intel_pstate.c 22.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

#define SAMPLE_COUNT		3

37 38 39
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
40
#define BYT_TURBO_VIDS		0x66d
41

42

43
#define FRAC_BITS 8
44 45
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
46

47 48 49 50 51 52 53 54 55 56 57 58

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
59
	int32_t core_pct_busy;
60 61 62
	u64 aperf;
	u64 mperf;
	int freq;
63
	ktime_t time;
64 65 66 67 68 69 70 71 72
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

73
struct vid_data {
74 75 76
	int min;
	int max;
	int turbo;
77 78 79
	int32_t ratio;
};

80 81 82 83 84 85 86
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
87
	int32_t last_err;
88 89 90 91 92 93 94 95 96 97
};

struct cpudata {
	int cpu;

	char name[64];

	struct timer_list timer;

	struct pstate_data pstate;
98
	struct vid_data vid;
99 100
	struct _pid pid;

101
	ktime_t last_sample_time;
102 103
	u64	prev_aperf;
	u64	prev_mperf;
104
	struct sample sample;
105 106 107 108 109 110 111 112 113 114 115 116
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

117 118 119 120
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
121 122
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
123 124
};

125 126 127
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
128 129
};

130 131 132
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

133 134 135 136 137 138
struct perf_limits {
	int no_turbo;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
139 140
	int max_policy_pct;
	int max_sysfs_pct;
141 142 143 144 145 146 147 148
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
149 150
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
151 152 153 154 155 156 157
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
158
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

177
static signed int pid_calc(struct _pid *pid, int32_t busy)
178
{
179
	signed int result;
180 181 182
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

183
	fp_error = int_tofp(pid->setpoint) - busy;
184

185
	if (abs(fp_error) <= int_tofp(pid->deadband))
186 187 188 189 190 191 192 193 194 195 196 197 198
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

199 200
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
201 202

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
203 204 205 206
	if (result >= 0)
		result = result + (1 << (FRAC_BITS-1));
	else
		result = result - (1 << (FRAC_BITS-1));
207 208 209 210 211
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
212 213 214
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
215 216

	pid_reset(&cpu->pid,
217
		pid_params.setpoint,
218
		100,
219
		pid_params.deadband,
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
253 254 255 256 257 258
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

310 311
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
363 364 365 366
static int byt_get_min_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
367
	return (value >> 8) & 0x3F;
368 369 370 371 372 373
}

static int byt_get_max_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
374
	return (value >> 16) & 0x3F;
375
}
376

377 378 379 380 381 382 383
static int byt_get_turbo_pstate(void)
{
	u64 value;
	rdmsrl(BYT_TURBO_RATIOS, value);
	return value & 0x3F;
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

401 402 403
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

404 405 406 407 408 409 410 411 412
	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

413

414
	rdmsrl(BYT_VIDS, value);
415 416
	cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
417 418 419 420
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
421 422 423

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
424 425 426
}


427
static int core_get_min_pstate(void)
428 429
{
	u64 value;
430
	rdmsrl(MSR_PLATFORM_INFO, value);
431 432 433
	return (value >> 40) & 0xFF;
}

434
static int core_get_max_pstate(void)
435 436
{
	u64 value;
437
	rdmsrl(MSR_PLATFORM_INFO, value);
438 439 440
	return (value >> 8) & 0xFF;
}

441
static int core_get_turbo_pstate(void)
442 443 444
{
	u64 value;
	int nont, ret;
445
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
446
	nont = core_get_max_pstate();
447 448 449 450 451 452
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

453
static void core_set_pstate(struct cpudata *cpudata, int pstate)
454 455 456 457 458 459 460
{
	u64 val;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

461
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

481 482 483 484 485 486 487 488 489 490 491 492
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
493
		.get_turbo = byt_get_turbo_pstate,
494 495
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
496 497 498 499
	},
};


500 501 502
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
503
	int max_perf_adj;
504 505 506 507
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

508 509
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
529

530 531
	cpu->pstate.current_pstate = pstate;

532
	pstate_funcs.set(cpu, pstate);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	sprintf(cpu->name, "Intel 2nd generation core");

554 555 556
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
557

558 559
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
560
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
561 562 563 564 565
}

static inline void intel_pstate_calc_busy(struct cpudata *cpu,
					struct sample *sample)
{
566
	int32_t core_pct;
567

568 569 570 571
	core_pct = div_fp(int_tofp((sample->aperf)),
			int_tofp((sample->mperf)));
	core_pct = mul_fp(core_pct, int_tofp(100));

572
	sample->freq = fp_toint(
573
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
574

575
	sample->core_pct_busy = core_pct;
576 577 578 579 580 581 582 583
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
584

585 586 587
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;

588 589
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
590 591 592 593
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
594

595
	intel_pstate_calc_busy(cpu, &cpu->sample);
596 597 598 599 600 601 602 603 604

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

605
	sample_time = pid_params.sample_rate_ms;
606 607 608 609
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

610
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
611
{
612 613 614
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	u32 duration_us;
	u32 sample_time;
615

616
	core_busy = cpu->sample.core_pct_busy;
617
	max_pstate = int_tofp(cpu->pstate.max_pstate);
618
	current_pstate = int_tofp(cpu->pstate.current_pstate);
619
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
620 621 622 623 624 625 626 627 628 629

	sample_time = (pid_params.sample_rate_ms  * USEC_PER_MSEC);
	duration_us = (u32) ktime_us_delta(cpu->sample.time,
					cpu->last_sample_time);
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
				int_tofp(duration_us));
		core_busy = mul_fp(core_busy, sample_ratio);
	}

630
	return core_busy;
631 632 633 634
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
635
	int32_t busy_scaled;
636 637 638 639 640 641 642 643 644 645
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
646

647 648 649 650 651 652 653 654 655
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
656
	struct sample *sample;
657 658

	intel_pstate_sample(cpu);
659

660
	sample = &cpu->sample;
661

662
	intel_pstate_adjust_busy_pstate(cpu);
663 664 665 666 667 668 669 670

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

671 672 673 674
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
675 676
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
677 678

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
679 680
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
681
	ICPU(0x37, byt_params),
682 683 684 685 686 687
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{

	const struct x86_cpu_id *id;
	struct cpudata *cpu;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	intel_pstate_get_cpu_pstates(cpu);

	cpu->cpu = cpunum;
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
735
	sample = &cpu->sample;
736 737 738 739 740 741 742 743 744
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

745 746 747
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

748 749 750 751 752 753
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
754
		return 0;
755
	}
756 757 758 759
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

760 761 762
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
763
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
764 765 766 767 768 769

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
770
	cpufreq_verify_within_cpu_limits(policy);
771 772 773 774 775 776 777 778

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

779
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
780
{
781 782
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
783

784 785
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

786
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
787 788 789
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
790 791
}

792
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
793 794
{
	struct cpudata *cpu;
795
	int rc;
796 797 798 799 800 801 802 803 804 805 806 807 808

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (!limits.no_turbo &&
		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

809 810
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
827
	.stop_cpu	= intel_pstate_stop_cpu,
828 829 830
	.name		= "intel_pstate",
};

831 832
static int __initdata no_load;

833 834 835 836 837 838 839 840
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

841 842 843
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
844 845 846 847 848 849 850 851 852 853 854 855
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
856

857
static void copy_pid_params(struct pstate_adjust_policy *policy)
858 859 860 861 862 863 864 865 866
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

867
static void copy_cpu_funcs(struct pstate_funcs *funcs)
868 869 870 871 872
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
873
	pstate_funcs.get_vid   = funcs->get_vid;
874 875
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

942 943
static int __init intel_pstate_init(void)
{
944
	int cpu, rc = 0;
945
	const struct x86_cpu_id *id;
946
	struct cpu_defaults *cpu_info;
947

948 949 950
	if (no_load)
		return -ENODEV;

951 952 953 954
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

955 956 957 958 959 960 961
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

962 963 964 965 966
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

967 968 969
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

970 971
	pr_info("Intel P-state driver initializing.\n");

972
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
973 974 975 976 977 978 979 980 981
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
982

983 984
	return rc;
out:
985 986 987 988 989 990 991 992 993 994
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
995 996 997 998
	return -ENODEV;
}
device_initcall(intel_pstate_init);

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1010 1011 1012
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");