mv88e6xxx.c 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11 12
#include <linux/delay.h>
#include <linux/jiffies.h>
13
#include <linux/list.h>
14
#include <linux/module.h>
15 16
#include <linux/netdevice.h>
#include <linux/phy.h>
17
#include <net/dsa.h>
18 19
#include "mv88e6xxx.h"

20
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
		ret = mdiobus_read(bus, sw_addr, 0);
		if (ret < 0)
			return ret;

		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

52
	/* Wait for the bus to become free. */
53 54 55 56
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

57
	/* Transmit the read command. */
58 59 60 61
	ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

62
	/* Wait for the read command to complete. */
63 64 65 66
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

67
	/* Read the data. */
68 69 70 71 72 73 74 75 76
	ret = mdiobus_read(bus, sw_addr, 1);
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
77
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
78
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
79 80
	int ret;

81 82 83
	if (bus == NULL)
		return -EINVAL;

84
	mutex_lock(&ps->smi_mutex);
85
	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
86 87
	mutex_unlock(&ps->smi_mutex);

88 89 90 91 92 93
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

94 95 96 97 98 99 100 101 102 103 104
	return ret;
}

int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

105
	/* Wait for the bus to become free. */
106 107 108 109
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

110
	/* Transmit the data to write. */
111 112 113 114
	ret = mdiobus_write(bus, sw_addr, 1, val);
	if (ret < 0)
		return ret;

115
	/* Transmit the write command. */
116 117 118 119
	ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

120
	/* Wait for the write command to complete. */
121 122 123 124 125 126 127 128 129
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
130
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
131
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
132 133
	int ret;

134 135 136
	if (bus == NULL)
		return -EINVAL;

137 138 139
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

140
	mutex_lock(&ps->smi_mutex);
141
	ret = __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
142 143 144 145 146 147 148
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
149
	/* Configure the IP ToS mapping registers. */
150 151 152 153 154 155 156 157 158
	REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
	REG_WRITE(REG_GLOBAL, 0x17, 0xffff);

159
	/* Configure the IEEE 802.1p priority mapping register. */
160 161 162 163 164
	REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);

	return 0;
}

165 166 167 168 169 170 171 172 173
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
	REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);

	return 0;
}

174 175 176 177 178 179 180 181
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

182
		/* Write the MAC address byte. */
183 184
		REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);

185
		/* Wait for the write to complete. */
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		for (j = 0; j < 16; j++) {
			ret = REG_READ(REG_GLOBAL2, 0x0d);
			if ((ret & 0x8000) == 0)
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
	if (addr >= 0)
		return mv88e6xxx_reg_read(ds, addr, regnum);
	return 0xffff;
}

int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
	if (addr >= 0)
		return mv88e6xxx_reg_write(ds, addr, regnum, val);
	return 0;
}

212 213 214 215
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
216
	unsigned long timeout;
217 218 219 220

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);

221 222
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
223
		ret = REG_READ(REG_GLOBAL, 0x00);
224
		usleep_range(1000, 2000);
225 226
		if ((ret & 0xc000) != 0xc000)
			return 0;
227 228 229 230 231 232 233 234
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
235
	unsigned long timeout;
236 237 238 239

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);

240 241
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
242
		ret = REG_READ(REG_GLOBAL, 0x00);
243
		usleep_range(1000, 2000);
244 245
		if ((ret & 0xc000) == 0xc000)
			return 0;
246 247 248 249 250 251 252 253 254 255 256
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
257
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
258

259 260 261
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
262 263 264 265 266 267 268 269 270 271 272 273
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
274
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
275 276 277 278
	int ret;

	mutex_lock(&ps->ppu_mutex);

279
	/* If the PHY polling unit is enabled, disable it so that
280 281 282 283 284
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
285 286 287 288 289 290
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
291
	} else {
292 293
		del_timer(&ps->ppu_timer);
		ret = 0;
294 295 296 297 298 299 300
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
301
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
302

303
	/* Schedule a timer to re-enable the PHY polling unit. */
304 305 306 307 308 309
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
310
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
311 312 313 314 315 316 317 318 319 320 321 322 323 324

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
325 326
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
327 328 329 330 331 332 333 334 335 336 337 338
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
339 340
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
341 342 343 344 345 346
	}

	return ret;
}
#endif

347 348 349 350 351 352
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
353
		int uninitialized_var(port_status);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
			if (port_status < 0)
				continue;

			link = !!(port_status & 0x0800);
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
374
				netdev_info(dev, "link down\n");
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
				netif_carrier_off(dev);
			}
			continue;
		}

		switch (port_status & 0x0300) {
		case 0x0000:
			speed = 10;
			break;
		case 0x0100:
			speed = 100;
			break;
		case 0x0200:
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
		duplex = (port_status & 0x0400) ? 1 : 0;
		fc = (port_status & 0x8000) ? 1 : 0;

		if (!netif_carrier_ok(dev)) {
398 399 400 401 402
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
403 404 405 406 407 408 409 410 411 412 413
			netif_carrier_on(dev);
		}
	}
}

static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
414
		ret = REG_READ(REG_GLOBAL, 0x1d);
415 416 417 418 419 420 421 422 423 424 425
		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
	int ret;

426
	/* Snapshot the hardware statistics counters for this port. */
427 428
	REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);

429
	/* Wait for the snapshotting to complete. */
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return ret;

	return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
	u32 _val;
	int ret;

	*val = 0;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
	if (ret < 0)
		return;

	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
	if (ret < 0)
		return;

	_val = ret << 16;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
	if (ret < 0)
		return;

	*val = _val | ret;
}

void mv88e6xxx_get_strings(struct dsa_switch *ds,
			   int nr_stats, struct mv88e6xxx_hw_stat *stats,
			   int port, uint8_t *data)
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
				 int nr_stats, struct mv88e6xxx_hw_stat *stats,
				 int port, uint64_t *data)
{
481
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
482 483 484 485 486 487 488 489 490 491 492
	int ret;
	int i;

	mutex_lock(&ps->stats_mutex);

	ret = mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->stats_mutex);
		return;
	}

493
	/* Read each of the counters. */
494 495 496
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
		u32 high = 0;

		if (s->reg >= 0x100) {
			int ret;

			ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
						 s->reg - 0x100);
			if (ret < 0)
				goto error;
			low = ret;
			if (s->sizeof_stat == 4) {
				ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
							 s->reg - 0x100 + 1);
				if (ret < 0)
					goto error;
				high = ret;
			}
			data[i] = (((u64)high) << 16) | low;
			continue;
		}
517 518 519 520 521 522
		mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			mv88e6xxx_stats_read(ds, s->reg + 1, &high);

		data[i] = (((u64)high) << 32) | low;
	}
523
error:
524 525
	mutex_unlock(&ps->stats_mutex);
}
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
#ifdef CONFIG_NET_DSA_HWMON

int  mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->phy_mutex);

	ret = mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->phy_mutex);
	return ret;
}
#endif /* CONFIG_NET_DSA_HWMON */

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

		ret = REG_READ(reg, offset);
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

int mv88e6xxx_phy_wait(struct dsa_switch *ds)
{
	return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x18, 0x8000);
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
	return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x14, 0x0800);
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
	return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x14, 0x8000);
}

int mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	REG_WRITE(REG_GLOBAL2, 0x18, 0x9800 | (addr << 5) | regnum);

	ret = mv88e6xxx_phy_wait(ds);
	if (ret < 0)
		return ret;

	return REG_READ(REG_GLOBAL2, 0x19);
}

int mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, int regnum,
				 u16 val)
{
	REG_WRITE(REG_GLOBAL2, 0x19, val);
	REG_WRITE(REG_GLOBAL2, 0x18, 0x9400 | (addr << 5) | regnum);

	return mv88e6xxx_phy_wait(ds);
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
	int reg;

	reg = mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (reg < 0)
		return -EOPNOTSUPP;

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

	reg = REG_READ(REG_PORT(port), 0);
	e->eee_active = !!(reg & 0x0040);

	return 0;
}

static int mv88e6xxx_eee_enable_set(struct dsa_switch *ds, int port,
				    bool eee_enabled, bool tx_lpi_enabled)
{
	int reg, nreg;

	reg = mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (reg < 0)
		return reg;

	nreg = reg & ~0x0300;
	if (eee_enabled)
		nreg |= 0x0200;
	if (tx_lpi_enabled)
		nreg |= 0x0100;

	if (nreg != reg)
		return mv88e6xxx_phy_write_indirect(ds, port, 16, nreg);

	return 0;
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
	int ret;

	ret = mv88e6xxx_eee_enable_set(ds, port, e->eee_enabled,
				       e->tx_lpi_enabled);
	if (ret)
		return -EOPNOTSUPP;

	return 0;
}

703 704 705 706 707 708 709 710 711 712 713
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);
	mutex_init(&ps->stats_mutex);
	mutex_init(&ps->phy_mutex);

	return 0;
}

714 715 716 717 718 719 720
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
721
#endif
722 723 724
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
725 726
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
727 728 729 730 731 732 733
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
734 735 736
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
737 738 739 740 741 742 743 744
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
745 746 747 748

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");