mv88e6xxx.c 76.2 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/delay.h>
15
#include <linux/etherdevice.h>
16
#include <linux/ethtool.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21
#include <linux/netdevice.h>
22
#include <linux/gpio/consumer.h>
23
#include <linux/phy.h>
24
#include <net/dsa.h>
25
#include <net/switchdev.h>
26 27
#include "mv88e6xxx.h"

28 29 30 31 32 33 34 35 36 37
static void assert_smi_lock(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
		dev_err(ds->master_dev, "SMI lock not held!\n");
		dump_stack();
	}
}

38
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
52
		ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 54 55
		if (ret < 0)
			return ret;

56
		if ((ret & SMI_CMD_BUSY) == 0)
57 58 59 60 61 62
			return 0;
	}

	return -ETIMEDOUT;
}

63 64
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
				int reg)
65 66 67 68
{
	int ret;

	if (sw_addr == 0)
69
		return mdiobus_read_nested(bus, addr, reg);
70

71
	/* Wait for the bus to become free. */
72 73 74 75
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

76
	/* Transmit the read command. */
77 78
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 80 81
	if (ret < 0)
		return ret;

82
	/* Wait for the read command to complete. */
83 84 85 86
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

87
	/* Read the data. */
88
	ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 90 91 92 93 94
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

95
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96
{
97
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
98 99
	int ret;

100 101
	assert_smi_lock(ds);

102
	ret = __mv88e6xxx_reg_read(ps->bus, ps->sw_addr, addr, reg);
103 104 105 106 107 108
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

109 110 111
	return ret;
}

112 113 114 115 116 117 118 119 120 121 122 123
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

124 125
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
				 int reg, u16 val)
126 127 128 129
{
	int ret;

	if (sw_addr == 0)
130
		return mdiobus_write_nested(bus, addr, reg, val);
131

132
	/* Wait for the bus to become free. */
133 134 135 136
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

137
	/* Transmit the data to write. */
138
	ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
139 140 141
	if (ret < 0)
		return ret;

142
	/* Transmit the write command. */
143 144
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
145 146 147
	if (ret < 0)
		return ret;

148
	/* Wait for the write command to complete. */
149 150 151 152 153 154 155
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

156 157
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
158
{
159
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
160

161 162
	assert_smi_lock(ds);

163 164 165
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

166
	return __mv88e6xxx_reg_write(ps->bus, ps->sw_addr, addr, reg, val);
167 168 169 170 171 172 173
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

174
	mutex_lock(&ps->smi_mutex);
175
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
176 177 178 179 180
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

181 182
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
183
	int err;
184

185 186 187 188 189 190 191 192 193 194 195 196
	err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_01,
				  (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_23,
				  (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_45,
				   (addr[4] << 8) | addr[5]);
197 198
}

199 200 201
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int ret;
202
	int i;
203 204 205 206

	for (i = 0; i < 6; i++) {
		int j;

207
		/* Write the MAC address byte. */
208 209 210 211 212
		ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
					  GLOBAL2_SWITCH_MAC_BUSY |
					  (i << 8) | addr[i]);
		if (ret)
			return ret;
213

214
		/* Wait for the write to complete. */
215
		for (j = 0; j < 16; j++) {
216 217 218 219 220
			ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2,
						 GLOBAL2_SWITCH_MAC);
			if (ret < 0)
				return ret;

221
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
222 223 224 225 226 227 228 229 230
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

231
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
232 233
{
	if (addr >= 0)
234
		return _mv88e6xxx_reg_read(ds, addr, regnum);
235 236 237
	return 0xffff;
}

238 239
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
240 241
{
	if (addr >= 0)
242
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
243 244 245
	return 0;
}

246 247 248 249
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
250
	unsigned long timeout;
251

252 253 254 255 256 257 258 259
	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_CONTROL);
	if (ret < 0)
		return ret;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_CONTROL,
				  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (ret)
		return ret;
260

261 262
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
263 264 265 266
		ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATUS);
		if (ret < 0)
			return ret;

267
		usleep_range(1000, 2000);
268 269
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
270
			return 0;
271 272 273 274 275 276 277
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
278
	int ret, err;
279
	unsigned long timeout;
280

281 282 283 284 285 286 287 288
	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_CONTROL);
	if (ret < 0)
		return ret;

	err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_CONTROL,
				  ret | GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
289

290 291
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
292 293 294 295
		ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATUS);
		if (ret < 0)
			return ret;

296
		usleep_range(1000, 2000);
297 298
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
299
			return 0;
300 301 302 303 304 305 306 307 308 309 310
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
311
		struct dsa_switch *ds = ps->ds;
312

313 314 315
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
316 317 318 319 320 321 322 323 324 325 326 327
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
328
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329 330 331 332
	int ret;

	mutex_lock(&ps->ppu_mutex);

333
	/* If the PHY polling unit is enabled, disable it so that
334 335 336 337 338
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
339 340 341 342 343 344
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
345
	} else {
346 347
		del_timer(&ps->ppu_timer);
		ret = 0;
348 349 350 351 352 353 354
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
355
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
356

357
	/* Schedule a timer to re-enable the PHY polling unit. */
358 359 360 361 362 363
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
364
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
365 366 367 368 369 370 371 372 373 374 375 376 377 378

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
379 380
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
381 382 383 384 385 386 387 388 389 390 391 392
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
393 394
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
395 396 397 398 399 400
	}

	return ret;
}
#endif

401 402 403 404
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

405
	return ps->info->family == MV88E6XXX_FAMILY_6065;
406 407 408 409 410 411
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

412
	return ps->info->family == MV88E6XXX_FAMILY_6095;
413 414 415 416 417 418
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

419
	return ps->info->family == MV88E6XXX_FAMILY_6097;
420 421 422 423 424 425
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

426
	return ps->info->family == MV88E6XXX_FAMILY_6165;
427 428 429 430 431 432
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

433
	return ps->info->family == MV88E6XXX_FAMILY_6185;
434 435
}

436
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
437 438 439
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

440
	return ps->info->family == MV88E6XXX_FAMILY_6320;
441 442
}

443 444 445 446
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

447
	return ps->info->family == MV88E6XXX_FAMILY_6351;
448 449
}

450 451 452 453
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

454
	return ps->info->family == MV88E6XXX_FAMILY_6352;
455 456
}

457 458 459 460
static unsigned int mv88e6xxx_num_databases(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

461
	return ps->info->num_databases;
462 463
}

464 465 466 467 468 469 470 471 472 473
static bool mv88e6xxx_has_fid_reg(struct dsa_switch *ds)
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

474 475 476 477 478 479 480 481 482 483
static bool mv88e6xxx_has_stu(struct dsa_switch *ds)
{
	/* Does the device have STU and dedicated SID registers for VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

484 485 486 487 488 489 490 491
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
			   struct phy_device *phydev)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
492 493
	u32 reg;
	int ret;
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
			reg |= PORT_PCS_CTRL_LINK_UP;

	if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

536
	if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
537
	    (port >= ps->info->num_ports - 2)) {
538 539 540 541 542 543 544 545
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
546 547 548 549 550 551
	_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);

out:
	mutex_unlock(&ps->smi_mutex);
}

552
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
553 554 555 556 557
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
558
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
559
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
560 561 562 563 564 565
			return 0;
	}

	return -ETIMEDOUT;
}

566
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
567 568 569
{
	int ret;

570
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
571 572
		port = (port + 1) << 5;

573
	/* Snapshot the hardware statistics counters for this port. */
574 575 576 577 578
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
579

580
	/* Wait for the snapshotting to complete. */
581
	ret = _mv88e6xxx_stats_wait(ds);
582 583 584 585 586 587
	if (ret < 0)
		return ret;

	return 0;
}

588
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
589 590 591 592 593 594
{
	u32 _val;
	int ret;

	*val = 0;

595 596 597
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
598 599 600
	if (ret < 0)
		return;

601
	ret = _mv88e6xxx_stats_wait(ds);
602 603 604
	if (ret < 0)
		return;

605
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
606 607 608 609 610
	if (ret < 0)
		return;

	_val = ret << 16;

611
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
612 613 614 615 616 617
	if (ret < 0)
		return;

	*val = _val | ret;
}

618
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
678 679
};

680 681
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
			       struct mv88e6xxx_hw_stat *stat)
682
{
683 684
	switch (stat->type) {
	case BANK0:
685
		return true;
686 687 688 689 690 691 692 693 694
	case BANK1:
		return mv88e6xxx_6320_family(ds);
	case PORT:
		return mv88e6xxx_6095_family(ds) ||
			mv88e6xxx_6185_family(ds) ||
			mv88e6xxx_6097_family(ds) ||
			mv88e6xxx_6165_family(ds) ||
			mv88e6xxx_6351_family(ds) ||
			mv88e6xxx_6352_family(ds);
695
	}
696
	return false;
697 698
}

699
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
700
					    struct mv88e6xxx_hw_stat *s,
701 702 703 704 705 706 707
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

708 709 710
	switch (s->type) {
	case PORT:
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
711 712 713 714 715 716
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
717
						  s->reg + 1);
718 719 720 721
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
722 723 724
		break;
	case BANK0:
	case BANK1:
725 726 727 728 729 730 731 732
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

733
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
734
{
735 736
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
737

738 739 740 741 742 743 744
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
745
	}
746 747 748 749
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
750 751 752 753 754 755 756 757 758
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat))
			j++;
	}
	return j;
759 760 761 762 763 764
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->smi_mutex);
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
			j++;
		}
	}

	mutex_unlock(&ps->smi_mutex);
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

812 813
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
814 815 816 817 818 819
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

820 821 822
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
823 824 825 826 827 828 829 830
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

831 832 833 834 835 836 837 838 839 840 841 842 843
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
844
{
845 846
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
847 848 849 850
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
851 852
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
853 854 855 856
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
857 858
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
859 860
}

861 862
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
863 864
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
865 866
}

867 868
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
869 870 871
{
	int ret;

872 873 874 875 876
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
877

878
	ret = _mv88e6xxx_phy_wait(ds);
879 880 881
	if (ret < 0)
		return ret;

882
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
883 884
}

885 886
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
887
{
888 889 890 891 892
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
893

894 895 896 897 898
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
899 900
}

901 902
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
903
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
904 905
	int reg;

906
	mutex_lock(&ps->smi_mutex);
907 908

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
909
	if (reg < 0)
910
		goto out;
911 912 913 914

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

915
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
916
	if (reg < 0)
917
		goto out;
918

919
	e->eee_active = !!(reg & PORT_STATUS_EEE);
920
	reg = 0;
921

922
out:
923
	mutex_unlock(&ps->smi_mutex);
924
	return reg;
925 926 927 928 929
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
930 931
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
932 933
	int ret;

934
	mutex_lock(&ps->smi_mutex);
935

936 937 938 939 940 941 942 943 944 945 946 947
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
948
	mutex_unlock(&ps->smi_mutex);
949 950

	return ret;
951 952
}

953
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 fid, u16 cmd)
954 955 956
{
	int ret;

957 958 959 960
	if (mv88e6xxx_has_fid_reg(ds)) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
		if (ret < 0)
			return ret;
961 962 963 964 965 966 967 968 969 970 971 972 973 974
	} else if (mv88e6xxx_num_databases(ds) == 256) {
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL);
		if (ret < 0)
			return ret;

		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL,
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
975 976
	}

977
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
978 979 980 981 982 983
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}

1007 1008 1009
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1010
{
1011 1012
	int op;
	int err;
1013

1014 1015 1016
	err = _mv88e6xxx_atu_wait(ds);
	if (err)
		return err;
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	err = _mv88e6xxx_atu_data_write(ds, entry);
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1030
	return _mv88e6xxx_atu_cmd(ds, entry->fid, op);
1031 1032 1033 1034 1035 1036 1037 1038
}

static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1039

1040 1041 1042
	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
			       int to_port, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
				 bool static_too)
{
	/* Destination port 0xF means remove the entries */
	return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
}

1068 1069 1070 1071 1072 1073 1074 1075
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state)
1076
{
1077
	int reg, ret = 0;
1078 1079
	u8 oldstate;

1080
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1081 1082
	if (reg < 0)
		return reg;
1083

1084
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1085

1086 1087 1088 1089 1090
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1091 1092 1093 1094
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
		     oldstate == PORT_CONTROL_STATE_FORWARDING)
		    && (state == PORT_CONTROL_STATE_DISABLED ||
			state == PORT_CONTROL_STATE_BLOCKING)) {
1095
			ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1096
			if (ret)
1097
				return ret;
1098
		}
1099

1100 1101 1102
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1103 1104 1105 1106 1107 1108
		if (ret)
			return ret;

		netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1109 1110 1111 1112 1113
	}

	return ret;
}

1114
static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port)
1115 1116
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1117
	struct net_device *bridge = ps->ports[port].bridge_dev;
1118
	const u16 mask = (1 << ps->info->num_ports) - 1;
1119
	u16 output_ports = 0;
1120
	int reg;
1121 1122 1123 1124 1125 1126
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1127
		for (i = 0; i < ps->info->num_ports; ++i) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			/* allow sending frames to every group member */
			if (bridge && ps->ports[i].bridge_dev == bridge)
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1140

1141 1142 1143
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (reg < 0)
		return reg;
1144

1145 1146
	reg &= ~mask;
	reg |= output_ports & mask;
1147

1148
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1149 1150
}

1151
void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1152 1153 1154 1155 1156 1157
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1158
		stp_state = PORT_CONTROL_STATE_DISABLED;
1159 1160 1161
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1162
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1163 1164
		break;
	case BR_STATE_LEARNING:
1165
		stp_state = PORT_CONTROL_STATE_LEARNING;
1166 1167 1168
		break;
	case BR_STATE_FORWARDING:
	default:
1169
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1170 1171 1172
		break;
	}

1173
	/* mv88e6xxx_port_stp_state_set may be called with softirqs disabled,
1174 1175
	 * so we can not update the port state directly but need to schedule it.
	 */
1176
	ps->ports[port].state = stp_state;
1177
	set_bit(port, ps->port_state_update_mask);
1178 1179 1180
	schedule_work(&ps->bridge_work);
}

1181 1182
static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new,
				u16 *old)
1183
{
1184
	u16 pvid;
1185 1186 1187 1188 1189 1190
	int ret;

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
			   pvid);
	}

	if (old)
		*old = pvid;
1208 1209 1210 1211

	return 0;
}

1212 1213 1214 1215 1216
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	return _mv88e6xxx_port_pvid(ds, port, NULL, pvid);
}

1217
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1218
{
1219
	return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL);
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1268
	for (i = 0; i < ps->info->num_ports; ++i) {
1269 1270 1271 1272 1273 1274 1275 1276 1277
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

1287
	for (i = 0; i < ps->info->num_ports; ++i) {
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1304 1305 1306 1307 1308 1309 1310
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
{
	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				    vid & GLOBAL_VTU_VID_MASK);
}

static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

1336
		if (mv88e6xxx_has_fid_reg(ds)) {
1337 1338 1339 1340 1341 1342
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		} else if (mv88e6xxx_num_databases(ds) == 256) {
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1354
		}
1355

1356
		if (mv88e6xxx_has_stu(ds)) {
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_vlan *vlan,
			     int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &next);
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
		vlan->vid_begin = vlan->vid_end = next.vid;
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1421 1422 1423
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1424
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

1440
	if (mv88e6xxx_has_stu(ds)) {
1441 1442 1443 1444
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;
1445
	}
1446

1447
	if (mv88e6xxx_has_fid_reg(ds)) {
1448 1449 1450 1451
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
1452 1453 1454 1455 1456 1457
	} else if (mv88e6xxx_num_databases(ds) == 256) {
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1458 1459 1460 1461 1462 1463 1464 1465 1466
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

1467
	return _mv88e6xxx_vtu_cmd(ds, op);
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

1543 1544 1545
static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new,
			       u16 *old)
{
1546
	u16 upper_mask;
1547 1548 1549
	u16 fid;
	int ret;

1550 1551
	if (mv88e6xxx_num_databases(ds) == 4096)
		upper_mask = 0xff;
1552 1553
	else if (mv88e6xxx_num_databases(ds) == 256)
		upper_mask = 0xf;
1554 1555 1556
	else
		return -EOPNOTSUPP;

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN,
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1);
	if (ret < 0)
		return ret;

1579
	fid |= (ret & upper_mask) << 4;
1580 1581

	if (new) {
1582 1583
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1,
					   ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
	}

	if (old)
		*old = fid;

	return 0;
}

static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid)
{
	return _mv88e6xxx_port_fid(ds, port, NULL, fid);
}

static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid)
{
	return _mv88e6xxx_port_fid(ds, port, &fid, NULL);
}

1609 1610
static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid)
{
1611
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1612 1613
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1614
	int i, err;
1615 1616 1617

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1618
	/* Set every FID bit used by the (un)bridged ports */
1619
	for (i = 0; i < ps->info->num_ports; ++i) {
1620 1621 1622 1623 1624 1625 1626
		err = _mv88e6xxx_port_fid_get(ds, i, fid);
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	/* Set every FID bit used by the VLAN entries */
	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1647
	if (unlikely(*fid >= mv88e6xxx_num_databases(ds)))
1648 1649 1650 1651 1652 1653
		return -ENOSPC;

	/* Clear the database */
	return _mv88e6xxx_atu_flush(ds, *fid, true);
}

1654 1655
static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry)
1656 1657 1658 1659 1660 1661
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1662 1663 1664 1665 1666
	int i, err;

	err = _mv88e6xxx_fid_new(ds, &vlan.fid);
	if (err)
		return err;
1667

1668
	/* exclude all ports except the CPU and DSA ports */
1669
	for (i = 0; i < ps->info->num_ports; ++i)
1670 1671 1672
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
		return err;

	err = _mv88e6xxx_vtu_getnext(ds, entry);
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

		err = _mv88e6xxx_vtu_new(ds, vid, entry);
	}

	return err;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1758
		for (i = 0; i < ps->info->num_ports; ++i) {
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

			if (ps->ports[i].bridge_dev ==
			    ps->ports[port].bridge_dev)
				break; /* same bridge, check next VLAN */

			netdev_warn(ds->ports[port],
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
				    netdev_name(ps->ports[i].bridge_dev));
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
				  bool vlan_filtering)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2);
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1808 1809 1810
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2,
					   ret);
		if (ret < 0)
			goto unlock;

		netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1821

1822
	ret = 0;
1823 1824 1825 1826 1827 1828
unlock:
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1829 1830 1831 1832
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	int err;

	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1843 1844 1845 1846 1847 1848 1849 1850
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
				    bool untagged)
1851 1852 1853 1854
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1855
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true);
1856
	if (err)
1857
		return err;
1858 1859 1860 1861 1862

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1863 1864 1865
	return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
}

1866 1867 1868
void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
			     const struct switchdev_obj_port_vlan *vlan,
			     struct switchdev_trans *trans)
1869 1870 1871 1872 1873 1874 1875 1876
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

	mutex_lock(&ps->smi_mutex);

1877 1878 1879 1880
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
		if (_mv88e6xxx_port_vlan_add(ds, port, vid, untagged))
			netdev_err(ds->ports[port], "failed to add VLAN %d%c\n",
				   vid, untagged ? 'u' : 't');
1881

1882 1883 1884
	if (pvid && _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end))
		netdev_err(ds->ports[port], "failed to set PVID %d\n",
			   vlan->vid_end);
1885

1886
	mutex_unlock(&ps->smi_mutex);
1887 1888
}

1889
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1890 1891 1892 1893 1894
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1895
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1896
	if (err)
1897
		return err;
1898

1899 1900
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1901
		return -EOPNOTSUPP;
1902 1903 1904 1905

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1906
	vlan.valid = false;
1907
	for (i = 0; i < ps->info->num_ports; ++i) {
1908
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1909 1910 1911
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1912
			vlan.valid = true;
1913 1914 1915 1916 1917
			break;
		}
	}

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (err)
		return err;

	return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
}

int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 pvid, vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1934 1935 1936
	if (err)
		goto unlock;

1937 1938 1939 1940 1941 1942
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_del(ds, port, vid);
		if (err)
			goto unlock;

		if (vid == pvid) {
1943
			err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1944 1945 1946 1947 1948
			if (err)
				goto unlock;
		}
	}

1949 1950 1951 1952 1953 1954
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1955 1956
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1957 1958 1959 1960
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1961 1962 1963
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1964 1965 1966 1967 1968 1969 1970
		if (ret < 0)
			return ret;
	}

	return 0;
}

1971
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1972 1973 1974 1975
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1976 1977
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1978 1979 1980 1981 1982 1983 1984 1985 1986
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

1987 1988
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
1989
{
1990 1991
	int ret;

1992 1993 1994 1995
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1996
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1997 1998 1999
	if (ret < 0)
		return ret;

2000
	ret = _mv88e6xxx_atu_data_write(ds, entry);
2001
	if (ret < 0)
2002 2003
		return ret;

2004
	return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2005
}
2006

2007 2008 2009 2010 2011
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2012 2013 2014
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2015 2016 2017 2018 2019
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
		err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid);
	else
		err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
2020 2021
	if (err)
		return err;
2022

2023
	entry.fid = vlan.fid;
2024 2025 2026 2027 2028 2029 2030 2031
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
2032 2033
}

V
Vivien Didelot 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2044 2045 2046
void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_fdb *fdb,
			    struct switchdev_trans *trans)
2047
{
2048
	int state = is_multicast_ether_addr(fdb->addr) ?
2049 2050
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2051
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2052 2053

	mutex_lock(&ps->smi_mutex);
2054 2055
	if (_mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state))
		netdev_err(ds->ports[port], "failed to load MAC address\n");
2056 2057 2058
	mutex_unlock(&ps->smi_mutex);
}

2059
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2060
			   const struct switchdev_obj_port_fdb *fdb)
2061 2062 2063 2064 2065
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
2066
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
2067
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2068 2069 2070 2071 2072
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2073 2074
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  struct mv88e6xxx_atu_entry *entry)
2075
{
2076 2077 2078 2079
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2080

2081 2082 2083
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
2084

2085
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2086 2087
	if (ret < 0)
		return ret;
2088

2089 2090 2091
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
2092

2093
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
2094 2095
	if (ret < 0)
		return ret;
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2113

2114
	*entry = next;
2115 2116 2117
	return 0;
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid,
					int port,
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

	err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(ds, fid, &addr);
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2159 2160 2161 2162 2163 2164 2165 2166
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
			    struct switchdev_obj_port_fdb *fdb,
			    int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2167
	u16 fid;
2168 2169 2170 2171
	int err;

	mutex_lock(&ps->smi_mutex);

2172 2173 2174 2175 2176 2177 2178 2179 2180
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
	err = _mv88e6xxx_port_fid_get(ds, port, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb);
	if (err)
		goto unlock;

2181
	/* Dump VLANs' Filtering Information Databases */
2182 2183 2184 2185 2186 2187 2188
	err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
2189
			break;
2190 2191 2192 2193

		if (!vlan.valid)
			break;

2194 2195
		err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port,
						   fdb, cb);
2196
		if (err)
2197
			break;
2198 2199 2200 2201 2202 2203 2204 2205
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

2206 2207
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
			       struct net_device *bridge)
2208
{
2209
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2210 2211 2212 2213 2214 2215
	u16 fid;
	int i, err;

	mutex_lock(&ps->smi_mutex);

	/* Get or create the bridge FID and assign it to the port */
2216
	for (i = 0; i < ps->info->num_ports; ++i)
2217 2218 2219
		if (ps->ports[i].bridge_dev == bridge)
			break;

2220
	if (i < ps->info->num_ports)
2221 2222 2223 2224 2225 2226 2227 2228 2229
		err = _mv88e6xxx_port_fid_get(ds, i, &fid);
	else
		err = _mv88e6xxx_fid_new(ds, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fid_set(ds, port, fid);
	if (err)
		goto unlock;
2230

2231
	/* Assign the bridge and remap each port's VLANTable */
2232
	ps->ports[port].bridge_dev = bridge;
2233

2234
	for (i = 0; i < ps->info->num_ports; ++i) {
2235 2236 2237 2238 2239 2240 2241
		if (ps->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(ds, i);
			if (err)
				break;
		}
	}

2242 2243
unlock:
	mutex_unlock(&ps->smi_mutex);
2244

2245
	return err;
2246 2247
}

2248
void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2249
{
2250
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2251
	struct net_device *bridge = ps->ports[port].bridge_dev;
2252
	u16 fid;
2253
	int i;
2254 2255 2256 2257

	mutex_lock(&ps->smi_mutex);

	/* Give the port a fresh Filtering Information Database */
2258 2259 2260
	if (_mv88e6xxx_fid_new(ds, &fid) ||
	    _mv88e6xxx_port_fid_set(ds, port, fid))
		netdev_warn(ds->ports[port], "failed to assign a new FID\n");
2261

2262
	/* Unassign the bridge and remap each port's VLANTable */
2263
	ps->ports[port].bridge_dev = NULL;
2264

2265
	for (i = 0; i < ps->info->num_ports; ++i)
2266 2267 2268
		if (i == port || ps->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(ds, i))
				netdev_warn(ds->ports[i], "failed to remap\n");
2269

2270
	mutex_unlock(&ps->smi_mutex);
2271 2272
}

2273 2274 2275 2276 2277 2278 2279
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
2280
	ds = ps->ds;
2281

2282 2283
	mutex_lock(&ps->smi_mutex);

2284
	for (port = 0; port < ps->info->num_ports; ++port)
2285 2286 2287 2288 2289 2290
		if (test_and_clear_bit(port, ps->port_state_update_mask) &&
		    _mv88e6xxx_port_state(ds, port, ps->ports[port].state))
			netdev_warn(ds->ports[port], "failed to update state to %s\n",
				    mv88e6xxx_port_state_names[ps->ports[port].state]);

	mutex_unlock(&ps->smi_mutex);
2291 2292
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
static int _mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

static int _mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static int mv88e6xxx_power_on_serdes(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_phy_page_read(ds, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
				       MII_BMCR);
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
		ret = _mv88e6xxx_phy_page_write(ds, REG_FIBER_SERDES,
						PAGE_FIBER_SERDES, MII_BMCR,
						ret);
	}

	return ret;
}

2344
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2345 2346
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2347
	int ret;
2348
	u16 reg;
2349 2350 2351

	mutex_lock(&ps->smi_mutex);

2352 2353 2354
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2355
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2356 2357 2358 2359 2360 2361 2362
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2363
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2364
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2401
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2402 2403 2404 2405 2406 2407 2408
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2409 2410
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2411 2412 2413 2414
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
2415 2416
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2417 2418 2419 2420 2421
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2422
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2423 2424 2425 2426
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
2427 2428 2429 2430 2431 2432
	if (dsa_is_dsa_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2433
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2434 2435
		}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
	if (mv88e6xxx_6352_family(ds)) {
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
		if (ret < 0)
			goto abort;
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
			ret = mv88e6xxx_power_on_serdes(ds);
			if (ret < 0)
				goto abort;
		}
	}

2464
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2465
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2466 2467 2468
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2469 2470 2471 2472
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2473 2474
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds) ||
	    mv88e6xxx_6185_family(ds))
2475 2476 2477
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2478
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2491
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2505 2506 2507 2508 2509 2510
	reg = 1 << port;
	/* Disable learning for DSA and CPU ports */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		reg = PORT_ASSOC_VECTOR_LOCKED_PORT;

	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2521 2522
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2572 2573
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2574 2575 2576 2577 2578 2579 2580
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2581 2582
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2583
	 */
2584
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2585 2586 2587
	if (ret)
		goto abort;

2588
	/* Port based VLAN map: give each port its own address
2589 2590
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2591
	 */
2592 2593 2594 2595
	ret = _mv88e6xxx_port_fid_set(ds, port, port + 1);
	if (ret)
		goto abort;

2596
	ret = _mv88e6xxx_port_based_vlan_map(ds, port);
2597 2598 2599 2600 2601 2602
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2603 2604
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2605 2606 2607 2608 2609
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2610 2611 2612 2613 2614 2615
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

2616
	for (i = 0; i < ps->info->num_ports; i++) {
2617 2618 2619 2620 2621 2622 2623
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2624 2625 2626 2627
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

2628
	ps->ds = ds;
2629 2630
	mutex_init(&ps->smi_mutex);

2631 2632
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2633 2634 2635
	return 0;
}

2636 2637 2638
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2639
	int err;
2640 2641
	int i;

2642
	mutex_lock(&ps->smi_mutex);
2643 2644 2645 2646
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2647 2648 2649 2650
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL,
				   0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
	if (err)
		goto unlock;
2651 2652

	/* Configure the IP ToS mapping registers. */
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
	if (err)
		goto unlock;
2677 2678

	/* Configure the IEEE 802.1p priority mapping register. */
2679 2680 2681
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
	if (err)
		goto unlock;
2682 2683 2684 2685

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
2686 2687 2688
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
	if (err)
		goto unlock;
2689 2690 2691 2692 2693 2694

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
2695 2696 2697 2698 2699
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
				   0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
				   GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
	if (err)
		goto unlock;
2700 2701 2702 2703 2704 2705 2706 2707 2708

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

2709 2710 2711 2712 2713 2714 2715
		err = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL2,
			GLOBAL2_DEVICE_MAPPING,
			GLOBAL2_DEVICE_MAPPING_UPDATE |
			(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop);
		if (err)
			goto unlock;
2716 2717 2718
	}

	/* Clear all trunk masks. */
2719 2720 2721 2722
	for (i = 0; i < 8; i++) {
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
					   0x8000 |
					   (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
2723
					   ((1 << ps->info->num_ports) - 1));
2724 2725 2726
		if (err)
			goto unlock;
	}
2727 2728

	/* Clear all trunk mappings. */
2729 2730 2731 2732 2733 2734 2735 2736 2737
	for (i = 0; i < 16; i++) {
		err = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL2,
			GLOBAL2_TRUNK_MAPPING,
			GLOBAL2_TRUNK_MAPPING_UPDATE |
			(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
		if (err)
			goto unlock;
	}
2738 2739

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2740 2741
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2742 2743 2744
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
2745 2746 2747 2748
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
					   GLOBAL2_MGMT_EN_2X, 0xffff);
		if (err)
			goto unlock;
2749 2750 2751 2752

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
2753 2754 2755 2756
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
					   GLOBAL2_PVT_ADDR, 0x9000);
		if (err)
			goto unlock;
2757 2758

		/* Clear the priority override table. */
2759 2760 2761 2762 2763 2764 2765
		for (i = 0; i < 16; i++) {
			err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
						   GLOBAL2_PRIO_OVERRIDE,
						   0x8000 | (i << 8));
			if (err)
				goto unlock;
		}
2766 2767 2768 2769
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2770 2771
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2772 2773 2774 2775
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
2776
		for (i = 0; i < ps->info->num_ports; i++) {
2777 2778 2779 2780 2781 2782
			err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
						   GLOBAL2_INGRESS_OP,
						   0x9000 | (i << 8));
			if (err)
				goto unlock;
		}
2783 2784
	}

2785
	/* Clear the statistics counters for all ports */
2786 2787 2788 2789
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		goto unlock;
2790 2791

	/* Wait for the flush to complete. */
2792 2793
	err = _mv88e6xxx_stats_wait(ds);
	if (err < 0)
2794 2795
		goto unlock;

2796
	/* Clear all ATU entries */
2797 2798
	err = _mv88e6xxx_atu_flush(ds, 0, true);
	if (err < 0)
2799 2800
		goto unlock;

2801
	/* Clear all the VTU and STU entries */
2802
	err = _mv88e6xxx_vtu_stu_flush(ds);
2803
unlock:
2804
	mutex_unlock(&ps->smi_mutex);
2805

2806
	return err;
2807 2808
}

2809 2810 2811 2812
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2813
	struct gpio_desc *gpiod = ds->pd->reset;
2814 2815 2816 2817
	unsigned long timeout;
	int ret;
	int i;

2818 2819
	mutex_lock(&ps->smi_mutex);

2820
	/* Set all ports to the disabled state. */
2821
	for (i = 0; i < ps->info->num_ports; i++) {
2822 2823 2824 2825 2826 2827 2828 2829
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(i), PORT_CONTROL);
		if (ret < 0)
			goto unlock;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(i), PORT_CONTROL,
					   ret & 0xfffc);
		if (ret)
			goto unlock;
2830 2831 2832 2833 2834
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

2835 2836 2837 2838 2839 2840 2841 2842
	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

2843 2844 2845 2846 2847
	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2848
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x04, 0xc000);
2849
	else
2850 2851 2852
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x04, 0xc400);
	if (ret)
		goto unlock;
2853 2854 2855 2856

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2857 2858 2859 2860
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x00);
		if (ret < 0)
			goto unlock;

2861 2862 2863 2864 2865
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2866 2867 2868 2869 2870
		ret = -ETIMEDOUT;
	else
		ret = 0;
unlock:
	mutex_unlock(&ps->smi_mutex);
2871

2872
	return ret;
2873 2874
}

2875 2876 2877 2878 2879
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2880
	mutex_lock(&ps->smi_mutex);
2881
	ret = _mv88e6xxx_phy_page_read(ds, port, page, reg);
2882
	mutex_unlock(&ps->smi_mutex);
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2893
	mutex_lock(&ps->smi_mutex);
2894
	ret = _mv88e6xxx_phy_page_write(ds, port, page, reg, val);
2895
	mutex_unlock(&ps->smi_mutex);
2896

2897 2898 2899 2900 2901 2902 2903
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

2904
	if (port >= 0 && port < ps->info->num_ports)
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2919
	mutex_lock(&ps->smi_mutex);
2920
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2921
	mutex_unlock(&ps->smi_mutex);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2935
	mutex_lock(&ps->smi_mutex);
2936
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2937
	mutex_unlock(&ps->smi_mutex);
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2951
	mutex_lock(&ps->smi_mutex);
2952
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2953
	mutex_unlock(&ps->smi_mutex);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2968
	mutex_lock(&ps->smi_mutex);
2969
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2970
	mutex_unlock(&ps->smi_mutex);
2971 2972 2973
	return ret;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3100 3101
static const struct mv88e6xxx_info *
mv88e6xxx_lookup_info(unsigned int prod_num, const struct mv88e6xxx_info *table,
V
Vivien Didelot 已提交
3102
		      unsigned int num)
3103
{
3104
	int i;
3105 3106

	for (i = 0; i < num; ++i)
3107 3108
		if (table[i].prod_num == prod_num)
			return &table[i];
3109 3110 3111 3112

	return NULL;
}

V
Vivien Didelot 已提交
3113 3114
const char *mv88e6xxx_drv_probe(struct device *dsa_dev, struct device *host_dev,
				int sw_addr, void **priv,
3115
				const struct mv88e6xxx_info *table,
V
Vivien Didelot 已提交
3116
				unsigned int num)
3117
{
3118
	const struct mv88e6xxx_info *info;
3119
	struct mv88e6xxx_priv_state *ps;
3120
	struct mii_bus *bus;
V
Vivien Didelot 已提交
3121
	const char *name;
3122
	int id, prod_num, rev;
3123

3124
	bus = dsa_host_dev_to_mii_bus(host_dev);
3125 3126 3127
	if (!bus)
		return NULL;

3128 3129 3130 3131 3132 3133 3134
	id = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
	if (id < 0)
		return NULL;

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

3135 3136
	info = mv88e6xxx_lookup_info(prod_num, table, num);
	if (!info)
3137 3138
		return NULL;

3139 3140
	name = info->name;

3141 3142 3143 3144 3145 3146
	ps = devm_kzalloc(dsa_dev, sizeof(*ps), GFP_KERNEL);
	if (!ps)
		return NULL;

	ps->bus = bus;
	ps->sw_addr = sw_addr;
3147
	ps->info = info;
3148 3149 3150 3151 3152 3153

	*priv = ps;

	dev_info(&ps->bus->dev, "switch 0x%x probed: %s, revision %u\n",
		 prod_num, name, rev);

3154 3155 3156
	return name;
}

3157 3158 3159 3160 3161
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
3162 3163
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	register_switch_driver(&mv88e6123_switch_driver);
3164
#endif
3165 3166 3167
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
3168 3169
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
3170 3171 3172 3173 3174 3175 3176
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3177 3178 3179
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
3180 3181 3182
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
3183 3184
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	unregister_switch_driver(&mv88e6123_switch_driver);
3185 3186 3187 3188 3189 3190
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
3191 3192 3193 3194

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");