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1342 1343
}

1344
/*
1345
 * Called from hardirq context every jiffy
1346
 */
1347
void hrtimer_run_queues(void)
1348
{
1349
	struct rb_node *node;
1350 1351 1352
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1353

1354
	if (hrtimer_hres_active())
1355 1356
		return;

1357 1358
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1359

1360
		if (!base->first)
1361
			continue;
1362

1363
		if (gettime) {
1364 1365
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1366
		}
1367

1368
		spin_lock(&cpu_base->lock);
1369

1370 1371
		while ((node = base->first)) {
			struct hrtimer *timer;
1372

1373
			timer = rb_entry(node, struct hrtimer, node);
1374 1375
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1376 1377 1378 1379 1380 1381
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1382 1383
}

1384 1385 1386
/*
 * Sleep related functions:
 */
1387
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1400
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1401 1402 1403 1404 1405
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1406
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1407
{
1408
	hrtimer_init_sleeper(t, current);
1409

1410 1411
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1412
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1413 1414
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1415

1416 1417
		if (likely(t->task))
			schedule();
1418

1419
		hrtimer_cancel(&t->timer);
1420
		mode = HRTIMER_MODE_ABS;
1421 1422

	} while (t->task && !signal_pending(current));
1423

1424 1425
	__set_current_state(TASK_RUNNING);

1426
	return t->task == NULL;
1427 1428
}

1429 1430 1431 1432 1433
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1434
	rem = hrtimer_expires_remaining(timer);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1445
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1446
{
1447
	struct hrtimer_sleeper t;
1448
	struct timespec __user  *rmtp;
1449
	int ret = 0;
1450

1451 1452
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1453
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1454

1455
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1456
		goto out;
1457

1458
	rmtp = restart->nanosleep.rmtp;
1459
	if (rmtp) {
1460
		ret = update_rmtp(&t.timer, rmtp);
1461
		if (ret <= 0)
1462
			goto out;
1463
	}
1464 1465

	/* The other values in restart are already filled in */
1466 1467 1468 1469
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1470 1471
}

1472
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1473 1474 1475
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1476
	struct hrtimer_sleeper t;
1477
	int ret = 0;
1478 1479 1480 1481 1482
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1483

1484
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1485
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1486
	if (do_nanosleep(&t, mode))
1487
		goto out;
1488

1489
	/* Absolute timers do not update the rmtp value and restart: */
1490 1491 1492 1493
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1494

1495
	if (rmtp) {
1496
		ret = update_rmtp(&t.timer, rmtp);
1497
		if (ret <= 0)
1498
			goto out;
1499
	}
1500 1501

	restart = &current_thread_info()->restart_block;
1502
	restart->fn = hrtimer_nanosleep_restart;
1503 1504
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1505
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1506

1507 1508 1509 1510
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1511 1512
}

1513 1514
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1515
{
1516
	struct timespec tu;
1517 1518 1519 1520 1521 1522 1523

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1524
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1525 1526
}

1527 1528 1529
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1530
static void __cpuinit init_hrtimers_cpu(int cpu)
1531
{
1532
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1533 1534
	int i;

1535 1536 1537 1538 1539
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1540
	hrtimer_init_hres(cpu_base);
1541 1542 1543 1544
}

#ifdef CONFIG_HOTPLUG_CPU

1545
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1546
				struct hrtimer_clock_base *new_base)
1547 1548 1549 1550 1551 1552
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1553
		BUG_ON(hrtimer_callback_running(timer));
1554
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1555 1556 1557 1558 1559 1560 1561

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1562
		timer->base = new_base;
1563
		/*
T
Thomas Gleixner 已提交
1564 1565 1566 1567 1568 1569
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1570
		 */
1571
		enqueue_hrtimer(timer, new_base);
1572

T
Thomas Gleixner 已提交
1573 1574
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1575 1576 1577
	}
}

1578
static void migrate_hrtimers(int scpu)
1579
{
1580
	struct hrtimer_cpu_base *old_base, *new_base;
1581
	int i;
1582

1583 1584
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1585 1586 1587 1588

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1589 1590 1591 1592
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1593
	spin_lock(&new_base->lock);
1594
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1595

1596
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1597
		migrate_hrtimer_list(&old_base->clock_base[i],
1598
				     &new_base->clock_base[i]);
1599 1600
	}

1601
	spin_unlock(&old_base->lock);
1602
	spin_unlock(&new_base->lock);
1603

1604 1605 1606
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1607
}
1608

1609 1610
#endif /* CONFIG_HOTPLUG_CPU */

1611
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1612 1613
					unsigned long action, void *hcpu)
{
1614
	int scpu = (long)hcpu;
1615 1616 1617 1618

	switch (action) {

	case CPU_UP_PREPARE:
1619
	case CPU_UP_PREPARE_FROZEN:
1620
		init_hrtimers_cpu(scpu);
1621 1622 1623
		break;

#ifdef CONFIG_HOTPLUG_CPU
1624 1625 1626 1627
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1628
	case CPU_DEAD:
1629
	case CPU_DEAD_FROZEN:
1630
	{
1631
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1632
		migrate_hrtimers(scpu);
1633
		break;
1634
	}
1635 1636 1637 1638 1639 1640 1641 1642 1643
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1644
static struct notifier_block __cpuinitdata hrtimers_nb = {
1645 1646 1647 1648 1649 1650 1651 1652
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1653 1654 1655
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1656 1657
}

1658
/**
1659
 * schedule_hrtimeout_range - sleep until timeout
1660
 * @expires:	timeout value (ktime_t)
1661
 * @delta:	slack in expires timeout (ktime_t)
1662 1663 1664 1665 1666 1667
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1668 1669 1670 1671 1672
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1686
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1710
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1711 1712 1713

	hrtimer_init_sleeper(&t, current);

1714
	hrtimer_start_expires(&t.timer, mode);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1757
EXPORT_SYMBOL_GPL(schedule_hrtimeout);