core.c 173.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
T
Thomas Gleixner 已提交
40

41 42
#include "internal.h"

43 44
#include <asm/irq_regs.h>

45
struct remote_function_call {
46 47 48 49
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
83 84 85 86
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
107 108 109 110
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
111 112 113 114 115 116 117
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
118 119 120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

122 123 124 125 126 127 128
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

129 130 131 132 133 134
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
135 136 137 138
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
139
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
140
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
142

143 144 145
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
146

P
Peter Zijlstra 已提交
147 148 149 150
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

151
/*
152
 * perf event paranoia level:
153 154
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
155
 *   1 - disallow cpu events for unpriv
156
 *   2 - disallow kernel profiling for unpriv
157
 */
158
int sysctl_perf_event_paranoid __read_mostly = 1;
159

160 161
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 163

/*
164
 * max perf event sample rate
165
 */
P
Peter Zijlstra 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
184

185
static atomic64_t perf_event_id;
186

187 188 189 190
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
191 192 193 194 195
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
196

197 198 199
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

200
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
201

202
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
203
{
204
	return "pmu";
T
Thomas Gleixner 已提交
205 206
}

207 208 209 210 211
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
212 213 214 215 216 217
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
234 235
#ifdef CONFIG_CGROUP_PERF

236 237 238 239 240
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

257
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
258
{
259
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
308 309
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
310
	/*
311 312
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
313
	 */
314
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
315 316
		return;

317 318 319 320 321 322
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
323 324 325
}

static inline void
326 327
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
328 329 330 331
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

332 333 334 335 336 337
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
338 339 340 341
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
342
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 376
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
386 387
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
388 389 390 391 392 393 394 395 396 397 398

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
399
				WARN_ON_ONCE(cpuctx->cgrp);
400 401 402 403
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
404 405 406 407
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
408 409
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
410 411 412 413 414 415 416 417
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

418 419
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
420
{
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
443 444
}

445 446
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
447
{
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
466 467 468 469 470 471 472 473
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
474 475
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
476

477
	if (!f.file)
S
Stephane Eranian 已提交
478 479
		return -EBADF;

480
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
481 482 483 484
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
485 486 487 488

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

489
	/* must be done before we fput() the file */
490 491 492 493 494
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
495

S
Stephane Eranian 已提交
496 497 498 499 500 501 502 503 504
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
505
out:
506
	fdput(f);
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

580 581
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
582 583 584
{
}

585 586
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594 595 596 597
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
598 599
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
630
void perf_pmu_disable(struct pmu *pmu)
631
{
P
Peter Zijlstra 已提交
632 633 634
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
635 636
}

P
Peter Zijlstra 已提交
637
void perf_pmu_enable(struct pmu *pmu)
638
{
P
Peter Zijlstra 已提交
639 640 641
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
642 643
}

644 645 646 647 648 649 650
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
651
static void perf_pmu_rotate_start(struct pmu *pmu)
652
{
P
Peter Zijlstra 已提交
653
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
654
	struct list_head *head = &__get_cpu_var(rotation_list);
655

656
	WARN_ON(!irqs_disabled());
657

658 659
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
660 661
}

662
static void get_ctx(struct perf_event_context *ctx)
663
{
664
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
665 666
}

667
static void put_ctx(struct perf_event_context *ctx)
668
{
669 670 671
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
672 673
		if (ctx->task)
			put_task_struct(ctx->task);
674
		kfree_rcu(ctx, rcu_head);
675
	}
676 677
}

678
static void unclone_ctx(struct perf_event_context *ctx)
679 680 681 682 683 684 685
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

708
/*
709
 * If we inherit events we want to return the parent event id
710 711
 * to userspace.
 */
712
static u64 primary_event_id(struct perf_event *event)
713
{
714
	u64 id = event->id;
715

716 717
	if (event->parent)
		id = event->parent->id;
718 719 720 721

	return id;
}

722
/*
723
 * Get the perf_event_context for a task and lock it.
724 725 726
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
727
static struct perf_event_context *
P
Peter Zijlstra 已提交
728
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
729
{
730
	struct perf_event_context *ctx;
731 732

	rcu_read_lock();
P
Peter Zijlstra 已提交
733
retry:
P
Peter Zijlstra 已提交
734
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
735 736 737 738
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
739
		 * perf_event_task_sched_out, though the
740 741 742 743 744 745
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
746
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
747
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
748
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
749 750
			goto retry;
		}
751 752

		if (!atomic_inc_not_zero(&ctx->refcount)) {
753
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 755
			ctx = NULL;
		}
756 757 758 759 760 761 762 763 764 765
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
766 767
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
768
{
769
	struct perf_event_context *ctx;
770 771
	unsigned long flags;

P
Peter Zijlstra 已提交
772
	ctx = perf_lock_task_context(task, ctxn, &flags);
773 774
	if (ctx) {
		++ctx->pin_count;
775
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
776 777 778 779
	}
	return ctx;
}

780
static void perf_unpin_context(struct perf_event_context *ctx)
781 782 783
{
	unsigned long flags;

784
	raw_spin_lock_irqsave(&ctx->lock, flags);
785
	--ctx->pin_count;
786
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
787 788
}

789 790 791 792 793 794 795 796 797 798 799
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

800 801 802
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
803 804 805 806

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

807 808 809
	return ctx ? ctx->time : 0;
}

810 811
/*
 * Update the total_time_enabled and total_time_running fields for a event.
812
 * The caller of this function needs to hold the ctx->lock.
813 814 815 816 817 818 819 820 821
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
822 823 824 825 826 827 828 829 830 831 832
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
833
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
834 835
	else if (ctx->is_active)
		run_end = ctx->time;
836 837 838 839
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
840 841 842 843

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
844
		run_end = perf_event_time(event);
845 846

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
847

848 849
}

850 851 852 853 854 855 856 857 858 859 860 861
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

862 863 864 865 866 867 868 869 870
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

871
/*
872
 * Add a event from the lists for its context.
873 874
 * Must be called with ctx->mutex and ctx->lock held.
 */
875
static void
876
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
877
{
878 879
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
880 881

	/*
882 883 884
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
885
	 */
886
	if (event->group_leader == event) {
887 888
		struct list_head *list;

889 890 891
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

892 893
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
894
	}
P
Peter Zijlstra 已提交
895

896
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
897 898
		ctx->nr_cgroups++;

899 900 901
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

902
	list_add_rcu(&event->event_entry, &ctx->event_list);
903
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
904
		perf_pmu_rotate_start(ctx->pmu);
905 906
	ctx->nr_events++;
	if (event->attr.inherit_stat)
907
		ctx->nr_stat++;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

982
	event->id_header_size = size;
983 984
}

985 986
static void perf_group_attach(struct perf_event *event)
{
987
	struct perf_event *group_leader = event->group_leader, *pos;
988

P
Peter Zijlstra 已提交
989 990 991 992 993 994
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

995 996 997 998 999 1000 1001 1002 1003 1004 1005
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1006 1007 1008 1009 1010

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1011 1012
}

1013
/*
1014
 * Remove a event from the lists for its context.
1015
 * Must be called with ctx->mutex and ctx->lock held.
1016
 */
1017
static void
1018
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1019
{
1020
	struct perf_cpu_context *cpuctx;
1021 1022 1023 1024
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1025
		return;
1026 1027 1028

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1029
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1030
		ctx->nr_cgroups--;
1031 1032 1033 1034 1035 1036 1037 1038 1039
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1040

1041 1042 1043
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1044 1045
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1046
		ctx->nr_stat--;
1047

1048
	list_del_rcu(&event->event_entry);
1049

1050 1051
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1052

1053
	update_group_times(event);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1064 1065
}

1066
static void perf_group_detach(struct perf_event *event)
1067 1068
{
	struct perf_event *sibling, *tmp;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1085
		goto out;
1086 1087 1088 1089
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1090

1091
	/*
1092 1093
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1094
	 * to whatever list we are on.
1095
	 */
1096
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1097 1098
		if (list)
			list_move_tail(&sibling->group_entry, list);
1099
		sibling->group_leader = sibling;
1100 1101 1102

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1103
	}
1104 1105 1106 1107 1108 1109

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1110 1111
}

1112 1113 1114
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1115 1116
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1117 1118
}

1119 1120
static void
event_sched_out(struct perf_event *event,
1121
		  struct perf_cpu_context *cpuctx,
1122
		  struct perf_event_context *ctx)
1123
{
1124
	u64 tstamp = perf_event_time(event);
1125 1126 1127 1128 1129 1130 1131 1132 1133
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1134
		delta = tstamp - event->tstamp_stopped;
1135
		event->tstamp_running += delta;
1136
		event->tstamp_stopped = tstamp;
1137 1138
	}

1139
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1140
		return;
1141

1142 1143 1144 1145
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1146
	}
1147
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1148
	event->pmu->del(event, 0);
1149
	event->oncpu = -1;
1150

1151
	if (!is_software_event(event))
1152 1153
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1154 1155
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1156
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1157 1158 1159
		cpuctx->exclusive = 0;
}

1160
static void
1161
group_sched_out(struct perf_event *group_event,
1162
		struct perf_cpu_context *cpuctx,
1163
		struct perf_event_context *ctx)
1164
{
1165
	struct perf_event *event;
1166
	int state = group_event->state;
1167

1168
	event_sched_out(group_event, cpuctx, ctx);
1169 1170 1171 1172

	/*
	 * Schedule out siblings (if any):
	 */
1173 1174
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1175

1176
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1177 1178 1179
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1180
/*
1181
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1182
 *
1183
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1184 1185
 * remove it from the context list.
 */
1186
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1187
{
1188 1189
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1190
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1191

1192
	raw_spin_lock(&ctx->lock);
1193 1194
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1195 1196 1197 1198
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1199
	raw_spin_unlock(&ctx->lock);
1200 1201

	return 0;
T
Thomas Gleixner 已提交
1202 1203 1204 1205
}


/*
1206
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1207
 *
1208
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1209
 * call when the task is on a CPU.
1210
 *
1211 1212
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1213 1214
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1215
 * When called from perf_event_exit_task, it's OK because the
1216
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1217
 */
1218
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1219
{
1220
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1221 1222
	struct task_struct *task = ctx->task;

1223 1224
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1225 1226
	if (!task) {
		/*
1227
		 * Per cpu events are removed via an smp call and
1228
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1229
		 */
1230
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1231 1232 1233 1234
		return;
	}

retry:
1235 1236
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1237

1238
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1239
	/*
1240 1241
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1242
	 */
1243
	if (ctx->is_active) {
1244
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1245 1246 1247 1248
		goto retry;
	}

	/*
1249 1250
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1251
	 */
1252
	list_del_event(event, ctx);
1253
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1254 1255
}

1256
/*
1257
 * Cross CPU call to disable a performance event
1258
 */
1259
int __perf_event_disable(void *info)
1260
{
1261 1262
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1263
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1264 1265

	/*
1266 1267
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1268 1269 1270
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1271
	 */
1272
	if (ctx->task && cpuctx->task_ctx != ctx)
1273
		return -EINVAL;
1274

1275
	raw_spin_lock(&ctx->lock);
1276 1277

	/*
1278
	 * If the event is on, turn it off.
1279 1280
	 * If it is in error state, leave it in error state.
	 */
1281
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1282
		update_context_time(ctx);
S
Stephane Eranian 已提交
1283
		update_cgrp_time_from_event(event);
1284 1285 1286
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1287
		else
1288 1289
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1290 1291
	}

1292
	raw_spin_unlock(&ctx->lock);
1293 1294

	return 0;
1295 1296 1297
}

/*
1298
 * Disable a event.
1299
 *
1300 1301
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1302
 * remains valid.  This condition is satisifed when called through
1303 1304 1305 1306
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1307
 * is the current context on this CPU and preemption is disabled,
1308
 * hence we can't get into perf_event_task_sched_out for this context.
1309
 */
1310
void perf_event_disable(struct perf_event *event)
1311
{
1312
	struct perf_event_context *ctx = event->ctx;
1313 1314 1315 1316
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1317
		 * Disable the event on the cpu that it's on
1318
		 */
1319
		cpu_function_call(event->cpu, __perf_event_disable, event);
1320 1321 1322
		return;
	}

P
Peter Zijlstra 已提交
1323
retry:
1324 1325
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1326

1327
	raw_spin_lock_irq(&ctx->lock);
1328
	/*
1329
	 * If the event is still active, we need to retry the cross-call.
1330
	 */
1331
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1332
		raw_spin_unlock_irq(&ctx->lock);
1333 1334 1335 1336 1337
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1338 1339 1340 1341 1342 1343 1344
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1345 1346 1347
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1348
	}
1349
	raw_spin_unlock_irq(&ctx->lock);
1350
}
1351
EXPORT_SYMBOL_GPL(perf_event_disable);
1352

S
Stephane Eranian 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1388 1389 1390 1391
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1392
static int
1393
event_sched_in(struct perf_event *event,
1394
		 struct perf_cpu_context *cpuctx,
1395
		 struct perf_event_context *ctx)
1396
{
1397 1398
	u64 tstamp = perf_event_time(event);

1399
	if (event->state <= PERF_EVENT_STATE_OFF)
1400 1401
		return 0;

1402
	event->state = PERF_EVENT_STATE_ACTIVE;
1403
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1415 1416 1417 1418 1419
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1420
	if (event->pmu->add(event, PERF_EF_START)) {
1421 1422
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1423 1424 1425
		return -EAGAIN;
	}

1426
	event->tstamp_running += tstamp - event->tstamp_stopped;
1427

S
Stephane Eranian 已提交
1428
	perf_set_shadow_time(event, ctx, tstamp);
1429

1430
	if (!is_software_event(event))
1431
		cpuctx->active_oncpu++;
1432
	ctx->nr_active++;
1433 1434
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1435

1436
	if (event->attr.exclusive)
1437 1438
		cpuctx->exclusive = 1;

1439 1440 1441
	return 0;
}

1442
static int
1443
group_sched_in(struct perf_event *group_event,
1444
	       struct perf_cpu_context *cpuctx,
1445
	       struct perf_event_context *ctx)
1446
{
1447
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1448
	struct pmu *pmu = group_event->pmu;
1449 1450
	u64 now = ctx->time;
	bool simulate = false;
1451

1452
	if (group_event->state == PERF_EVENT_STATE_OFF)
1453 1454
		return 0;

P
Peter Zijlstra 已提交
1455
	pmu->start_txn(pmu);
1456

1457
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1458
		pmu->cancel_txn(pmu);
1459
		return -EAGAIN;
1460
	}
1461 1462 1463 1464

	/*
	 * Schedule in siblings as one group (if any):
	 */
1465
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1466
		if (event_sched_in(event, cpuctx, ctx)) {
1467
			partial_group = event;
1468 1469 1470 1471
			goto group_error;
		}
	}

1472
	if (!pmu->commit_txn(pmu))
1473
		return 0;
1474

1475 1476 1477 1478
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1489
	 */
1490 1491
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1492 1493 1494 1495 1496 1497 1498 1499
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1500
	}
1501
	event_sched_out(group_event, cpuctx, ctx);
1502

P
Peter Zijlstra 已提交
1503
	pmu->cancel_txn(pmu);
1504

1505 1506 1507
	return -EAGAIN;
}

1508
/*
1509
 * Work out whether we can put this event group on the CPU now.
1510
 */
1511
static int group_can_go_on(struct perf_event *event,
1512 1513 1514 1515
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1516
	 * Groups consisting entirely of software events can always go on.
1517
	 */
1518
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1519 1520 1521
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1522
	 * events can go on.
1523 1524 1525 1526 1527
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1528
	 * events on the CPU, it can't go on.
1529
	 */
1530
	if (event->attr.exclusive && cpuctx->active_oncpu)
1531 1532 1533 1534 1535 1536 1537 1538
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1539 1540
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1541
{
1542 1543
	u64 tstamp = perf_event_time(event);

1544
	list_add_event(event, ctx);
1545
	perf_group_attach(event);
1546 1547 1548
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1549 1550
}

1551 1552 1553 1554 1555 1556
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1570
/*
1571
 * Cross CPU call to install and enable a performance event
1572 1573
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1574
 */
1575
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1576
{
1577 1578
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1579
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1580 1581 1582
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1583
	perf_ctx_lock(cpuctx, task_ctx);
1584
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1585 1586

	/*
1587
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1588
	 */
1589
	if (task_ctx)
1590
		task_ctx_sched_out(task_ctx);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1605 1606
		task = task_ctx->task;
	}
1607

1608
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1609

1610
	update_context_time(ctx);
S
Stephane Eranian 已提交
1611 1612 1613 1614 1615 1616
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1617

1618
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1619

1620
	/*
1621
	 * Schedule everything back in
1622
	 */
1623
	perf_event_sched_in(cpuctx, task_ctx, task);
1624 1625 1626

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1627 1628

	return 0;
T
Thomas Gleixner 已提交
1629 1630 1631
}

/*
1632
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1633
 *
1634 1635
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1636
 *
1637
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1638 1639 1640 1641
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1642 1643
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1644 1645 1646 1647
			int cpu)
{
	struct task_struct *task = ctx->task;

1648 1649
	lockdep_assert_held(&ctx->mutex);

1650
	event->ctx = ctx;
1651 1652
	if (event->cpu != -1)
		event->cpu = cpu;
1653

T
Thomas Gleixner 已提交
1654 1655
	if (!task) {
		/*
1656
		 * Per cpu events are installed via an smp call and
1657
		 * the install is always successful.
T
Thomas Gleixner 已提交
1658
		 */
1659
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1660 1661 1662 1663
		return;
	}

retry:
1664 1665
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1666

1667
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1668
	/*
1669 1670
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1671
	 */
1672
	if (ctx->is_active) {
1673
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1674 1675 1676 1677
		goto retry;
	}

	/*
1678 1679
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1680
	 */
1681
	add_event_to_ctx(event, ctx);
1682
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1683 1684
}

1685
/*
1686
 * Put a event into inactive state and update time fields.
1687 1688 1689 1690 1691 1692
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1693
static void __perf_event_mark_enabled(struct perf_event *event)
1694
{
1695
	struct perf_event *sub;
1696
	u64 tstamp = perf_event_time(event);
1697

1698
	event->state = PERF_EVENT_STATE_INACTIVE;
1699
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1700
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1701 1702
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1703
	}
1704 1705
}

1706
/*
1707
 * Cross CPU call to enable a performance event
1708
 */
1709
static int __perf_event_enable(void *info)
1710
{
1711 1712 1713
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1714
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1715
	int err;
1716

1717 1718
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1719

1720
	raw_spin_lock(&ctx->lock);
1721
	update_context_time(ctx);
1722

1723
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1724
		goto unlock;
S
Stephane Eranian 已提交
1725 1726 1727 1728

	/*
	 * set current task's cgroup time reference point
	 */
1729
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1730

1731
	__perf_event_mark_enabled(event);
1732

S
Stephane Eranian 已提交
1733 1734 1735
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1736
		goto unlock;
S
Stephane Eranian 已提交
1737
	}
1738

1739
	/*
1740
	 * If the event is in a group and isn't the group leader,
1741
	 * then don't put it on unless the group is on.
1742
	 */
1743
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1744
		goto unlock;
1745

1746
	if (!group_can_go_on(event, cpuctx, 1)) {
1747
		err = -EEXIST;
1748
	} else {
1749
		if (event == leader)
1750
			err = group_sched_in(event, cpuctx, ctx);
1751
		else
1752
			err = event_sched_in(event, cpuctx, ctx);
1753
	}
1754 1755 1756

	if (err) {
		/*
1757
		 * If this event can't go on and it's part of a
1758 1759
		 * group, then the whole group has to come off.
		 */
1760
		if (leader != event)
1761
			group_sched_out(leader, cpuctx, ctx);
1762
		if (leader->attr.pinned) {
1763
			update_group_times(leader);
1764
			leader->state = PERF_EVENT_STATE_ERROR;
1765
		}
1766 1767
	}

P
Peter Zijlstra 已提交
1768
unlock:
1769
	raw_spin_unlock(&ctx->lock);
1770 1771

	return 0;
1772 1773 1774
}

/*
1775
 * Enable a event.
1776
 *
1777 1778
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1779
 * remains valid.  This condition is satisfied when called through
1780 1781
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1782
 */
1783
void perf_event_enable(struct perf_event *event)
1784
{
1785
	struct perf_event_context *ctx = event->ctx;
1786 1787 1788 1789
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1790
		 * Enable the event on the cpu that it's on
1791
		 */
1792
		cpu_function_call(event->cpu, __perf_event_enable, event);
1793 1794 1795
		return;
	}

1796
	raw_spin_lock_irq(&ctx->lock);
1797
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1798 1799 1800
		goto out;

	/*
1801 1802
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1803 1804 1805 1806
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1807 1808
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1809

P
Peter Zijlstra 已提交
1810
retry:
1811
	if (!ctx->is_active) {
1812
		__perf_event_mark_enabled(event);
1813 1814 1815
		goto out;
	}

1816
	raw_spin_unlock_irq(&ctx->lock);
1817 1818 1819

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1820

1821
	raw_spin_lock_irq(&ctx->lock);
1822 1823

	/*
1824
	 * If the context is active and the event is still off,
1825 1826
	 * we need to retry the cross-call.
	 */
1827 1828 1829 1830 1831 1832
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1833
		goto retry;
1834
	}
1835

P
Peter Zijlstra 已提交
1836
out:
1837
	raw_spin_unlock_irq(&ctx->lock);
1838
}
1839
EXPORT_SYMBOL_GPL(perf_event_enable);
1840

1841
int perf_event_refresh(struct perf_event *event, int refresh)
1842
{
1843
	/*
1844
	 * not supported on inherited events
1845
	 */
1846
	if (event->attr.inherit || !is_sampling_event(event))
1847 1848
		return -EINVAL;

1849 1850
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1851 1852

	return 0;
1853
}
1854
EXPORT_SYMBOL_GPL(perf_event_refresh);
1855

1856 1857 1858
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1859
{
1860
	struct perf_event *event;
1861
	int is_active = ctx->is_active;
1862

1863
	ctx->is_active &= ~event_type;
1864
	if (likely(!ctx->nr_events))
1865 1866
		return;

1867
	update_context_time(ctx);
S
Stephane Eranian 已提交
1868
	update_cgrp_time_from_cpuctx(cpuctx);
1869
	if (!ctx->nr_active)
1870
		return;
1871

P
Peter Zijlstra 已提交
1872
	perf_pmu_disable(ctx->pmu);
1873
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1874 1875
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1876
	}
1877

1878
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1879
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1880
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1881
	}
P
Peter Zijlstra 已提交
1882
	perf_pmu_enable(ctx->pmu);
1883 1884
}

1885 1886 1887
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1888 1889 1890 1891
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1892
 * in them directly with an fd; we can only enable/disable all
1893
 * events via prctl, or enable/disable all events in a family
1894 1895
 * via ioctl, which will have the same effect on both contexts.
 */
1896 1897
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1898 1899
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1900
		&& ctx1->parent_gen == ctx2->parent_gen
1901
		&& !ctx1->pin_count && !ctx2->pin_count;
1902 1903
}

1904 1905
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1906 1907 1908
{
	u64 value;

1909
	if (!event->attr.inherit_stat)
1910 1911 1912
		return;

	/*
1913
	 * Update the event value, we cannot use perf_event_read()
1914 1915
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1916
	 * we know the event must be on the current CPU, therefore we
1917 1918
	 * don't need to use it.
	 */
1919 1920
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1921 1922
		event->pmu->read(event);
		/* fall-through */
1923

1924 1925
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1926 1927 1928 1929 1930 1931 1932
		break;

	default:
		break;
	}

	/*
1933
	 * In order to keep per-task stats reliable we need to flip the event
1934 1935
	 * values when we flip the contexts.
	 */
1936 1937 1938
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1939

1940 1941
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1942

1943
	/*
1944
	 * Since we swizzled the values, update the user visible data too.
1945
	 */
1946 1947
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1948 1949 1950 1951 1952
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1953 1954
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1955
{
1956
	struct perf_event *event, *next_event;
1957 1958 1959 1960

	if (!ctx->nr_stat)
		return;

1961 1962
	update_context_time(ctx);

1963 1964
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1965

1966 1967
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1968

1969 1970
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1971

1972
		__perf_event_sync_stat(event, next_event);
1973

1974 1975
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1976 1977 1978
	}
}

1979 1980
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1981
{
P
Peter Zijlstra 已提交
1982
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1983 1984
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1985
	struct perf_cpu_context *cpuctx;
1986
	int do_switch = 1;
T
Thomas Gleixner 已提交
1987

P
Peter Zijlstra 已提交
1988 1989
	if (likely(!ctx))
		return;
1990

P
Peter Zijlstra 已提交
1991 1992
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1993 1994
		return;

1995 1996
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1997
	next_ctx = next->perf_event_ctxp[ctxn];
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2009 2010
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2011
		if (context_equiv(ctx, next_ctx)) {
2012 2013
			/*
			 * XXX do we need a memory barrier of sorts
2014
			 * wrt to rcu_dereference() of perf_event_ctxp
2015
			 */
P
Peter Zijlstra 已提交
2016 2017
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2018 2019 2020
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2021

2022
			perf_event_sync_stat(ctx, next_ctx);
2023
		}
2024 2025
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2026
	}
2027
	rcu_read_unlock();
2028

2029
	if (do_switch) {
2030
		raw_spin_lock(&ctx->lock);
2031
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2032
		cpuctx->task_ctx = NULL;
2033
		raw_spin_unlock(&ctx->lock);
2034
	}
T
Thomas Gleixner 已提交
2035 2036
}

P
Peter Zijlstra 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2051 2052
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2053 2054 2055 2056 2057
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2058 2059 2060 2061 2062 2063 2064

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2065
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2066 2067
}

2068
static void task_ctx_sched_out(struct perf_event_context *ctx)
2069
{
P
Peter Zijlstra 已提交
2070
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2071

2072 2073
	if (!cpuctx->task_ctx)
		return;
2074 2075 2076 2077

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2078
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2079 2080 2081
	cpuctx->task_ctx = NULL;
}

2082 2083 2084 2085 2086 2087 2088
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2089 2090
}

2091
static void
2092
ctx_pinned_sched_in(struct perf_event_context *ctx,
2093
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2094
{
2095
	struct perf_event *event;
T
Thomas Gleixner 已提交
2096

2097 2098
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2099
			continue;
2100
		if (!event_filter_match(event))
2101 2102
			continue;

S
Stephane Eranian 已提交
2103 2104 2105 2106
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2107
		if (group_can_go_on(event, cpuctx, 1))
2108
			group_sched_in(event, cpuctx, ctx);
2109 2110 2111 2112 2113

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2114 2115 2116
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2117
		}
2118
	}
2119 2120 2121 2122
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2123
		      struct perf_cpu_context *cpuctx)
2124 2125 2126
{
	struct perf_event *event;
	int can_add_hw = 1;
2127

2128 2129 2130
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2131
			continue;
2132 2133
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2134
		 * of events:
2135
		 */
2136
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2137 2138
			continue;

S
Stephane Eranian 已提交
2139 2140 2141 2142
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2143
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2144
			if (group_sched_in(event, cpuctx, ctx))
2145
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2146
		}
T
Thomas Gleixner 已提交
2147
	}
2148 2149 2150 2151 2152
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2153 2154
	     enum event_type_t event_type,
	     struct task_struct *task)
2155
{
S
Stephane Eranian 已提交
2156
	u64 now;
2157
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2158

2159
	ctx->is_active |= event_type;
2160
	if (likely(!ctx->nr_events))
2161
		return;
2162

S
Stephane Eranian 已提交
2163 2164
	now = perf_clock();
	ctx->timestamp = now;
2165
	perf_cgroup_set_timestamp(task, ctx);
2166 2167 2168 2169
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2170
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2171
		ctx_pinned_sched_in(ctx, cpuctx);
2172 2173

	/* Then walk through the lower prio flexible groups */
2174
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2175
		ctx_flexible_sched_in(ctx, cpuctx);
2176 2177
}

2178
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2179 2180
			     enum event_type_t event_type,
			     struct task_struct *task)
2181 2182 2183
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2184
	ctx_sched_in(ctx, cpuctx, event_type, task);
2185 2186
}

S
Stephane Eranian 已提交
2187 2188
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2189
{
P
Peter Zijlstra 已提交
2190
	struct perf_cpu_context *cpuctx;
2191

P
Peter Zijlstra 已提交
2192
	cpuctx = __get_cpu_context(ctx);
2193 2194 2195
	if (cpuctx->task_ctx == ctx)
		return;

2196
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2197
	perf_pmu_disable(ctx->pmu);
2198 2199 2200 2201 2202 2203 2204
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2205 2206
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2207

2208 2209
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2210 2211 2212
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2213 2214 2215 2216
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2217
	perf_pmu_rotate_start(ctx->pmu);
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2291 2292
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2302
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2303
	}
S
Stephane Eranian 已提交
2304 2305 2306 2307 2308 2309
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2310
		perf_cgroup_sched_in(prev, task);
2311 2312 2313 2314

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2315 2316
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2344
#define REDUCE_FLS(a, b)		\
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2384 2385 2386
	if (!divisor)
		return dividend;

2387 2388 2389
	return div64_u64(dividend, divisor);
}

2390 2391 2392
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2393
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2394
{
2395
	struct hw_perf_event *hwc = &event->hw;
2396
	s64 period, sample_period;
2397 2398
	s64 delta;

2399
	period = perf_calculate_period(event, nsec, count);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2410

2411
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2412 2413 2414
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2415
		local64_set(&hwc->period_left, 0);
2416 2417 2418

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2419
	}
2420 2421
}

2422 2423 2424 2425 2426 2427 2428
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2429
{
2430 2431
	struct perf_event *event;
	struct hw_perf_event *hwc;
2432
	u64 now, period = TICK_NSEC;
2433
	s64 delta;
2434

2435 2436 2437 2438 2439 2440
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2441 2442
		return;

2443
	raw_spin_lock(&ctx->lock);
2444
	perf_pmu_disable(ctx->pmu);
2445

2446
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2447
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2448 2449
			continue;

2450
		if (!event_filter_match(event))
2451 2452
			continue;

2453
		hwc = &event->hw;
2454

2455 2456
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2457
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2458
			event->pmu->start(event, 0);
2459 2460
		}

2461
		if (!event->attr.freq || !event->attr.sample_freq)
2462 2463
			continue;

2464 2465 2466 2467 2468
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2469
		now = local64_read(&event->count);
2470 2471
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2472

2473 2474 2475
		/*
		 * restart the event
		 * reload only if value has changed
2476 2477 2478
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2479
		 */
2480
		if (delta > 0)
2481
			perf_adjust_period(event, period, delta, false);
2482 2483

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2484
	}
2485

2486
	perf_pmu_enable(ctx->pmu);
2487
	raw_spin_unlock(&ctx->lock);
2488 2489
}

2490
/*
2491
 * Round-robin a context's events:
2492
 */
2493
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2494
{
2495 2496 2497 2498 2499 2500
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2501 2502
}

2503
/*
2504 2505 2506
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2507
 */
2508
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2509
{
P
Peter Zijlstra 已提交
2510
	struct perf_event_context *ctx = NULL;
2511
	int rotate = 0, remove = 1;
2512

2513
	if (cpuctx->ctx.nr_events) {
2514
		remove = 0;
2515 2516 2517
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2518

P
Peter Zijlstra 已提交
2519
	ctx = cpuctx->task_ctx;
2520
	if (ctx && ctx->nr_events) {
2521
		remove = 0;
2522 2523 2524
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2525

2526
	if (!rotate)
2527 2528
		goto done;

2529
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2530
	perf_pmu_disable(cpuctx->ctx.pmu);
2531

2532 2533 2534
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2535

2536 2537 2538
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2539

2540
	perf_event_sched_in(cpuctx, ctx, current);
2541

2542 2543
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2544
done:
2545 2546 2547 2548 2549 2550 2551 2552
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2553 2554
	struct perf_event_context *ctx;
	int throttled;
2555

2556 2557
	WARN_ON(!irqs_disabled());

2558 2559 2560
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2561
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2562 2563 2564 2565 2566 2567 2568
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2569 2570 2571 2572
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2573 2574
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2585
	__perf_event_mark_enabled(event);
2586 2587 2588 2589

	return 1;
}

2590
/*
2591
 * Enable all of a task's events that have been marked enable-on-exec.
2592 2593
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2594
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2595
{
2596
	struct perf_event *event;
2597 2598
	unsigned long flags;
	int enabled = 0;
2599
	int ret;
2600 2601

	local_irq_save(flags);
2602
	if (!ctx || !ctx->nr_events)
2603 2604
		goto out;

2605 2606 2607 2608 2609 2610 2611
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2612
	perf_cgroup_sched_out(current, NULL);
2613

2614
	raw_spin_lock(&ctx->lock);
2615
	task_ctx_sched_out(ctx);
2616

2617
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2618 2619 2620
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2621 2622 2623
	}

	/*
2624
	 * Unclone this context if we enabled any event.
2625
	 */
2626 2627
	if (enabled)
		unclone_ctx(ctx);
2628

2629
	raw_spin_unlock(&ctx->lock);
2630

2631 2632 2633
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2634
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2635
out:
2636 2637 2638
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2639
/*
2640
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2641
 */
2642
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2643
{
2644 2645
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2646
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2647

2648 2649 2650 2651
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2652 2653
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2654 2655 2656 2657
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2658
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2659
	if (ctx->is_active) {
2660
		update_context_time(ctx);
S
Stephane Eranian 已提交
2661 2662
		update_cgrp_time_from_event(event);
	}
2663
	update_event_times(event);
2664 2665
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2666
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2667 2668
}

P
Peter Zijlstra 已提交
2669 2670
static inline u64 perf_event_count(struct perf_event *event)
{
2671
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2672 2673
}

2674
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2675 2676
{
	/*
2677 2678
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2679
	 */
2680 2681 2682 2683
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2684 2685 2686
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2687
		raw_spin_lock_irqsave(&ctx->lock, flags);
2688 2689 2690 2691 2692
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2693
		if (ctx->is_active) {
2694
			update_context_time(ctx);
S
Stephane Eranian 已提交
2695 2696
			update_cgrp_time_from_event(event);
		}
2697
		update_event_times(event);
2698
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2699 2700
	}

P
Peter Zijlstra 已提交
2701
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2702 2703
}

2704
/*
2705
 * Initialize the perf_event context in a task_struct:
2706
 */
2707
static void __perf_event_init_context(struct perf_event_context *ctx)
2708
{
2709
	raw_spin_lock_init(&ctx->lock);
2710
	mutex_init(&ctx->mutex);
2711 2712
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2713 2714
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2730
	}
2731 2732 2733
	ctx->pmu = pmu;

	return ctx;
2734 2735
}

2736 2737 2738 2739 2740
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2741 2742

	rcu_read_lock();
2743
	if (!vpid)
T
Thomas Gleixner 已提交
2744 2745
		task = current;
	else
2746
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2747 2748 2749 2750 2751 2752 2753 2754
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2755 2756 2757 2758
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2759 2760 2761 2762 2763 2764 2765
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2766 2767 2768
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2769
static struct perf_event_context *
M
Matt Helsley 已提交
2770
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2771
{
2772
	struct perf_event_context *ctx;
2773
	struct perf_cpu_context *cpuctx;
2774
	unsigned long flags;
P
Peter Zijlstra 已提交
2775
	int ctxn, err;
T
Thomas Gleixner 已提交
2776

2777
	if (!task) {
2778
		/* Must be root to operate on a CPU event: */
2779
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2780 2781 2782
			return ERR_PTR(-EACCES);

		/*
2783
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2784 2785 2786
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2787
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2788 2789
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2790
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2791
		ctx = &cpuctx->ctx;
2792
		get_ctx(ctx);
2793
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2794 2795 2796 2797

		return ctx;
	}

P
Peter Zijlstra 已提交
2798 2799 2800 2801 2802
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2803
retry:
P
Peter Zijlstra 已提交
2804
	ctx = perf_lock_task_context(task, ctxn, &flags);
2805
	if (ctx) {
2806
		unclone_ctx(ctx);
2807
		++ctx->pin_count;
2808
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2809
	} else {
2810
		ctx = alloc_perf_context(pmu, task);
2811 2812 2813
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2825
		else {
2826
			get_ctx(ctx);
2827
			++ctx->pin_count;
2828
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2829
		}
2830 2831 2832
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2833
			put_ctx(ctx);
2834 2835 2836 2837

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2838 2839 2840
		}
	}

T
Thomas Gleixner 已提交
2841
	return ctx;
2842

P
Peter Zijlstra 已提交
2843
errout:
2844
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2845 2846
}

L
Li Zefan 已提交
2847 2848
static void perf_event_free_filter(struct perf_event *event);

2849
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2850
{
2851
	struct perf_event *event;
P
Peter Zijlstra 已提交
2852

2853 2854 2855
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2856
	perf_event_free_filter(event);
2857
	kfree(event);
P
Peter Zijlstra 已提交
2858 2859
}

2860
static void ring_buffer_put(struct ring_buffer *rb);
2861

2862
static void free_event(struct perf_event *event)
2863
{
2864
	irq_work_sync(&event->pending);
2865

2866
	if (!event->parent) {
2867
		if (event->attach_state & PERF_ATTACH_TASK)
2868
			static_key_slow_dec_deferred(&perf_sched_events);
2869
		if (event->attr.mmap || event->attr.mmap_data)
2870 2871 2872 2873 2874
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2875 2876
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2877 2878
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2879
			static_key_slow_dec_deferred(&perf_sched_events);
2880
		}
2881 2882 2883 2884 2885 2886 2887 2888

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2889
	}
2890

2891 2892 2893
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2894 2895
	}

S
Stephane Eranian 已提交
2896 2897 2898
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2899 2900
	if (event->destroy)
		event->destroy(event);
2901

P
Peter Zijlstra 已提交
2902 2903 2904
	if (event->ctx)
		put_ctx(event->ctx);

2905
	call_rcu(&event->rcu_head, free_event_rcu);
2906 2907
}

2908
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2909
{
2910
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2911

2912
	WARN_ON_ONCE(ctx->parent_ctx);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2926
	raw_spin_lock_irq(&ctx->lock);
2927
	perf_group_detach(event);
2928
	raw_spin_unlock_irq(&ctx->lock);
2929
	perf_remove_from_context(event);
2930
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2931

2932
	free_event(event);
T
Thomas Gleixner 已提交
2933 2934 2935

	return 0;
}
2936
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2937

2938 2939 2940
/*
 * Called when the last reference to the file is gone.
 */
2941
static void put_event(struct perf_event *event)
2942
{
P
Peter Zijlstra 已提交
2943
	struct task_struct *owner;
2944

2945 2946
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2947

P
Peter Zijlstra 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2981 2982 2983 2984 2985 2986 2987
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
2988 2989
}

2990
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2991
{
2992
	struct perf_event *child;
2993 2994
	u64 total = 0;

2995 2996 2997
	*enabled = 0;
	*running = 0;

2998
	mutex_lock(&event->child_mutex);
2999
	total += perf_event_read(event);
3000 3001 3002 3003 3004 3005
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3006
		total += perf_event_read(child);
3007 3008 3009
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3010
	mutex_unlock(&event->child_mutex);
3011 3012 3013

	return total;
}
3014
EXPORT_SYMBOL_GPL(perf_event_read_value);
3015

3016
static int perf_event_read_group(struct perf_event *event,
3017 3018
				   u64 read_format, char __user *buf)
{
3019
	struct perf_event *leader = event->group_leader, *sub;
3020 3021
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3022
	u64 values[5];
3023
	u64 count, enabled, running;
3024

3025
	mutex_lock(&ctx->mutex);
3026
	count = perf_event_read_value(leader, &enabled, &running);
3027 3028

	values[n++] = 1 + leader->nr_siblings;
3029 3030 3031 3032
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3033 3034 3035
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3036 3037 3038 3039

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3040
		goto unlock;
3041

3042
	ret = size;
3043

3044
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3045
		n = 0;
3046

3047
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3048 3049 3050 3051 3052
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3053
		if (copy_to_user(buf + ret, values, size)) {
3054 3055 3056
			ret = -EFAULT;
			goto unlock;
		}
3057 3058

		ret += size;
3059
	}
3060 3061
unlock:
	mutex_unlock(&ctx->mutex);
3062

3063
	return ret;
3064 3065
}

3066
static int perf_event_read_one(struct perf_event *event,
3067 3068
				 u64 read_format, char __user *buf)
{
3069
	u64 enabled, running;
3070 3071 3072
	u64 values[4];
	int n = 0;

3073 3074 3075 3076 3077
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3078
	if (read_format & PERF_FORMAT_ID)
3079
		values[n++] = primary_event_id(event);
3080 3081 3082 3083 3084 3085 3086

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3087
/*
3088
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3089 3090
 */
static ssize_t
3091
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3092
{
3093
	u64 read_format = event->attr.read_format;
3094
	int ret;
T
Thomas Gleixner 已提交
3095

3096
	/*
3097
	 * Return end-of-file for a read on a event that is in
3098 3099 3100
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3101
	if (event->state == PERF_EVENT_STATE_ERROR)
3102 3103
		return 0;

3104
	if (count < event->read_size)
3105 3106
		return -ENOSPC;

3107
	WARN_ON_ONCE(event->ctx->parent_ctx);
3108
	if (read_format & PERF_FORMAT_GROUP)
3109
		ret = perf_event_read_group(event, read_format, buf);
3110
	else
3111
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3112

3113
	return ret;
T
Thomas Gleixner 已提交
3114 3115 3116 3117 3118
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3119
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3120

3121
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3122 3123 3124 3125
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3126
	struct perf_event *event = file->private_data;
3127
	struct ring_buffer *rb;
3128
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3147
	rcu_read_lock();
3148
	rb = rcu_dereference(event->rb);
3149 3150
	if (rb) {
		ring_buffer_attach(event, rb);
3151
		events = atomic_xchg(&rb->poll, 0);
3152
	}
P
Peter Zijlstra 已提交
3153
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3154

3155 3156
	mutex_unlock(&event->mmap_mutex);

3157
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3158 3159 3160 3161

	return events;
}

3162
static void perf_event_reset(struct perf_event *event)
3163
{
3164
	(void)perf_event_read(event);
3165
	local64_set(&event->count, 0);
3166
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3167 3168
}

3169
/*
3170 3171 3172 3173
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3174
 */
3175 3176
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3177
{
3178
	struct perf_event *child;
P
Peter Zijlstra 已提交
3179

3180 3181 3182 3183
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3184
		func(child);
3185
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3186 3187
}

3188 3189
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3190
{
3191 3192
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3193

3194 3195
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3196
	event = event->group_leader;
3197

3198 3199
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3200
		perf_event_for_each_child(sibling, func);
3201
	mutex_unlock(&ctx->mutex);
3202 3203
}

3204
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3205
{
3206
	struct perf_event_context *ctx = event->ctx;
3207 3208 3209
	int ret = 0;
	u64 value;

3210
	if (!is_sampling_event(event))
3211 3212
		return -EINVAL;

3213
	if (copy_from_user(&value, arg, sizeof(value)))
3214 3215 3216 3217 3218
		return -EFAULT;

	if (!value)
		return -EINVAL;

3219
	raw_spin_lock_irq(&ctx->lock);
3220 3221
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3222 3223 3224 3225
			ret = -EINVAL;
			goto unlock;
		}

3226
		event->attr.sample_freq = value;
3227
	} else {
3228 3229
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3230 3231
	}
unlock:
3232
	raw_spin_unlock_irq(&ctx->lock);
3233 3234 3235 3236

	return ret;
}

3237 3238
static const struct file_operations perf_fops;

3239
static inline int perf_fget_light(int fd, struct fd *p)
3240
{
3241 3242 3243
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3244

3245 3246 3247
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3248
	}
3249 3250
	*p = f;
	return 0;
3251 3252 3253 3254
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3255
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3256

3257 3258
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3259 3260
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3261
	u32 flags = arg;
3262 3263

	switch (cmd) {
3264 3265
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3266
		break;
3267 3268
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3269
		break;
3270 3271
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3272
		break;
P
Peter Zijlstra 已提交
3273

3274 3275
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3276

3277 3278
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3279

3280
	case PERF_EVENT_IOC_SET_OUTPUT:
3281 3282 3283
	{
		int ret;
		if (arg != -1) {
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3294 3295 3296
		}
		return ret;
	}
3297

L
Li Zefan 已提交
3298 3299 3300
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3301
	default:
P
Peter Zijlstra 已提交
3302
		return -ENOTTY;
3303
	}
P
Peter Zijlstra 已提交
3304 3305

	if (flags & PERF_IOC_FLAG_GROUP)
3306
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3307
	else
3308
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3309 3310

	return 0;
3311 3312
}

3313
int perf_event_task_enable(void)
3314
{
3315
	struct perf_event *event;
3316

3317 3318 3319 3320
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3321 3322 3323 3324

	return 0;
}

3325
int perf_event_task_disable(void)
3326
{
3327
	struct perf_event *event;
3328

3329 3330 3331 3332
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3333 3334 3335 3336

	return 0;
}

3337
static int perf_event_index(struct perf_event *event)
3338
{
P
Peter Zijlstra 已提交
3339 3340 3341
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3342
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3343 3344
		return 0;

3345
	return event->pmu->event_idx(event);
3346 3347
}

3348
static void calc_timer_values(struct perf_event *event,
3349
				u64 *now,
3350 3351
				u64 *enabled,
				u64 *running)
3352
{
3353
	u64 ctx_time;
3354

3355 3356
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3357 3358 3359 3360
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3361
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3362 3363 3364
{
}

3365 3366 3367 3368 3369
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3370
void perf_event_update_userpage(struct perf_event *event)
3371
{
3372
	struct perf_event_mmap_page *userpg;
3373
	struct ring_buffer *rb;
3374
	u64 enabled, running, now;
3375 3376

	rcu_read_lock();
3377 3378 3379 3380 3381 3382 3383 3384 3385
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3386
	calc_timer_values(event, &now, &enabled, &running);
3387 3388
	rb = rcu_dereference(event->rb);
	if (!rb)
3389 3390
		goto unlock;

3391
	userpg = rb->user_page;
3392

3393 3394 3395 3396 3397
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3398
	++userpg->lock;
3399
	barrier();
3400
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3401
	userpg->offset = perf_event_count(event);
3402
	if (userpg->index)
3403
		userpg->offset -= local64_read(&event->hw.prev_count);
3404

3405
	userpg->time_enabled = enabled +
3406
			atomic64_read(&event->child_total_time_enabled);
3407

3408
	userpg->time_running = running +
3409
			atomic64_read(&event->child_total_time_running);
3410

3411
	arch_perf_update_userpage(userpg, now);
3412

3413
	barrier();
3414
	++userpg->lock;
3415
	preempt_enable();
3416
unlock:
3417
	rcu_read_unlock();
3418 3419
}

3420 3421 3422
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3423
	struct ring_buffer *rb;
3424 3425 3426 3427 3428 3429 3430 3431 3432
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3433 3434
	rb = rcu_dereference(event->rb);
	if (!rb)
3435 3436 3437 3438 3439
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3440
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3492 3493 3494 3495
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3496
		wake_up_all(&event->waitq);
3497 3498

unlock:
3499 3500 3501
	rcu_read_unlock();
}

3502
static void rb_free_rcu(struct rcu_head *rcu_head)
3503
{
3504
	struct ring_buffer *rb;
3505

3506 3507
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3508 3509
}

3510
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3511
{
3512
	struct ring_buffer *rb;
3513

3514
	rcu_read_lock();
3515 3516 3517 3518
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3519 3520 3521
	}
	rcu_read_unlock();

3522
	return rb;
3523 3524
}

3525
static void ring_buffer_put(struct ring_buffer *rb)
3526
{
3527 3528 3529
	struct perf_event *event, *n;
	unsigned long flags;

3530
	if (!atomic_dec_and_test(&rb->refcount))
3531
		return;
3532

3533 3534 3535 3536 3537 3538 3539
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3540
	call_rcu(&rb->rcu_head, rb_free_rcu);
3541 3542 3543 3544
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3545
	struct perf_event *event = vma->vm_file->private_data;
3546

3547
	atomic_inc(&event->mmap_count);
3548 3549 3550 3551
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3552
	struct perf_event *event = vma->vm_file->private_data;
3553

3554
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3555
		unsigned long size = perf_data_size(event->rb);
3556
		struct user_struct *user = event->mmap_user;
3557
		struct ring_buffer *rb = event->rb;
3558

3559
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3560
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3561
		rcu_assign_pointer(event->rb, NULL);
3562
		ring_buffer_detach(event, rb);
3563
		mutex_unlock(&event->mmap_mutex);
3564

3565
		ring_buffer_put(rb);
3566
		free_uid(user);
3567
	}
3568 3569
}

3570
static const struct vm_operations_struct perf_mmap_vmops = {
3571 3572 3573 3574
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3575 3576 3577 3578
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3579
	struct perf_event *event = file->private_data;
3580
	unsigned long user_locked, user_lock_limit;
3581
	struct user_struct *user = current_user();
3582
	unsigned long locked, lock_limit;
3583
	struct ring_buffer *rb;
3584 3585
	unsigned long vma_size;
	unsigned long nr_pages;
3586
	long user_extra, extra;
3587
	int ret = 0, flags = 0;
3588

3589 3590 3591
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3592
	 * same rb.
3593 3594 3595 3596
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3597
	if (!(vma->vm_flags & VM_SHARED))
3598
		return -EINVAL;
3599 3600 3601 3602

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3603
	/*
3604
	 * If we have rb pages ensure they're a power-of-two number, so we
3605 3606 3607
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3608 3609
		return -EINVAL;

3610
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3611 3612
		return -EINVAL;

3613 3614
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3615

3616 3617
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3618 3619 3620
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3621
		else
3622 3623 3624 3625
			ret = -EINVAL;
		goto unlock;
	}

3626
	user_extra = nr_pages + 1;
3627
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3628 3629 3630 3631 3632 3633

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3634
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3635

3636 3637 3638
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3639

3640
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3641
	lock_limit >>= PAGE_SHIFT;
3642
	locked = vma->vm_mm->pinned_vm + extra;
3643

3644 3645
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3646 3647 3648
		ret = -EPERM;
		goto unlock;
	}
3649

3650
	WARN_ON(event->rb);
3651

3652
	if (vma->vm_flags & VM_WRITE)
3653
		flags |= RING_BUFFER_WRITABLE;
3654

3655 3656 3657 3658
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3659
	if (!rb) {
3660
		ret = -ENOMEM;
3661
		goto unlock;
3662
	}
3663
	rcu_assign_pointer(event->rb, rb);
3664

3665 3666 3667
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3668
	vma->vm_mm->pinned_vm += event->mmap_locked;
3669

3670 3671
	perf_event_update_userpage(event);

3672
unlock:
3673 3674
	if (!ret)
		atomic_inc(&event->mmap_count);
3675
	mutex_unlock(&event->mmap_mutex);
3676

3677
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3678
	vma->vm_ops = &perf_mmap_vmops;
3679 3680

	return ret;
3681 3682
}

P
Peter Zijlstra 已提交
3683 3684 3685
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3686
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3687 3688 3689
	int retval;

	mutex_lock(&inode->i_mutex);
3690
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3691 3692 3693 3694 3695 3696 3697 3698
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3699
static const struct file_operations perf_fops = {
3700
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3701 3702 3703
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3704 3705
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3706
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3707
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3708 3709
};

3710
/*
3711
 * Perf event wakeup
3712 3713 3714 3715 3716
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3717
void perf_event_wakeup(struct perf_event *event)
3718
{
3719
	ring_buffer_wakeup(event);
3720

3721 3722 3723
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3724
	}
3725 3726
}

3727
static void perf_pending_event(struct irq_work *entry)
3728
{
3729 3730
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3731

3732 3733 3734
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3735 3736
	}

3737 3738 3739
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3740 3741 3742
	}
}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3890 3891 3892
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3920 3921 3922
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3949 3950 3951
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3952 3953 3954 3955 3956
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3957
static void perf_output_read_one(struct perf_output_handle *handle,
3958 3959
				 struct perf_event *event,
				 u64 enabled, u64 running)
3960
{
3961
	u64 read_format = event->attr.read_format;
3962 3963 3964
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3965
	values[n++] = perf_event_count(event);
3966
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3967
		values[n++] = enabled +
3968
			atomic64_read(&event->child_total_time_enabled);
3969 3970
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3971
		values[n++] = running +
3972
			atomic64_read(&event->child_total_time_running);
3973 3974
	}
	if (read_format & PERF_FORMAT_ID)
3975
		values[n++] = primary_event_id(event);
3976

3977
	__output_copy(handle, values, n * sizeof(u64));
3978 3979 3980
}

/*
3981
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3982 3983
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3984 3985
			    struct perf_event *event,
			    u64 enabled, u64 running)
3986
{
3987 3988
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3989 3990 3991 3992 3993 3994
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3995
		values[n++] = enabled;
3996 3997

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3998
		values[n++] = running;
3999

4000
	if (leader != event)
4001 4002
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4003
	values[n++] = perf_event_count(leader);
4004
	if (read_format & PERF_FORMAT_ID)
4005
		values[n++] = primary_event_id(leader);
4006

4007
	__output_copy(handle, values, n * sizeof(u64));
4008

4009
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4010 4011
		n = 0;

4012
		if (sub != event)
4013 4014
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4015
		values[n++] = perf_event_count(sub);
4016
		if (read_format & PERF_FORMAT_ID)
4017
			values[n++] = primary_event_id(sub);
4018

4019
		__output_copy(handle, values, n * sizeof(u64));
4020 4021 4022
	}
}

4023 4024 4025
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4026
static void perf_output_read(struct perf_output_handle *handle,
4027
			     struct perf_event *event)
4028
{
4029
	u64 enabled = 0, running = 0, now;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4041
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4042
		calc_timer_values(event, &now, &enabled, &running);
4043

4044
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4045
		perf_output_read_group(handle, event, enabled, running);
4046
	else
4047
		perf_output_read_one(handle, event, enabled, running);
4048 4049
}

4050 4051 4052
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4053
			struct perf_event *event)
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4084
		perf_output_read(handle, event);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4095
			__output_copy(handle, data->callchain, size);
4096 4097 4098 4099 4100 4101 4102 4103 4104
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4105 4106
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4167 4168 4169 4170 4171

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4172 4173 4174 4175
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4176
			 struct perf_event *event,
4177
			 struct pt_regs *regs)
4178
{
4179
	u64 sample_type = event->attr.sample_type;
4180

4181
	header->type = PERF_RECORD_SAMPLE;
4182
	header->size = sizeof(*header) + event->header_size;
4183 4184 4185

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4186

4187
	__perf_event_header__init_id(header, data, event);
4188

4189
	if (sample_type & PERF_SAMPLE_IP)
4190 4191
		data->ip = perf_instruction_pointer(regs);

4192
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4193
		int size = 1;
4194

4195
		data->callchain = perf_callchain(event, regs);
4196 4197 4198 4199 4200

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4201 4202
	}

4203
	if (sample_type & PERF_SAMPLE_RAW) {
4204 4205 4206 4207 4208 4209 4210 4211
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4212
		header->size += size;
4213
	}
4214 4215 4216 4217 4218 4219 4220 4221 4222

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4266
}
4267

4268
static void perf_event_output(struct perf_event *event,
4269 4270 4271 4272 4273
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4274

4275 4276 4277
	/* protect the callchain buffers */
	rcu_read_lock();

4278
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4279

4280
	if (perf_output_begin(&handle, event, header.size))
4281
		goto exit;
4282

4283
	perf_output_sample(&handle, &header, data, event);
4284

4285
	perf_output_end(&handle);
4286 4287 4288

exit:
	rcu_read_unlock();
4289 4290
}

4291
/*
4292
 * read event_id
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4303
perf_event_read_event(struct perf_event *event,
4304 4305 4306
			struct task_struct *task)
{
	struct perf_output_handle handle;
4307
	struct perf_sample_data sample;
4308
	struct perf_read_event read_event = {
4309
		.header = {
4310
			.type = PERF_RECORD_READ,
4311
			.misc = 0,
4312
			.size = sizeof(read_event) + event->read_size,
4313
		},
4314 4315
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4316
	};
4317
	int ret;
4318

4319
	perf_event_header__init_id(&read_event.header, &sample, event);
4320
	ret = perf_output_begin(&handle, event, read_event.header.size);
4321 4322 4323
	if (ret)
		return;

4324
	perf_output_put(&handle, read_event);
4325
	perf_output_read(&handle, event);
4326
	perf_event__output_id_sample(event, &handle, &sample);
4327

4328 4329 4330
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4331
/*
P
Peter Zijlstra 已提交
4332 4333
 * task tracking -- fork/exit
 *
4334
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4335 4336
 */

P
Peter Zijlstra 已提交
4337
struct perf_task_event {
4338
	struct task_struct		*task;
4339
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4340 4341 4342 4343 4344 4345

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4346 4347
		u32				tid;
		u32				ptid;
4348
		u64				time;
4349
	} event_id;
P
Peter Zijlstra 已提交
4350 4351
};

4352
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4353
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4354 4355
{
	struct perf_output_handle handle;
4356
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4357
	struct task_struct *task = task_event->task;
4358
	int ret, size = task_event->event_id.header.size;
4359

4360
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4361

4362
	ret = perf_output_begin(&handle, event,
4363
				task_event->event_id.header.size);
4364
	if (ret)
4365
		goto out;
P
Peter Zijlstra 已提交
4366

4367 4368
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4369

4370 4371
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4372

4373
	perf_output_put(&handle, task_event->event_id);
4374

4375 4376
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4377
	perf_output_end(&handle);
4378 4379
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4380 4381
}

4382
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4383
{
P
Peter Zijlstra 已提交
4384
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4385 4386
		return 0;

4387
	if (!event_filter_match(event))
4388 4389
		return 0;

4390 4391
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4392 4393 4394 4395 4396
		return 1;

	return 0;
}

4397
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4398
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4399
{
4400
	struct perf_event *event;
P
Peter Zijlstra 已提交
4401

4402 4403 4404
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4405 4406 4407
	}
}

4408
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4409 4410
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4411
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4412
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4413
	int ctxn;
P
Peter Zijlstra 已提交
4414

4415
	rcu_read_lock();
P
Peter Zijlstra 已提交
4416
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4417
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4418
		if (cpuctx->unique_pmu != pmu)
4419
			goto next;
P
Peter Zijlstra 已提交
4420
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4421 4422 4423 4424 4425

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4426
				goto next;
P
Peter Zijlstra 已提交
4427 4428 4429 4430
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4431 4432
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4433
	}
P
Peter Zijlstra 已提交
4434 4435 4436
	rcu_read_unlock();
}

4437 4438
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4439
			      int new)
P
Peter Zijlstra 已提交
4440
{
P
Peter Zijlstra 已提交
4441
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4442

4443 4444 4445
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4446 4447
		return;

P
Peter Zijlstra 已提交
4448
	task_event = (struct perf_task_event){
4449 4450
		.task	  = task,
		.task_ctx = task_ctx,
4451
		.event_id    = {
P
Peter Zijlstra 已提交
4452
			.header = {
4453
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4454
				.misc = 0,
4455
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4456
			},
4457 4458
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4459 4460
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4461
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4462 4463 4464
		},
	};

4465
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4466 4467
}

4468
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4469
{
4470
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4471 4472
}

4473 4474 4475 4476 4477
/*
 * comm tracking
 */

struct perf_comm_event {
4478 4479
	struct task_struct	*task;
	char			*comm;
4480 4481 4482 4483 4484 4485 4486
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4487
	} event_id;
4488 4489
};

4490
static void perf_event_comm_output(struct perf_event *event,
4491 4492 4493
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4494
	struct perf_sample_data sample;
4495
	int size = comm_event->event_id.header.size;
4496 4497 4498 4499
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4500
				comm_event->event_id.header.size);
4501 4502

	if (ret)
4503
		goto out;
4504

4505 4506
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4507

4508
	perf_output_put(&handle, comm_event->event_id);
4509
	__output_copy(&handle, comm_event->comm,
4510
				   comm_event->comm_size);
4511 4512 4513

	perf_event__output_id_sample(event, &handle, &sample);

4514
	perf_output_end(&handle);
4515 4516
out:
	comm_event->event_id.header.size = size;
4517 4518
}

4519
static int perf_event_comm_match(struct perf_event *event)
4520
{
P
Peter Zijlstra 已提交
4521
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4522 4523
		return 0;

4524
	if (!event_filter_match(event))
4525 4526
		return 0;

4527
	if (event->attr.comm)
4528 4529 4530 4531 4532
		return 1;

	return 0;
}

4533
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4534 4535
				  struct perf_comm_event *comm_event)
{
4536
	struct perf_event *event;
4537

4538 4539 4540
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4541 4542 4543
	}
}

4544
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4545 4546
{
	struct perf_cpu_context *cpuctx;
4547
	struct perf_event_context *ctx;
4548
	char comm[TASK_COMM_LEN];
4549
	unsigned int size;
P
Peter Zijlstra 已提交
4550
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4551
	int ctxn;
4552

4553
	memset(comm, 0, sizeof(comm));
4554
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4555
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4556 4557 4558 4559

	comm_event->comm = comm;
	comm_event->comm_size = size;

4560
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4561
	rcu_read_lock();
P
Peter Zijlstra 已提交
4562
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4563
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4564
		if (cpuctx->unique_pmu != pmu)
4565
			goto next;
P
Peter Zijlstra 已提交
4566
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4567 4568 4569

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4570
			goto next;
P
Peter Zijlstra 已提交
4571 4572 4573 4574

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4575 4576
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4577
	}
4578
	rcu_read_unlock();
4579 4580
}

4581
void perf_event_comm(struct task_struct *task)
4582
{
4583
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4584 4585
	struct perf_event_context *ctx;
	int ctxn;
4586

P
Peter Zijlstra 已提交
4587 4588 4589 4590
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4591

P
Peter Zijlstra 已提交
4592 4593
		perf_event_enable_on_exec(ctx);
	}
4594

4595
	if (!atomic_read(&nr_comm_events))
4596
		return;
4597

4598
	comm_event = (struct perf_comm_event){
4599
		.task	= task,
4600 4601
		/* .comm      */
		/* .comm_size */
4602
		.event_id  = {
4603
			.header = {
4604
				.type = PERF_RECORD_COMM,
4605 4606 4607 4608 4609
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4610 4611 4612
		},
	};

4613
	perf_event_comm_event(&comm_event);
4614 4615
}

4616 4617 4618 4619 4620
/*
 * mmap tracking
 */

struct perf_mmap_event {
4621 4622 4623 4624
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4625 4626 4627 4628 4629 4630 4631 4632 4633

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4634
	} event_id;
4635 4636
};

4637
static void perf_event_mmap_output(struct perf_event *event,
4638 4639 4640
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4641
	struct perf_sample_data sample;
4642
	int size = mmap_event->event_id.header.size;
4643
	int ret;
4644

4645 4646
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4647
				mmap_event->event_id.header.size);
4648
	if (ret)
4649
		goto out;
4650

4651 4652
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4653

4654
	perf_output_put(&handle, mmap_event->event_id);
4655
	__output_copy(&handle, mmap_event->file_name,
4656
				   mmap_event->file_size);
4657 4658 4659

	perf_event__output_id_sample(event, &handle, &sample);

4660
	perf_output_end(&handle);
4661 4662
out:
	mmap_event->event_id.header.size = size;
4663 4664
}

4665
static int perf_event_mmap_match(struct perf_event *event,
4666 4667
				   struct perf_mmap_event *mmap_event,
				   int executable)
4668
{
P
Peter Zijlstra 已提交
4669
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4670 4671
		return 0;

4672
	if (!event_filter_match(event))
4673 4674
		return 0;

4675 4676
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4677 4678 4679 4680 4681
		return 1;

	return 0;
}

4682
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4683 4684
				  struct perf_mmap_event *mmap_event,
				  int executable)
4685
{
4686
	struct perf_event *event;
4687

4688
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4689
		if (perf_event_mmap_match(event, mmap_event, executable))
4690
			perf_event_mmap_output(event, mmap_event);
4691 4692 4693
	}
}

4694
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4695 4696
{
	struct perf_cpu_context *cpuctx;
4697
	struct perf_event_context *ctx;
4698 4699
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4700 4701 4702
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4703
	const char *name;
P
Peter Zijlstra 已提交
4704
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4705
	int ctxn;
4706

4707 4708
	memset(tmp, 0, sizeof(tmp));

4709
	if (file) {
4710
		/*
4711
		 * d_path works from the end of the rb backwards, so we
4712 4713 4714 4715
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4716 4717 4718 4719
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4720
		name = d_path(&file->f_path, buf, PATH_MAX);
4721 4722 4723 4724 4725
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4726 4727 4728
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4729
			goto got_name;
4730
		}
4731 4732 4733 4734

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4735 4736 4737 4738 4739 4740 4741 4742
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4743 4744
		}

4745 4746 4747 4748 4749
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4750
	size = ALIGN(strlen(name)+1, sizeof(u64));
4751 4752 4753 4754

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4755
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4756

4757
	rcu_read_lock();
P
Peter Zijlstra 已提交
4758
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4759
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4760
		if (cpuctx->unique_pmu != pmu)
4761
			goto next;
P
Peter Zijlstra 已提交
4762 4763
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4764 4765 4766

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4767
			goto next;
P
Peter Zijlstra 已提交
4768 4769 4770 4771 4772 4773

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4774 4775
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4776
	}
4777 4778
	rcu_read_unlock();

4779 4780 4781
	kfree(buf);
}

4782
void perf_event_mmap(struct vm_area_struct *vma)
4783
{
4784 4785
	struct perf_mmap_event mmap_event;

4786
	if (!atomic_read(&nr_mmap_events))
4787 4788 4789
		return;

	mmap_event = (struct perf_mmap_event){
4790
		.vma	= vma,
4791 4792
		/* .file_name */
		/* .file_size */
4793
		.event_id  = {
4794
			.header = {
4795
				.type = PERF_RECORD_MMAP,
4796
				.misc = PERF_RECORD_MISC_USER,
4797 4798 4799 4800
				/* .size */
			},
			/* .pid */
			/* .tid */
4801 4802
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4803
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4804 4805 4806
		},
	};

4807
	perf_event_mmap_event(&mmap_event);
4808 4809
}

4810 4811 4812 4813
/*
 * IRQ throttle logging
 */

4814
static void perf_log_throttle(struct perf_event *event, int enable)
4815 4816
{
	struct perf_output_handle handle;
4817
	struct perf_sample_data sample;
4818 4819 4820 4821 4822
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4823
		u64				id;
4824
		u64				stream_id;
4825 4826
	} throttle_event = {
		.header = {
4827
			.type = PERF_RECORD_THROTTLE,
4828 4829 4830
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4831
		.time		= perf_clock(),
4832 4833
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4834 4835
	};

4836
	if (enable)
4837
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4838

4839 4840 4841
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4842
				throttle_event.header.size);
4843 4844 4845 4846
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4847
	perf_event__output_id_sample(event, &handle, &sample);
4848 4849 4850
	perf_output_end(&handle);
}

4851
/*
4852
 * Generic event overflow handling, sampling.
4853 4854
 */

4855
static int __perf_event_overflow(struct perf_event *event,
4856 4857
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4858
{
4859 4860
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4861
	u64 seq;
4862 4863
	int ret = 0;

4864 4865 4866 4867 4868 4869 4870
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4871 4872 4873 4874 4875 4876 4877 4878 4879
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4880 4881
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4882 4883
			ret = 1;
		}
4884
	}
4885

4886
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4887
		u64 now = perf_clock();
4888
		s64 delta = now - hwc->freq_time_stamp;
4889

4890
		hwc->freq_time_stamp = now;
4891

4892
		if (delta > 0 && delta < 2*TICK_NSEC)
4893
			perf_adjust_period(event, delta, hwc->last_period, true);
4894 4895
	}

4896 4897
	/*
	 * XXX event_limit might not quite work as expected on inherited
4898
	 * events
4899 4900
	 */

4901 4902
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4903
		ret = 1;
4904
		event->pending_kill = POLL_HUP;
4905 4906
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4907 4908
	}

4909
	if (event->overflow_handler)
4910
		event->overflow_handler(event, data, regs);
4911
	else
4912
		perf_event_output(event, data, regs);
4913

P
Peter Zijlstra 已提交
4914
	if (event->fasync && event->pending_kill) {
4915 4916
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4917 4918
	}

4919
	return ret;
4920 4921
}

4922
int perf_event_overflow(struct perf_event *event,
4923 4924
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4925
{
4926
	return __perf_event_overflow(event, 1, data, regs);
4927 4928
}

4929
/*
4930
 * Generic software event infrastructure
4931 4932
 */

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4944
/*
4945 4946
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4947 4948 4949 4950
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4951
static u64 perf_swevent_set_period(struct perf_event *event)
4952
{
4953
	struct hw_perf_event *hwc = &event->hw;
4954 4955 4956 4957 4958
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4959 4960

again:
4961
	old = val = local64_read(&hwc->period_left);
4962 4963
	if (val < 0)
		return 0;
4964

4965 4966 4967
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4968
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4969
		goto again;
4970

4971
	return nr;
4972 4973
}

4974
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4975
				    struct perf_sample_data *data,
4976
				    struct pt_regs *regs)
4977
{
4978
	struct hw_perf_event *hwc = &event->hw;
4979
	int throttle = 0;
4980

4981 4982
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4983

4984 4985
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4986

4987
	for (; overflow; overflow--) {
4988
		if (__perf_event_overflow(event, throttle,
4989
					    data, regs)) {
4990 4991 4992 4993 4994 4995
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4996
		throttle = 1;
4997
	}
4998 4999
}

P
Peter Zijlstra 已提交
5000
static void perf_swevent_event(struct perf_event *event, u64 nr,
5001
			       struct perf_sample_data *data,
5002
			       struct pt_regs *regs)
5003
{
5004
	struct hw_perf_event *hwc = &event->hw;
5005

5006
	local64_add(nr, &event->count);
5007

5008 5009 5010
	if (!regs)
		return;

5011
	if (!is_sampling_event(event))
5012
		return;
5013

5014 5015 5016 5017 5018 5019
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5020
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5021
		return perf_swevent_overflow(event, 1, data, regs);
5022

5023
	if (local64_add_negative(nr, &hwc->period_left))
5024
		return;
5025

5026
	perf_swevent_overflow(event, 0, data, regs);
5027 5028
}

5029 5030 5031
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5032
	if (event->hw.state & PERF_HES_STOPPED)
5033
		return 1;
P
Peter Zijlstra 已提交
5034

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5046
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5047
				enum perf_type_id type,
L
Li Zefan 已提交
5048 5049 5050
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5051
{
5052
	if (event->attr.type != type)
5053
		return 0;
5054

5055
	if (event->attr.config != event_id)
5056 5057
		return 0;

5058 5059
	if (perf_exclude_event(event, regs))
		return 0;
5060 5061 5062 5063

	return 1;
}

5064 5065 5066 5067 5068 5069 5070
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5071 5072
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5073
{
5074 5075 5076 5077
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5078

5079 5080
/* For the read side: events when they trigger */
static inline struct hlist_head *
5081
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5082 5083
{
	struct swevent_hlist *hlist;
5084

5085
	hlist = rcu_dereference(swhash->swevent_hlist);
5086 5087 5088
	if (!hlist)
		return NULL;

5089 5090 5091 5092 5093
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5094
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5105
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5106 5107 5108 5109 5110
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5111 5112 5113
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5114
				    u64 nr,
5115 5116
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5117
{
5118
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5119
	struct perf_event *event;
5120 5121
	struct hlist_node *node;
	struct hlist_head *head;
5122

5123
	rcu_read_lock();
5124
	head = find_swevent_head_rcu(swhash, type, event_id);
5125 5126 5127 5128
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5129
		if (perf_swevent_match(event, type, event_id, data, regs))
5130
			perf_swevent_event(event, nr, data, regs);
5131
	}
5132 5133
end:
	rcu_read_unlock();
5134 5135
}

5136
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5137
{
5138
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5139

5140
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5141
}
I
Ingo Molnar 已提交
5142
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5143

5144
inline void perf_swevent_put_recursion_context(int rctx)
5145
{
5146
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5147

5148
	put_recursion_context(swhash->recursion, rctx);
5149
}
5150

5151
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5152
{
5153
	struct perf_sample_data data;
5154 5155
	int rctx;

5156
	preempt_disable_notrace();
5157 5158 5159
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5160

5161
	perf_sample_data_init(&data, addr, 0);
5162

5163
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5164 5165

	perf_swevent_put_recursion_context(rctx);
5166
	preempt_enable_notrace();
5167 5168
}

5169
static void perf_swevent_read(struct perf_event *event)
5170 5171 5172
{
}

P
Peter Zijlstra 已提交
5173
static int perf_swevent_add(struct perf_event *event, int flags)
5174
{
5175
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5176
	struct hw_perf_event *hwc = &event->hw;
5177 5178
	struct hlist_head *head;

5179
	if (is_sampling_event(event)) {
5180
		hwc->last_period = hwc->sample_period;
5181
		perf_swevent_set_period(event);
5182
	}
5183

P
Peter Zijlstra 已提交
5184 5185
	hwc->state = !(flags & PERF_EF_START);

5186
	head = find_swevent_head(swhash, event);
5187 5188 5189 5190 5191
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5192 5193 5194
	return 0;
}

P
Peter Zijlstra 已提交
5195
static void perf_swevent_del(struct perf_event *event, int flags)
5196
{
5197
	hlist_del_rcu(&event->hlist_entry);
5198 5199
}

P
Peter Zijlstra 已提交
5200
static void perf_swevent_start(struct perf_event *event, int flags)
5201
{
P
Peter Zijlstra 已提交
5202
	event->hw.state = 0;
5203
}
I
Ingo Molnar 已提交
5204

P
Peter Zijlstra 已提交
5205
static void perf_swevent_stop(struct perf_event *event, int flags)
5206
{
P
Peter Zijlstra 已提交
5207
	event->hw.state = PERF_HES_STOPPED;
5208 5209
}

5210 5211
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5212
swevent_hlist_deref(struct swevent_htable *swhash)
5213
{
5214 5215
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5216 5217
}

5218
static void swevent_hlist_release(struct swevent_htable *swhash)
5219
{
5220
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5221

5222
	if (!hlist)
5223 5224
		return;

5225
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5226
	kfree_rcu(hlist, rcu_head);
5227 5228 5229 5230
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5231
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5232

5233
	mutex_lock(&swhash->hlist_mutex);
5234

5235 5236
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5237

5238
	mutex_unlock(&swhash->hlist_mutex);
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5256
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5257 5258
	int err = 0;

5259
	mutex_lock(&swhash->hlist_mutex);
5260

5261
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5262 5263 5264 5265 5266 5267 5268
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5269
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5270
	}
5271
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5272
exit:
5273
	mutex_unlock(&swhash->hlist_mutex);
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5297
fail:
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5308
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5309

5310 5311 5312
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5313

5314 5315
	WARN_ON(event->parent);

5316
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5327 5328 5329 5330 5331 5332
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5333 5334 5335 5336 5337 5338 5339 5340 5341
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5342
	if (event_id >= PERF_COUNT_SW_MAX)
5343 5344 5345 5346 5347 5348 5349 5350 5351
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5352
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5353 5354 5355 5356 5357 5358
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5359 5360 5361 5362 5363
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5364
static struct pmu perf_swevent = {
5365
	.task_ctx_nr	= perf_sw_context,
5366

5367
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5368 5369 5370 5371
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5372
	.read		= perf_swevent_read,
5373 5374

	.event_idx	= perf_swevent_event_idx,
5375 5376
};

5377 5378
#ifdef CONFIG_EVENT_TRACING

5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5393 5394
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5395 5396 5397 5398
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5399 5400 5401 5402 5403 5404 5405 5406 5407
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5408 5409
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5410 5411
{
	struct perf_sample_data data;
5412 5413 5414
	struct perf_event *event;
	struct hlist_node *node;

5415 5416 5417 5418 5419
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5420
	perf_sample_data_init(&data, addr, 0);
5421 5422
	data.raw = &raw;

5423 5424
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5425
			perf_swevent_event(event, count, &data, regs);
5426
	}
5427

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5453
	perf_swevent_put_recursion_context(rctx);
5454 5455 5456
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5457
static void tp_perf_event_destroy(struct perf_event *event)
5458
{
5459
	perf_trace_destroy(event);
5460 5461
}

5462
static int perf_tp_event_init(struct perf_event *event)
5463
{
5464 5465
	int err;

5466 5467 5468
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5469 5470 5471 5472 5473 5474
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5475 5476
	err = perf_trace_init(event);
	if (err)
5477
		return err;
5478

5479
	event->destroy = tp_perf_event_destroy;
5480

5481 5482 5483 5484
	return 0;
}

static struct pmu perf_tracepoint = {
5485 5486
	.task_ctx_nr	= perf_sw_context,

5487
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5488 5489 5490 5491
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5492
	.read		= perf_swevent_read,
5493 5494

	.event_idx	= perf_swevent_event_idx,
5495 5496 5497 5498
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5499
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5500
}
L
Li Zefan 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5525
#else
L
Li Zefan 已提交
5526

5527
static inline void perf_tp_register(void)
5528 5529
{
}
L
Li Zefan 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5540
#endif /* CONFIG_EVENT_TRACING */
5541

5542
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5543
void perf_bp_event(struct perf_event *bp, void *data)
5544
{
5545 5546 5547
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5548
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5549

P
Peter Zijlstra 已提交
5550
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5551
		perf_swevent_event(bp, 1, &sample, regs);
5552 5553 5554
}
#endif

5555 5556 5557
/*
 * hrtimer based swevent callback
 */
5558

5559
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5560
{
5561 5562 5563 5564 5565
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5566

5567
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5568 5569 5570 5571

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5572
	event->pmu->read(event);
5573

5574
	perf_sample_data_init(&data, 0, event->hw.last_period);
5575 5576 5577
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5578
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5579
			if (__perf_event_overflow(event, 1, &data, regs))
5580 5581
				ret = HRTIMER_NORESTART;
	}
5582

5583 5584
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5585

5586
	return ret;
5587 5588
}

5589
static void perf_swevent_start_hrtimer(struct perf_event *event)
5590
{
5591
	struct hw_perf_event *hwc = &event->hw;
5592 5593 5594 5595
	s64 period;

	if (!is_sampling_event(event))
		return;
5596

5597 5598 5599 5600
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5601

5602 5603 5604 5605 5606
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5607
				ns_to_ktime(period), 0,
5608
				HRTIMER_MODE_REL_PINNED, 0);
5609
}
5610 5611

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5612
{
5613 5614
	struct hw_perf_event *hwc = &event->hw;

5615
	if (is_sampling_event(event)) {
5616
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5617
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5618 5619 5620

		hrtimer_cancel(&hwc->hrtimer);
	}
5621 5622
}

P
Peter Zijlstra 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5647 5648 5649 5650 5651
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5652
{
5653 5654 5655
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5656
	now = local_clock();
5657 5658
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5659 5660
}

P
Peter Zijlstra 已提交
5661
static void cpu_clock_event_start(struct perf_event *event, int flags)
5662
{
P
Peter Zijlstra 已提交
5663
	local64_set(&event->hw.prev_count, local_clock());
5664 5665 5666
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5667
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5668
{
5669 5670 5671
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5672

P
Peter Zijlstra 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5686 5687 5688 5689
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5690

5691 5692 5693 5694 5695 5696 5697 5698
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5699 5700 5701 5702 5703 5704
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5705 5706
	perf_swevent_init_hrtimer(event);

5707
	return 0;
5708 5709
}

5710
static struct pmu perf_cpu_clock = {
5711 5712
	.task_ctx_nr	= perf_sw_context,

5713
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5714 5715 5716 5717
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5718
	.read		= cpu_clock_event_read,
5719 5720

	.event_idx	= perf_swevent_event_idx,
5721 5722 5723 5724 5725 5726 5727
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5728
{
5729 5730
	u64 prev;
	s64 delta;
5731

5732 5733 5734 5735
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5736

P
Peter Zijlstra 已提交
5737
static void task_clock_event_start(struct perf_event *event, int flags)
5738
{
P
Peter Zijlstra 已提交
5739
	local64_set(&event->hw.prev_count, event->ctx->time);
5740 5741 5742
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5743
static void task_clock_event_stop(struct perf_event *event, int flags)
5744 5745 5746
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5747 5748 5749 5750 5751 5752
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5753

P
Peter Zijlstra 已提交
5754 5755 5756 5757 5758 5759
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5760 5761 5762 5763
}

static void task_clock_event_read(struct perf_event *event)
{
5764 5765 5766
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5767 5768 5769 5770 5771

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5772
{
5773 5774 5775 5776 5777 5778
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5779 5780 5781 5782 5783 5784
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5785 5786
	perf_swevent_init_hrtimer(event);

5787
	return 0;
L
Li Zefan 已提交
5788 5789
}

5790
static struct pmu perf_task_clock = {
5791 5792
	.task_ctx_nr	= perf_sw_context,

5793
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5794 5795 5796 5797
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5798
	.read		= task_clock_event_read,
5799 5800

	.event_idx	= perf_swevent_event_idx,
5801
};
L
Li Zefan 已提交
5802

P
Peter Zijlstra 已提交
5803
static void perf_pmu_nop_void(struct pmu *pmu)
5804 5805
{
}
L
Li Zefan 已提交
5806

P
Peter Zijlstra 已提交
5807
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5808
{
P
Peter Zijlstra 已提交
5809
	return 0;
L
Li Zefan 已提交
5810 5811
}

P
Peter Zijlstra 已提交
5812
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5813
{
P
Peter Zijlstra 已提交
5814
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5815 5816
}

P
Peter Zijlstra 已提交
5817 5818 5819 5820 5821
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5822

P
Peter Zijlstra 已提交
5823
static void perf_pmu_cancel_txn(struct pmu *pmu)
5824
{
P
Peter Zijlstra 已提交
5825
	perf_pmu_enable(pmu);
5826 5827
}

5828 5829 5830 5831 5832
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5833 5834 5835 5836 5837
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5838
{
P
Peter Zijlstra 已提交
5839
	struct pmu *pmu;
5840

P
Peter Zijlstra 已提交
5841 5842
	if (ctxn < 0)
		return NULL;
5843

P
Peter Zijlstra 已提交
5844 5845 5846 5847
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5848

P
Peter Zijlstra 已提交
5849
	return NULL;
5850 5851
}

5852
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5853
{
5854 5855 5856 5857 5858 5859 5860
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5861 5862
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5863 5864 5865 5866 5867 5868
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5869

P
Peter Zijlstra 已提交
5870
	mutex_lock(&pmus_lock);
5871
	/*
P
Peter Zijlstra 已提交
5872
	 * Like a real lame refcount.
5873
	 */
5874 5875 5876
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5877
			goto out;
5878
		}
P
Peter Zijlstra 已提交
5879
	}
5880

5881
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5882 5883
out:
	mutex_unlock(&pmus_lock);
5884
}
P
Peter Zijlstra 已提交
5885
static struct idr pmu_idr;
5886

P
Peter Zijlstra 已提交
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5919
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5940
static struct lock_class_key cpuctx_mutex;
5941
static struct lock_class_key cpuctx_lock;
5942

P
Peter Zijlstra 已提交
5943
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5944
{
P
Peter Zijlstra 已提交
5945
	int cpu, ret;
5946

5947
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5948 5949 5950 5951
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5952

P
Peter Zijlstra 已提交
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5971 5972 5973 5974 5975 5976
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5977
skip_type:
P
Peter Zijlstra 已提交
5978 5979 5980
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5981

P
Peter Zijlstra 已提交
5982 5983
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5984
		goto free_dev;
5985

P
Peter Zijlstra 已提交
5986 5987 5988 5989
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5990
		__perf_event_init_context(&cpuctx->ctx);
5991
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5992
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5993
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5994
		cpuctx->ctx.pmu = pmu;
5995 5996
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5997
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
5998
	}
5999

P
Peter Zijlstra 已提交
6000
got_cpu_context:
P
Peter Zijlstra 已提交
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6015
		}
6016
	}
6017

P
Peter Zijlstra 已提交
6018 6019 6020 6021 6022
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6023 6024 6025
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6026
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6027 6028
	ret = 0;
unlock:
6029 6030
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6031
	return ret;
P
Peter Zijlstra 已提交
6032

P
Peter Zijlstra 已提交
6033 6034 6035 6036
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6037 6038 6039 6040
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6041 6042 6043
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6044 6045
}

6046
void perf_pmu_unregister(struct pmu *pmu)
6047
{
6048 6049 6050
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6051

6052
	/*
P
Peter Zijlstra 已提交
6053 6054
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6055
	 */
6056
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6057
	synchronize_rcu();
6058

P
Peter Zijlstra 已提交
6059
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6060 6061
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6062 6063
	device_del(pmu->dev);
	put_device(pmu->dev);
6064
	free_pmu_context(pmu);
6065
}
6066

6067 6068 6069 6070
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6071
	int ret;
6072 6073

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6074 6075 6076 6077

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6078
	if (pmu) {
6079
		event->pmu = pmu;
6080 6081 6082
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6083
		goto unlock;
6084
	}
P
Peter Zijlstra 已提交
6085

6086
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6087
		event->pmu = pmu;
6088
		ret = pmu->event_init(event);
6089
		if (!ret)
P
Peter Zijlstra 已提交
6090
			goto unlock;
6091

6092 6093
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6094
			goto unlock;
6095
		}
6096
	}
P
Peter Zijlstra 已提交
6097 6098
	pmu = ERR_PTR(-ENOENT);
unlock:
6099
	srcu_read_unlock(&pmus_srcu, idx);
6100

6101
	return pmu;
6102 6103
}

T
Thomas Gleixner 已提交
6104
/*
6105
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6106
 */
6107
static struct perf_event *
6108
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6109 6110 6111
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6112 6113
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6114
{
P
Peter Zijlstra 已提交
6115
	struct pmu *pmu;
6116 6117
	struct perf_event *event;
	struct hw_perf_event *hwc;
6118
	long err;
T
Thomas Gleixner 已提交
6119

6120 6121 6122 6123 6124
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6125
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6126
	if (!event)
6127
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6128

6129
	/*
6130
	 * Single events are their own group leaders, with an
6131 6132 6133
	 * empty sibling list:
	 */
	if (!group_leader)
6134
		group_leader = event;
6135

6136 6137
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6138

6139 6140 6141
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6142 6143
	INIT_LIST_HEAD(&event->rb_entry);

6144
	init_waitqueue_head(&event->waitq);
6145
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6146

6147
	mutex_init(&event->mmap_mutex);
6148

6149
	atomic_long_set(&event->refcount, 1);
6150 6151 6152 6153 6154
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6155

6156
	event->parent		= parent_event;
6157

6158
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6159
	event->id		= atomic64_inc_return(&perf_event_id);
6160

6161
	event->state		= PERF_EVENT_STATE_INACTIVE;
6162

6163 6164
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6165 6166 6167

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6168 6169 6170 6171
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6172
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6173 6174 6175 6176
			event->hw.bp_target = task;
#endif
	}

6177
	if (!overflow_handler && parent_event) {
6178
		overflow_handler = parent_event->overflow_handler;
6179 6180
		context = parent_event->overflow_handler_context;
	}
6181

6182
	event->overflow_handler	= overflow_handler;
6183
	event->overflow_handler_context = context;
6184

6185
	if (attr->disabled)
6186
		event->state = PERF_EVENT_STATE_OFF;
6187

6188
	pmu = NULL;
6189

6190
	hwc = &event->hw;
6191
	hwc->sample_period = attr->sample_period;
6192
	if (attr->freq && attr->sample_freq)
6193
		hwc->sample_period = 1;
6194
	hwc->last_period = hwc->sample_period;
6195

6196
	local64_set(&hwc->period_left, hwc->sample_period);
6197

6198
	/*
6199
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6200
	 */
6201
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6202 6203
		goto done;

6204
	pmu = perf_init_event(event);
6205

6206 6207
done:
	err = 0;
6208
	if (!pmu)
6209
		err = -EINVAL;
6210 6211
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6212

6213
	if (err) {
6214 6215 6216
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6217
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6218
	}
6219

6220
	if (!event->parent) {
6221
		if (event->attach_state & PERF_ATTACH_TASK)
6222
			static_key_slow_inc(&perf_sched_events.key);
6223
		if (event->attr.mmap || event->attr.mmap_data)
6224 6225 6226 6227 6228
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6229 6230 6231 6232 6233 6234 6235
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6236 6237 6238 6239 6240 6241
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6242
	}
6243

6244
	return event;
T
Thomas Gleixner 已提交
6245 6246
}

6247 6248
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6249 6250
{
	u32 size;
6251
	int ret;
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6276 6277 6278
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6279 6280
	 */
	if (size > sizeof(*attr)) {
6281 6282 6283
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6284

6285 6286
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6287

6288
		for (; addr < end; addr++) {
6289 6290 6291 6292 6293 6294
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6295
		size = sizeof(*attr);
6296 6297 6298 6299 6300 6301
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6302
	if (attr->__reserved_1)
6303 6304 6305 6306 6307 6308 6309 6310
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6345

6346
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6347
		ret = perf_reg_validate(attr->sample_regs_user);
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6366

6367 6368 6369 6370 6371 6372 6373 6374 6375
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6376 6377
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6378
{
6379
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6380 6381
	int ret = -EINVAL;

6382
	if (!output_event)
6383 6384
		goto set;

6385 6386
	/* don't allow circular references */
	if (event == output_event)
6387 6388
		goto out;

6389 6390 6391 6392 6393 6394 6395
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6396
	 * If its not a per-cpu rb, it must be the same task.
6397 6398 6399 6400
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6401
set:
6402
	mutex_lock(&event->mmap_mutex);
6403 6404 6405
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6406

6407
	if (output_event) {
6408 6409 6410
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6411
			goto unlock;
6412 6413
	}

6414 6415
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6416 6417
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6418
	ret = 0;
6419 6420 6421
unlock:
	mutex_unlock(&event->mmap_mutex);

6422 6423
	if (old_rb)
		ring_buffer_put(old_rb);
6424 6425 6426 6427
out:
	return ret;
}

T
Thomas Gleixner 已提交
6428
/**
6429
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6430
 *
6431
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6432
 * @pid:		target pid
I
Ingo Molnar 已提交
6433
 * @cpu:		target cpu
6434
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6435
 */
6436 6437
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6438
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6439
{
6440 6441
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6442 6443 6444
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6445
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6446
	struct task_struct *task = NULL;
6447
	struct pmu *pmu;
6448
	int event_fd;
6449
	int move_group = 0;
6450
	int err;
T
Thomas Gleixner 已提交
6451

6452
	/* for future expandability... */
S
Stephane Eranian 已提交
6453
	if (flags & ~PERF_FLAG_ALL)
6454 6455
		return -EINVAL;

6456 6457 6458
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6459

6460 6461 6462 6463 6464
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6465
	if (attr.freq) {
6466
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6467 6468 6469
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6479
	event_fd = get_unused_fd();
6480 6481 6482
	if (event_fd < 0)
		return event_fd;

6483
	if (group_fd != -1) {
6484 6485
		err = perf_fget_light(group_fd, &group);
		if (err)
6486
			goto err_fd;
6487
		group_leader = group.file->private_data;
6488 6489 6490 6491 6492 6493
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6494
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6495 6496 6497 6498 6499 6500 6501
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6502 6503
	get_online_cpus();

6504 6505
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6506 6507
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6508
		goto err_task;
6509 6510
	}

S
Stephane Eranian 已提交
6511 6512 6513 6514
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6515 6516 6517 6518 6519 6520
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6521
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6522 6523
	}

6524 6525 6526 6527 6528
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6552 6553 6554 6555

	/*
	 * Get the target context (task or percpu):
	 */
6556
	ctx = find_get_context(pmu, task, event->cpu);
6557 6558
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6559
		goto err_alloc;
6560 6561
	}

6562 6563 6564 6565 6566
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6567
	/*
6568
	 * Look up the group leader (we will attach this event to it):
6569
	 */
6570
	if (group_leader) {
6571
		err = -EINVAL;
6572 6573

		/*
I
Ingo Molnar 已提交
6574 6575 6576 6577
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6578
			goto err_context;
I
Ingo Molnar 已提交
6579 6580 6581
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6582
		 */
6583 6584 6585 6586 6587 6588 6589 6590
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6591 6592 6593
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6594
		if (attr.exclusive || attr.pinned)
6595
			goto err_context;
6596 6597 6598 6599 6600
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6601
			goto err_context;
6602
	}
T
Thomas Gleixner 已提交
6603

6604 6605 6606
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6607
		goto err_context;
6608
	}
6609

6610 6611 6612 6613
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6614
		perf_remove_from_context(group_leader);
6615 6616
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6617
			perf_remove_from_context(sibling);
6618 6619 6620 6621
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6622
	}
6623

6624
	WARN_ON_ONCE(ctx->parent_ctx);
6625
	mutex_lock(&ctx->mutex);
6626 6627

	if (move_group) {
6628
		synchronize_rcu();
6629
		perf_install_in_context(ctx, group_leader, event->cpu);
6630 6631 6632
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6633
			perf_install_in_context(ctx, sibling, event->cpu);
6634 6635 6636 6637
			get_ctx(ctx);
		}
	}

6638
	perf_install_in_context(ctx, event, event->cpu);
6639
	++ctx->generation;
6640
	perf_unpin_context(ctx);
6641
	mutex_unlock(&ctx->mutex);
6642

6643 6644
	put_online_cpus();

6645
	event->owner = current;
P
Peter Zijlstra 已提交
6646

6647 6648 6649
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6650

6651 6652 6653 6654
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6655
	perf_event__id_header_size(event);
6656

6657 6658 6659 6660 6661 6662
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6663
	fdput(group);
6664 6665
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6666

6667
err_context:
6668
	perf_unpin_context(ctx);
6669
	put_ctx(ctx);
6670
err_alloc:
6671
	free_event(event);
P
Peter Zijlstra 已提交
6672
err_task:
6673
	put_online_cpus();
P
Peter Zijlstra 已提交
6674 6675
	if (task)
		put_task_struct(task);
6676
err_group_fd:
6677
	fdput(group);
6678 6679
err_fd:
	put_unused_fd(event_fd);
6680
	return err;
T
Thomas Gleixner 已提交
6681 6682
}

6683 6684 6685 6686 6687
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6688
 * @task: task to profile (NULL for percpu)
6689 6690 6691
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6692
				 struct task_struct *task,
6693 6694
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6695 6696
{
	struct perf_event_context *ctx;
6697
	struct perf_event *event;
6698
	int err;
6699

6700 6701 6702
	/*
	 * Get the target context (task or percpu):
	 */
6703

6704 6705
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6706 6707 6708 6709
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6710

M
Matt Helsley 已提交
6711
	ctx = find_get_context(event->pmu, task, cpu);
6712 6713
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6714
		goto err_free;
6715
	}
6716 6717 6718 6719 6720

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6721
	perf_unpin_context(ctx);
6722 6723 6724 6725
	mutex_unlock(&ctx->mutex);

	return event;

6726 6727 6728
err_free:
	free_event(event);
err:
6729
	return ERR_PTR(err);
6730
}
6731
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6732

6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6766
static void sync_child_event(struct perf_event *child_event,
6767
			       struct task_struct *child)
6768
{
6769
	struct perf_event *parent_event = child_event->parent;
6770
	u64 child_val;
6771

6772 6773
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6774

P
Peter Zijlstra 已提交
6775
	child_val = perf_event_count(child_event);
6776 6777 6778 6779

	/*
	 * Add back the child's count to the parent's count:
	 */
6780
	atomic64_add(child_val, &parent_event->child_count);
6781 6782 6783 6784
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6785 6786

	/*
6787
	 * Remove this event from the parent's list
6788
	 */
6789 6790 6791 6792
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6793 6794

	/*
6795
	 * Release the parent event, if this was the last
6796 6797
	 * reference to it.
	 */
6798
	put_event(parent_event);
6799 6800
}

6801
static void
6802 6803
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6804
			 struct task_struct *child)
6805
{
6806 6807 6808 6809 6810
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6811

6812
	perf_remove_from_context(child_event);
6813

6814
	/*
6815
	 * It can happen that the parent exits first, and has events
6816
	 * that are still around due to the child reference. These
6817
	 * events need to be zapped.
6818
	 */
6819
	if (child_event->parent) {
6820 6821
		sync_child_event(child_event, child);
		free_event(child_event);
6822
	}
6823 6824
}

P
Peter Zijlstra 已提交
6825
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6826
{
6827 6828
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6829
	unsigned long flags;
6830

P
Peter Zijlstra 已提交
6831
	if (likely(!child->perf_event_ctxp[ctxn])) {
6832
		perf_event_task(child, NULL, 0);
6833
		return;
P
Peter Zijlstra 已提交
6834
	}
6835

6836
	local_irq_save(flags);
6837 6838 6839 6840 6841 6842
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6843
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6844 6845 6846

	/*
	 * Take the context lock here so that if find_get_context is
6847
	 * reading child->perf_event_ctxp, we wait until it has
6848 6849
	 * incremented the context's refcount before we do put_ctx below.
	 */
6850
	raw_spin_lock(&child_ctx->lock);
6851
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6852
	child->perf_event_ctxp[ctxn] = NULL;
6853 6854 6855
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6856
	 * the events from it.
6857 6858
	 */
	unclone_ctx(child_ctx);
6859
	update_context_time(child_ctx);
6860
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6861 6862

	/*
6863 6864 6865
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6866
	 */
6867
	perf_event_task(child, child_ctx, 0);
6868

6869 6870 6871
	/*
	 * We can recurse on the same lock type through:
	 *
6872 6873
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6874 6875
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6876 6877 6878
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6879
	mutex_lock(&child_ctx->mutex);
6880

6881
again:
6882 6883 6884 6885 6886
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6887
				 group_entry)
6888
		__perf_event_exit_task(child_event, child_ctx, child);
6889 6890

	/*
6891
	 * If the last event was a group event, it will have appended all
6892 6893 6894
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6895 6896
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6897
		goto again;
6898 6899 6900 6901

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6902 6903
}

P
Peter Zijlstra 已提交
6904 6905 6906 6907 6908
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6909
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6910 6911
	int ctxn;

P
Peter Zijlstra 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6927 6928 6929 6930
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6943
	put_event(parent);
6944

6945
	perf_group_detach(event);
6946 6947 6948 6949
	list_del_event(event, ctx);
	free_event(event);
}

6950 6951
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6952
 * perf_event_init_task below, used by fork() in case of fail.
6953
 */
6954
void perf_event_free_task(struct task_struct *task)
6955
{
P
Peter Zijlstra 已提交
6956
	struct perf_event_context *ctx;
6957
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6958
	int ctxn;
6959

P
Peter Zijlstra 已提交
6960 6961 6962 6963
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6964

P
Peter Zijlstra 已提交
6965
		mutex_lock(&ctx->mutex);
6966
again:
P
Peter Zijlstra 已提交
6967 6968 6969
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6970

P
Peter Zijlstra 已提交
6971 6972 6973
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6974

P
Peter Zijlstra 已提交
6975 6976 6977
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6978

P
Peter Zijlstra 已提交
6979
		mutex_unlock(&ctx->mutex);
6980

P
Peter Zijlstra 已提交
6981 6982
		put_ctx(ctx);
	}
6983 6984
}

6985 6986 6987 6988 6989 6990 6991 6992
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7005
	unsigned long flags;
P
Peter Zijlstra 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7018
					   child,
P
Peter Zijlstra 已提交
7019
					   group_leader, parent_event,
7020
				           NULL, NULL);
P
Peter Zijlstra 已提交
7021 7022
	if (IS_ERR(child_event))
		return child_event;
7023 7024 7025 7026 7027 7028

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7053 7054
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7055

7056 7057 7058 7059
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7060
	perf_event__id_header_size(child_event);
7061

P
Peter Zijlstra 已提交
7062 7063 7064
	/*
	 * Link it up in the child's context:
	 */
7065
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7066
	add_event_to_ctx(child_event, child_ctx);
7067
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7101 7102 7103 7104 7105
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7106
		   struct task_struct *child, int ctxn,
7107 7108 7109
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7110
	struct perf_event_context *child_ctx;
7111 7112 7113 7114

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7115 7116
	}

7117
	child_ctx = child->perf_event_ctxp[ctxn];
7118 7119 7120 7121 7122 7123 7124
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7125

7126
		child_ctx = alloc_perf_context(event->pmu, child);
7127 7128
		if (!child_ctx)
			return -ENOMEM;
7129

P
Peter Zijlstra 已提交
7130
		child->perf_event_ctxp[ctxn] = child_ctx;
7131 7132 7133 7134 7135 7136 7137 7138 7139
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7140 7141
}

7142
/*
7143
 * Initialize the perf_event context in task_struct
7144
 */
P
Peter Zijlstra 已提交
7145
int perf_event_init_context(struct task_struct *child, int ctxn)
7146
{
7147
	struct perf_event_context *child_ctx, *parent_ctx;
7148 7149
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7150
	struct task_struct *parent = current;
7151
	int inherited_all = 1;
7152
	unsigned long flags;
7153
	int ret = 0;
7154

P
Peter Zijlstra 已提交
7155
	if (likely(!parent->perf_event_ctxp[ctxn]))
7156 7157
		return 0;

7158
	/*
7159 7160
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7161
	 */
P
Peter Zijlstra 已提交
7162
	parent_ctx = perf_pin_task_context(parent, ctxn);
7163

7164 7165 7166 7167 7168 7169 7170
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7171 7172 7173 7174
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7175
	mutex_lock(&parent_ctx->mutex);
7176 7177 7178 7179 7180

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7181
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7182 7183
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7184 7185 7186
		if (ret)
			break;
	}
7187

7188 7189 7190 7191 7192 7193 7194 7195 7196
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7197
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7198 7199
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7200
		if (ret)
7201
			break;
7202 7203
	}

7204 7205 7206
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7207
	child_ctx = child->perf_event_ctxp[ctxn];
7208

7209
	if (child_ctx && inherited_all) {
7210 7211 7212
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7213 7214 7215
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7216
		 */
P
Peter Zijlstra 已提交
7217
		cloned_ctx = parent_ctx->parent_ctx;
7218 7219
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7220
			child_ctx->parent_gen = parent_ctx->parent_gen;
7221 7222 7223 7224 7225
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7226 7227
	}

P
Peter Zijlstra 已提交
7228
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7229
	mutex_unlock(&parent_ctx->mutex);
7230

7231
	perf_unpin_context(parent_ctx);
7232
	put_ctx(parent_ctx);
7233

7234
	return ret;
7235 7236
}

P
Peter Zijlstra 已提交
7237 7238 7239 7240 7241 7242 7243
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7244 7245 7246 7247
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7257 7258
static void __init perf_event_init_all_cpus(void)
{
7259
	struct swevent_htable *swhash;
7260 7261 7262
	int cpu;

	for_each_possible_cpu(cpu) {
7263 7264
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7265
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7266 7267 7268
	}
}

7269
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7270
{
P
Peter Zijlstra 已提交
7271
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7272

7273
	mutex_lock(&swhash->hlist_mutex);
7274
	if (swhash->hlist_refcount > 0) {
7275 7276
		struct swevent_hlist *hlist;

7277 7278 7279
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7280
	}
7281
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7282 7283
}

P
Peter Zijlstra 已提交
7284
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7285
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7286
{
7287 7288 7289 7290 7291 7292 7293
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7294
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7295
{
P
Peter Zijlstra 已提交
7296
	struct perf_event_context *ctx = __info;
7297
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7298

P
Peter Zijlstra 已提交
7299
	perf_pmu_rotate_stop(ctx->pmu);
7300

7301
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7302
		__perf_remove_from_context(event);
7303
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7304
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7305
}
P
Peter Zijlstra 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7315
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7316 7317 7318 7319 7320 7321 7322 7323

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7324
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7325
{
7326
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7327

7328 7329 7330
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7331

P
Peter Zijlstra 已提交
7332
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7333 7334
}
#else
7335
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7336 7337
#endif

P
Peter Zijlstra 已提交
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7358 7359 7360 7361 7362
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7363
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7364 7365

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7366
	case CPU_DOWN_FAILED:
7367
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7368 7369
		break;

P
Peter Zijlstra 已提交
7370
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7371
	case CPU_DOWN_PREPARE:
7372
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7382
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7383
{
7384 7385
	int ret;

P
Peter Zijlstra 已提交
7386 7387
	idr_init(&pmu_idr);

7388
	perf_event_init_all_cpus();
7389
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7390 7391 7392
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7393 7394
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7395
	register_reboot_notifier(&perf_reboot_notifier);
7396 7397 7398

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7399 7400 7401

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7402 7403 7404 7405 7406 7407 7408

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7409
}
P
Peter Zijlstra 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7438 7439

#ifdef CONFIG_CGROUP_PERF
7440
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7441 7442 7443
{
	struct perf_cgroup *jc;

7444
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7457
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7473
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7474
{
7475 7476 7477 7478
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7479 7480
}

7481 7482
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7483 7484 7485 7486 7487 7488 7489 7490 7491
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7492
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7493 7494 7495
}

struct cgroup_subsys perf_subsys = {
7496 7497
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7498 7499
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7500
	.exit		= perf_cgroup_exit,
7501
	.attach		= perf_cgroup_attach,
7502 7503 7504 7505 7506 7507 7508

	/*
	 * perf_event cgroup doesn't handle nesting correctly.
	 * ctx->nr_cgroups adjustments should be propagated through the
	 * cgroup hierarchy.  Fix it and remove the following.
	 */
	.broken_hierarchy = true,
S
Stephane Eranian 已提交
7509 7510
};
#endif /* CONFIG_CGROUP_PERF */