mv88e6xxx.c 76.8 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/delay.h>
15
#include <linux/etherdevice.h>
16
#include <linux/ethtool.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21
#include <linux/netdevice.h>
22
#include <linux/gpio/consumer.h>
23
#include <linux/phy.h>
24
#include <net/dsa.h>
25
#include <net/switchdev.h>
26 27
#include "mv88e6xxx.h"

28 29 30 31 32 33 34 35 36 37
static void assert_smi_lock(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
		dev_err(ds->master_dev, "SMI lock not held!\n");
		dump_stack();
	}
}

38
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
52
		ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 54 55
		if (ret < 0)
			return ret;

56
		if ((ret & SMI_CMD_BUSY) == 0)
57 58 59 60 61 62
			return 0;
	}

	return -ETIMEDOUT;
}

63 64
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
				int reg)
65 66 67 68
{
	int ret;

	if (sw_addr == 0)
69
		return mdiobus_read_nested(bus, addr, reg);
70

71
	/* Wait for the bus to become free. */
72 73 74 75
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

76
	/* Transmit the read command. */
77 78
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 80 81
	if (ret < 0)
		return ret;

82
	/* Wait for the read command to complete. */
83 84 85 86
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

87
	/* Read the data. */
88
	ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 90 91 92 93 94
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

95
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96
{
97
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
98 99
	int ret;

100 101
	assert_smi_lock(ds);

102
	ret = __mv88e6xxx_reg_read(ps->bus, ps->sw_addr, addr, reg);
103 104 105 106 107 108
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

109 110 111
	return ret;
}

112 113 114 115 116 117 118 119 120 121 122 123
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

124 125
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
				 int reg, u16 val)
126 127 128 129
{
	int ret;

	if (sw_addr == 0)
130
		return mdiobus_write_nested(bus, addr, reg, val);
131

132
	/* Wait for the bus to become free. */
133 134 135 136
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

137
	/* Transmit the data to write. */
138
	ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
139 140 141
	if (ret < 0)
		return ret;

142
	/* Transmit the write command. */
143 144
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
145 146 147
	if (ret < 0)
		return ret;

148
	/* Wait for the write command to complete. */
149 150 151 152 153 154 155
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

156 157
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
158
{
159
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
160

161 162
	assert_smi_lock(ds);

163 164 165
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

166
	return __mv88e6xxx_reg_write(ps->bus, ps->sw_addr, addr, reg, val);
167 168 169 170 171 172 173
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

174
	mutex_lock(&ps->smi_mutex);
175
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
176 177 178 179 180
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

181 182
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
183
	int err;
184

185 186 187 188 189 190 191 192 193 194 195 196
	err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_01,
				  (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_23,
				  (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_45,
				   (addr[4] << 8) | addr[5]);
197 198
}

199 200 201
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int ret;
202
	int i;
203 204 205 206

	for (i = 0; i < 6; i++) {
		int j;

207
		/* Write the MAC address byte. */
208 209 210 211 212
		ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
					  GLOBAL2_SWITCH_MAC_BUSY |
					  (i << 8) | addr[i]);
		if (ret)
			return ret;
213

214
		/* Wait for the write to complete. */
215
		for (j = 0; j < 16; j++) {
216 217 218 219 220
			ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2,
						 GLOBAL2_SWITCH_MAC);
			if (ret < 0)
				return ret;

221
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
222 223 224 225 226 227 228 229 230
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

231
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
232 233
{
	if (addr >= 0)
234
		return _mv88e6xxx_reg_read(ds, addr, regnum);
235 236 237
	return 0xffff;
}

238 239
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
240 241
{
	if (addr >= 0)
242
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
243 244 245
	return 0;
}

246 247 248 249
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
250
	unsigned long timeout;
251

252 253 254 255 256 257 258 259
	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_CONTROL);
	if (ret < 0)
		return ret;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_CONTROL,
				  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (ret)
		return ret;
260

261 262
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
263 264 265 266
		ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATUS);
		if (ret < 0)
			return ret;

267
		usleep_range(1000, 2000);
268 269
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
270
			return 0;
271 272 273 274 275 276 277
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
278
	int ret, err;
279
	unsigned long timeout;
280

281 282 283 284 285 286 287 288
	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_CONTROL);
	if (ret < 0)
		return ret;

	err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_CONTROL,
				  ret | GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
289

290 291
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
292 293 294 295
		ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATUS);
		if (ret < 0)
			return ret;

296
		usleep_range(1000, 2000);
297 298
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
299
			return 0;
300 301 302 303 304 305 306 307 308 309 310
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
311
		struct dsa_switch *ds = ps->ds;
312

313 314 315
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
316 317 318 319 320 321 322 323 324 325 326 327
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
328
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329 330 331 332
	int ret;

	mutex_lock(&ps->ppu_mutex);

333
	/* If the PHY polling unit is enabled, disable it so that
334 335 336 337 338
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
339 340 341 342 343 344
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
345
	} else {
346 347
		del_timer(&ps->ppu_timer);
		ret = 0;
348 349 350 351 352 353 354
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
355
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
356

357
	/* Schedule a timer to re-enable the PHY polling unit. */
358 359 360 361 362 363
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
364
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
365 366 367 368 369 370 371 372 373 374 375 376 377 378

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
379 380
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
381 382 383 384 385 386 387 388 389 390 391 392
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
393 394
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
395 396 397 398 399 400
	}

	return ret;
}
#endif

401 402 403 404
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

405
	return ps->info->family == MV88E6XXX_FAMILY_6065;
406 407 408 409 410 411
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

412
	return ps->info->family == MV88E6XXX_FAMILY_6095;
413 414 415 416 417 418
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

419
	return ps->info->family == MV88E6XXX_FAMILY_6097;
420 421 422 423 424 425
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

426
	return ps->info->family == MV88E6XXX_FAMILY_6165;
427 428 429 430 431 432
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

433
	return ps->info->family == MV88E6XXX_FAMILY_6185;
434 435
}

436
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
437 438 439
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

440
	return ps->info->family == MV88E6XXX_FAMILY_6320;
441 442
}

443 444 445 446
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

447
	return ps->info->family == MV88E6XXX_FAMILY_6351;
448 449
}

450 451 452 453
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

454
	return ps->info->family == MV88E6XXX_FAMILY_6352;
455 456
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static unsigned int mv88e6xxx_num_databases(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	/* The following devices have 4-bit identifiers for 16 databases */
	if (ps->id == PORT_SWITCH_ID_6061)
		return 16;

	/* The following devices have 6-bit identifiers for 64 databases */
	if (ps->id == PORT_SWITCH_ID_6065)
		return 64;

	/* The following devices have 8-bit identifiers for 256 databases */
	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
		return 256;

	/* The following devices have 12-bit identifiers for 4096 databases */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return 4096;

	return 0;
}

481 482 483 484 485 486 487 488 489 490
static bool mv88e6xxx_has_fid_reg(struct dsa_switch *ds)
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

491 492 493 494 495 496 497 498 499 500
static bool mv88e6xxx_has_stu(struct dsa_switch *ds)
{
	/* Does the device have STU and dedicated SID registers for VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

501 502 503 504 505 506 507 508
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
			   struct phy_device *phydev)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
509 510
	u32 reg;
	int ret;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
			reg |= PORT_PCS_CTRL_LINK_UP;

	if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

553
	if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
554
	    (port >= ps->info->num_ports - 2)) {
555 556 557 558 559 560 561 562
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
563 564 565 566 567 568
	_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);

out:
	mutex_unlock(&ps->smi_mutex);
}

569
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
570 571 572 573 574
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
575
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
576
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
577 578 579 580 581 582
			return 0;
	}

	return -ETIMEDOUT;
}

583
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
584 585 586
{
	int ret;

587
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
588 589
		port = (port + 1) << 5;

590
	/* Snapshot the hardware statistics counters for this port. */
591 592 593 594 595
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
596

597
	/* Wait for the snapshotting to complete. */
598
	ret = _mv88e6xxx_stats_wait(ds);
599 600 601 602 603 604
	if (ret < 0)
		return ret;

	return 0;
}

605
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
606 607 608 609 610 611
{
	u32 _val;
	int ret;

	*val = 0;

612 613 614
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
615 616 617
	if (ret < 0)
		return;

618
	ret = _mv88e6xxx_stats_wait(ds);
619 620 621
	if (ret < 0)
		return;

622
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
623 624 625 626 627
	if (ret < 0)
		return;

	_val = ret << 16;

628
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
629 630 631 632 633 634
	if (ret < 0)
		return;

	*val = _val | ret;
}

635
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
695 696
};

697 698
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
			       struct mv88e6xxx_hw_stat *stat)
699
{
700 701
	switch (stat->type) {
	case BANK0:
702
		return true;
703 704 705 706 707 708 709 710 711
	case BANK1:
		return mv88e6xxx_6320_family(ds);
	case PORT:
		return mv88e6xxx_6095_family(ds) ||
			mv88e6xxx_6185_family(ds) ||
			mv88e6xxx_6097_family(ds) ||
			mv88e6xxx_6165_family(ds) ||
			mv88e6xxx_6351_family(ds) ||
			mv88e6xxx_6352_family(ds);
712
	}
713
	return false;
714 715
}

716
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
717
					    struct mv88e6xxx_hw_stat *s,
718 719 720 721 722 723 724
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

725 726 727
	switch (s->type) {
	case PORT:
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
728 729 730 731 732 733
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
734
						  s->reg + 1);
735 736 737 738
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
739 740 741
		break;
	case BANK0:
	case BANK1:
742 743 744 745 746 747 748 749
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

750
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
751
{
752 753
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
754

755 756 757 758 759 760 761
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
762
	}
763 764 765 766
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
767 768 769 770 771 772 773 774 775
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat))
			j++;
	}
	return j;
776 777 778 779 780 781
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->smi_mutex);
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
			j++;
		}
	}

	mutex_unlock(&ps->smi_mutex);
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

829 830
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
831 832 833 834 835 836
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

837 838 839
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
840 841 842 843 844 845 846 847
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

848 849 850 851 852 853 854 855 856 857 858 859 860
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
861
{
862 863
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
864 865 866 867
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
868 869
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
870 871 872 873
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
874 875
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
876 877
}

878 879
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
880 881
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
882 883
}

884 885
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
886 887 888
{
	int ret;

889 890 891 892 893
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
894

895
	ret = _mv88e6xxx_phy_wait(ds);
896 897 898
	if (ret < 0)
		return ret;

899
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
900 901
}

902 903
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
904
{
905 906 907 908 909
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
910

911 912 913 914 915
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
916 917
}

918 919
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
920
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
921 922
	int reg;

923
	mutex_lock(&ps->smi_mutex);
924 925

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
926
	if (reg < 0)
927
		goto out;
928 929 930 931

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

932
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
933
	if (reg < 0)
934
		goto out;
935

936
	e->eee_active = !!(reg & PORT_STATUS_EEE);
937
	reg = 0;
938

939
out:
940
	mutex_unlock(&ps->smi_mutex);
941
	return reg;
942 943 944 945 946
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
947 948
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
949 950
	int ret;

951
	mutex_lock(&ps->smi_mutex);
952

953 954 955 956 957 958 959 960 961 962 963 964
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
965
	mutex_unlock(&ps->smi_mutex);
966 967

	return ret;
968 969
}

970
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 fid, u16 cmd)
971 972 973
{
	int ret;

974 975 976 977
	if (mv88e6xxx_has_fid_reg(ds)) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
		if (ret < 0)
			return ret;
978 979 980 981 982 983 984 985 986 987 988 989 990 991
	} else if (mv88e6xxx_num_databases(ds) == 256) {
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL);
		if (ret < 0)
			return ret;

		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL,
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
992 993
	}

994
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
995 996 997 998 999 1000
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}

1024 1025 1026
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1027
{
1028 1029
	int op;
	int err;
1030

1031 1032 1033
	err = _mv88e6xxx_atu_wait(ds);
	if (err)
		return err;
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	err = _mv88e6xxx_atu_data_write(ds, entry);
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1047
	return _mv88e6xxx_atu_cmd(ds, entry->fid, op);
1048 1049 1050 1051 1052 1053 1054 1055
}

static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1056

1057 1058 1059
	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
			       int to_port, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
				 bool static_too)
{
	/* Destination port 0xF means remove the entries */
	return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
}

1085 1086 1087 1088 1089 1090 1091 1092
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state)
1093
{
1094
	int reg, ret = 0;
1095 1096
	u8 oldstate;

1097
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1098 1099
	if (reg < 0)
		return reg;
1100

1101
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1102

1103 1104 1105 1106 1107
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1108 1109 1110 1111
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
		     oldstate == PORT_CONTROL_STATE_FORWARDING)
		    && (state == PORT_CONTROL_STATE_DISABLED ||
			state == PORT_CONTROL_STATE_BLOCKING)) {
1112
			ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1113
			if (ret)
1114
				return ret;
1115
		}
1116

1117 1118 1119
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1120 1121 1122 1123 1124 1125
		if (ret)
			return ret;

		netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1126 1127 1128 1129 1130
	}

	return ret;
}

1131
static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port)
1132 1133
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1134
	struct net_device *bridge = ps->ports[port].bridge_dev;
1135
	const u16 mask = (1 << ps->info->num_ports) - 1;
1136
	u16 output_ports = 0;
1137
	int reg;
1138 1139 1140 1141 1142 1143
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1144
		for (i = 0; i < ps->info->num_ports; ++i) {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			/* allow sending frames to every group member */
			if (bridge && ps->ports[i].bridge_dev == bridge)
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1157

1158 1159 1160
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (reg < 0)
		return reg;
1161

1162 1163
	reg &= ~mask;
	reg |= output_ports & mask;
1164

1165
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1166 1167
}

1168
void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1169 1170 1171 1172 1173 1174
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1175
		stp_state = PORT_CONTROL_STATE_DISABLED;
1176 1177 1178
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1179
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1180 1181
		break;
	case BR_STATE_LEARNING:
1182
		stp_state = PORT_CONTROL_STATE_LEARNING;
1183 1184 1185
		break;
	case BR_STATE_FORWARDING:
	default:
1186
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1187 1188 1189
		break;
	}

1190
	/* mv88e6xxx_port_stp_state_set may be called with softirqs disabled,
1191 1192
	 * so we can not update the port state directly but need to schedule it.
	 */
1193
	ps->ports[port].state = stp_state;
1194
	set_bit(port, ps->port_state_update_mask);
1195 1196 1197
	schedule_work(&ps->bridge_work);
}

1198 1199
static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new,
				u16 *old)
1200
{
1201
	u16 pvid;
1202 1203 1204 1205 1206 1207
	int ret;

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
			   pvid);
	}

	if (old)
		*old = pvid;
1225 1226 1227 1228

	return 0;
}

1229 1230 1231 1232 1233
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	return _mv88e6xxx_port_pvid(ds, port, NULL, pvid);
}

1234
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1235
{
1236
	return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL);
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1285
	for (i = 0; i < ps->info->num_ports; ++i) {
1286 1287 1288 1289 1290 1291 1292 1293 1294
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

1304
	for (i = 0; i < ps->info->num_ports; ++i) {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1321 1322 1323 1324 1325 1326 1327
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
{
	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				    vid & GLOBAL_VTU_VID_MASK);
}

static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

1353
		if (mv88e6xxx_has_fid_reg(ds)) {
1354 1355 1356 1357 1358 1359
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		} else if (mv88e6xxx_num_databases(ds) == 256) {
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1371
		}
1372

1373
		if (mv88e6xxx_has_stu(ds)) {
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_vlan *vlan,
			     int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &next);
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
		vlan->vid_begin = vlan->vid_end = next.vid;
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1438 1439 1440
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1441
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

1457
	if (mv88e6xxx_has_stu(ds)) {
1458 1459 1460 1461
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;
1462
	}
1463

1464
	if (mv88e6xxx_has_fid_reg(ds)) {
1465 1466 1467 1468
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
1469 1470 1471 1472 1473 1474
	} else if (mv88e6xxx_num_databases(ds) == 256) {
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1475 1476 1477 1478 1479 1480 1481 1482 1483
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

1484
	return _mv88e6xxx_vtu_cmd(ds, op);
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

1560 1561 1562
static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new,
			       u16 *old)
{
1563
	u16 upper_mask;
1564 1565 1566
	u16 fid;
	int ret;

1567 1568
	if (mv88e6xxx_num_databases(ds) == 4096)
		upper_mask = 0xff;
1569 1570
	else if (mv88e6xxx_num_databases(ds) == 256)
		upper_mask = 0xf;
1571 1572 1573
	else
		return -EOPNOTSUPP;

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN,
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1);
	if (ret < 0)
		return ret;

1596
	fid |= (ret & upper_mask) << 4;
1597 1598

	if (new) {
1599 1600
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1,
					   ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
	}

	if (old)
		*old = fid;

	return 0;
}

static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid)
{
	return _mv88e6xxx_port_fid(ds, port, NULL, fid);
}

static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid)
{
	return _mv88e6xxx_port_fid(ds, port, &fid, NULL);
}

1626 1627
static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid)
{
1628
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1629 1630
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1631
	int i, err;
1632 1633 1634

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1635
	/* Set every FID bit used by the (un)bridged ports */
1636
	for (i = 0; i < ps->info->num_ports; ++i) {
1637 1638 1639 1640 1641 1642 1643
		err = _mv88e6xxx_port_fid_get(ds, i, fid);
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	/* Set every FID bit used by the VLAN entries */
	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1664
	if (unlikely(*fid >= mv88e6xxx_num_databases(ds)))
1665 1666 1667 1668 1669 1670
		return -ENOSPC;

	/* Clear the database */
	return _mv88e6xxx_atu_flush(ds, *fid, true);
}

1671 1672
static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry)
1673 1674 1675 1676 1677 1678
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1679 1680 1681 1682 1683
	int i, err;

	err = _mv88e6xxx_fid_new(ds, &vlan.fid);
	if (err)
		return err;
1684

1685
	/* exclude all ports except the CPU and DSA ports */
1686
	for (i = 0; i < ps->info->num_ports; ++i)
1687 1688 1689
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
		return err;

	err = _mv88e6xxx_vtu_getnext(ds, entry);
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

		err = _mv88e6xxx_vtu_new(ds, vid, entry);
	}

	return err;
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1775
		for (i = 0; i < ps->info->num_ports; ++i) {
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

			if (ps->ports[i].bridge_dev ==
			    ps->ports[port].bridge_dev)
				break; /* same bridge, check next VLAN */

			netdev_warn(ds->ports[port],
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
				    netdev_name(ps->ports[i].bridge_dev));
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
				  bool vlan_filtering)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2);
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1825 1826 1827
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2,
					   ret);
		if (ret < 0)
			goto unlock;

		netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1838

1839
	ret = 0;
1840 1841 1842 1843 1844 1845
unlock:
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1846 1847 1848 1849
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	int err;

	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1860 1861 1862 1863 1864 1865 1866 1867
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
				    bool untagged)
1868 1869 1870 1871
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1872
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true);
1873
	if (err)
1874
		return err;
1875 1876 1877 1878 1879

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1880 1881 1882
	return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
}

1883 1884 1885
void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
			     const struct switchdev_obj_port_vlan *vlan,
			     struct switchdev_trans *trans)
1886 1887 1888 1889 1890 1891 1892 1893
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

	mutex_lock(&ps->smi_mutex);

1894 1895 1896 1897
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
		if (_mv88e6xxx_port_vlan_add(ds, port, vid, untagged))
			netdev_err(ds->ports[port], "failed to add VLAN %d%c\n",
				   vid, untagged ? 'u' : 't');
1898

1899 1900 1901
	if (pvid && _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end))
		netdev_err(ds->ports[port], "failed to set PVID %d\n",
			   vlan->vid_end);
1902

1903
	mutex_unlock(&ps->smi_mutex);
1904 1905
}

1906
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1907 1908 1909 1910 1911
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1912
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1913
	if (err)
1914
		return err;
1915

1916 1917
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1918
		return -EOPNOTSUPP;
1919 1920 1921 1922

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1923
	vlan.valid = false;
1924
	for (i = 0; i < ps->info->num_ports; ++i) {
1925
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1926 1927 1928
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1929
			vlan.valid = true;
1930 1931 1932 1933 1934
			break;
		}
	}

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	if (err)
		return err;

	return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
}

int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 pvid, vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1951 1952 1953
	if (err)
		goto unlock;

1954 1955 1956 1957 1958 1959
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_del(ds, port, vid);
		if (err)
			goto unlock;

		if (vid == pvid) {
1960
			err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1961 1962 1963 1964 1965
			if (err)
				goto unlock;
		}
	}

1966 1967 1968 1969 1970 1971
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1972 1973
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1974 1975 1976 1977
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1978 1979 1980
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1981 1982 1983 1984 1985 1986 1987
		if (ret < 0)
			return ret;
	}

	return 0;
}

1988
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1989 1990 1991 1992
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1993 1994
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1995 1996 1997 1998 1999 2000 2001 2002 2003
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2004 2005
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
2006
{
2007 2008
	int ret;

2009 2010 2011 2012
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

2013
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
2014 2015 2016
	if (ret < 0)
		return ret;

2017
	ret = _mv88e6xxx_atu_data_write(ds, entry);
2018
	if (ret < 0)
2019 2020
		return ret;

2021
	return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2022
}
2023

2024 2025 2026 2027 2028
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2029 2030 2031
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2032 2033 2034 2035 2036
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
		err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid);
	else
		err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
2037 2038
	if (err)
		return err;
2039

2040
	entry.fid = vlan.fid;
2041 2042 2043 2044 2045 2046 2047 2048
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
2049 2050
}

V
Vivien Didelot 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2061 2062 2063
void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_fdb *fdb,
			    struct switchdev_trans *trans)
2064
{
2065
	int state = is_multicast_ether_addr(fdb->addr) ?
2066 2067
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2068
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2069 2070

	mutex_lock(&ps->smi_mutex);
2071 2072
	if (_mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state))
		netdev_err(ds->ports[port], "failed to load MAC address\n");
2073 2074 2075
	mutex_unlock(&ps->smi_mutex);
}

2076
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2077
			   const struct switchdev_obj_port_fdb *fdb)
2078 2079 2080 2081 2082
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
2083
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
2084
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2085 2086 2087 2088 2089
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2090 2091
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  struct mv88e6xxx_atu_entry *entry)
2092
{
2093 2094 2095 2096
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2097

2098 2099 2100
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
2101

2102
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2103 2104
	if (ret < 0)
		return ret;
2105

2106 2107 2108
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
2109

2110
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
2111 2112
	if (ret < 0)
		return ret;
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2130

2131
	*entry = next;
2132 2133 2134
	return 0;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid,
					int port,
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

	err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(ds, fid, &addr);
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2176 2177 2178 2179 2180 2181 2182 2183
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
			    struct switchdev_obj_port_fdb *fdb,
			    int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2184
	u16 fid;
2185 2186 2187 2188
	int err;

	mutex_lock(&ps->smi_mutex);

2189 2190 2191 2192 2193 2194 2195 2196 2197
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
	err = _mv88e6xxx_port_fid_get(ds, port, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb);
	if (err)
		goto unlock;

2198
	/* Dump VLANs' Filtering Information Databases */
2199 2200 2201 2202 2203 2204 2205
	err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
2206
			break;
2207 2208 2209 2210

		if (!vlan.valid)
			break;

2211 2212
		err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port,
						   fdb, cb);
2213
		if (err)
2214
			break;
2215 2216 2217 2218 2219 2220 2221 2222
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

2223 2224
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
			       struct net_device *bridge)
2225
{
2226
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2227 2228 2229 2230 2231 2232
	u16 fid;
	int i, err;

	mutex_lock(&ps->smi_mutex);

	/* Get or create the bridge FID and assign it to the port */
2233
	for (i = 0; i < ps->info->num_ports; ++i)
2234 2235 2236
		if (ps->ports[i].bridge_dev == bridge)
			break;

2237
	if (i < ps->info->num_ports)
2238 2239 2240 2241 2242 2243 2244 2245 2246
		err = _mv88e6xxx_port_fid_get(ds, i, &fid);
	else
		err = _mv88e6xxx_fid_new(ds, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fid_set(ds, port, fid);
	if (err)
		goto unlock;
2247

2248
	/* Assign the bridge and remap each port's VLANTable */
2249
	ps->ports[port].bridge_dev = bridge;
2250

2251
	for (i = 0; i < ps->info->num_ports; ++i) {
2252 2253 2254 2255 2256 2257 2258
		if (ps->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(ds, i);
			if (err)
				break;
		}
	}

2259 2260
unlock:
	mutex_unlock(&ps->smi_mutex);
2261

2262
	return err;
2263 2264
}

2265
void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2266
{
2267
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2268
	struct net_device *bridge = ps->ports[port].bridge_dev;
2269
	u16 fid;
2270
	int i;
2271 2272 2273 2274

	mutex_lock(&ps->smi_mutex);

	/* Give the port a fresh Filtering Information Database */
2275 2276 2277
	if (_mv88e6xxx_fid_new(ds, &fid) ||
	    _mv88e6xxx_port_fid_set(ds, port, fid))
		netdev_warn(ds->ports[port], "failed to assign a new FID\n");
2278

2279
	/* Unassign the bridge and remap each port's VLANTable */
2280
	ps->ports[port].bridge_dev = NULL;
2281

2282
	for (i = 0; i < ps->info->num_ports; ++i)
2283 2284 2285
		if (i == port || ps->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(ds, i))
				netdev_warn(ds->ports[i], "failed to remap\n");
2286

2287
	mutex_unlock(&ps->smi_mutex);
2288 2289
}

2290 2291 2292 2293 2294 2295 2296
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
2297
	ds = ps->ds;
2298

2299 2300
	mutex_lock(&ps->smi_mutex);

2301
	for (port = 0; port < ps->info->num_ports; ++port)
2302 2303 2304 2305 2306 2307
		if (test_and_clear_bit(port, ps->port_state_update_mask) &&
		    _mv88e6xxx_port_state(ds, port, ps->ports[port].state))
			netdev_warn(ds->ports[port], "failed to update state to %s\n",
				    mv88e6xxx_port_state_names[ps->ports[port].state]);

	mutex_unlock(&ps->smi_mutex);
2308 2309
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static int _mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

static int _mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static int mv88e6xxx_power_on_serdes(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_phy_page_read(ds, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
				       MII_BMCR);
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
		ret = _mv88e6xxx_phy_page_write(ds, REG_FIBER_SERDES,
						PAGE_FIBER_SERDES, MII_BMCR,
						ret);
	}

	return ret;
}

2361
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2362 2363
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2364
	int ret;
2365
	u16 reg;
2366 2367 2368

	mutex_lock(&ps->smi_mutex);

2369 2370 2371
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2372
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2373 2374 2375 2376 2377 2378 2379
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2380
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2381
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2418
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2419 2420 2421 2422 2423 2424 2425
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2426 2427
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2428 2429 2430 2431
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
2432 2433
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2434 2435 2436 2437 2438
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2439
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2440 2441 2442 2443
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
2444 2445 2446 2447 2448 2449
	if (dsa_is_dsa_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2450
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2451 2452
		}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
	if (mv88e6xxx_6352_family(ds)) {
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
		if (ret < 0)
			goto abort;
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
			ret = mv88e6xxx_power_on_serdes(ds);
			if (ret < 0)
				goto abort;
		}
	}

2481
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2482
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2483 2484 2485
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2486 2487 2488 2489
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2490 2491
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds) ||
	    mv88e6xxx_6185_family(ds))
2492 2493 2494
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2495
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2508
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2509

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2522 2523 2524 2525 2526 2527
	reg = 1 << port;
	/* Disable learning for DSA and CPU ports */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		reg = PORT_ASSOC_VECTOR_LOCKED_PORT;

	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2538 2539
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2589 2590
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2591 2592 2593 2594 2595 2596 2597
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2598 2599
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2600
	 */
2601
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2602 2603 2604
	if (ret)
		goto abort;

2605
	/* Port based VLAN map: give each port its own address
2606 2607
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2608
	 */
2609 2610 2611 2612
	ret = _mv88e6xxx_port_fid_set(ds, port, port + 1);
	if (ret)
		goto abort;

2613
	ret = _mv88e6xxx_port_based_vlan_map(ds, port);
2614 2615 2616 2617 2618 2619
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2620 2621
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2622 2623 2624 2625 2626
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2627 2628 2629 2630 2631 2632
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

2633
	for (i = 0; i < ps->info->num_ports; i++) {
2634 2635 2636 2637 2638 2639 2640
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2641 2642 2643 2644
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

2645
	ps->ds = ds;
2646 2647
	mutex_init(&ps->smi_mutex);

2648 2649
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2650 2651 2652
	return 0;
}

2653 2654 2655
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2656
	int err;
2657 2658
	int i;

2659
	mutex_lock(&ps->smi_mutex);
2660 2661 2662 2663
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2664 2665 2666 2667
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL,
				   0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
	if (err)
		goto unlock;
2668 2669

	/* Configure the IP ToS mapping registers. */
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	if (err)
		goto unlock;
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
	if (err)
		goto unlock;
2694 2695

	/* Configure the IEEE 802.1p priority mapping register. */
2696 2697 2698
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
	if (err)
		goto unlock;
2699 2700 2701 2702

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
2703 2704 2705
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
	if (err)
		goto unlock;
2706 2707 2708 2709 2710 2711

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
2712 2713 2714 2715 2716
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
				   0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
				   GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
	if (err)
		goto unlock;
2717 2718 2719 2720 2721 2722 2723 2724 2725

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

2726 2727 2728 2729 2730 2731 2732
		err = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL2,
			GLOBAL2_DEVICE_MAPPING,
			GLOBAL2_DEVICE_MAPPING_UPDATE |
			(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop);
		if (err)
			goto unlock;
2733 2734 2735
	}

	/* Clear all trunk masks. */
2736 2737 2738 2739
	for (i = 0; i < 8; i++) {
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
					   0x8000 |
					   (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
2740
					   ((1 << ps->info->num_ports) - 1));
2741 2742 2743
		if (err)
			goto unlock;
	}
2744 2745

	/* Clear all trunk mappings. */
2746 2747 2748 2749 2750 2751 2752 2753 2754
	for (i = 0; i < 16; i++) {
		err = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL2,
			GLOBAL2_TRUNK_MAPPING,
			GLOBAL2_TRUNK_MAPPING_UPDATE |
			(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
		if (err)
			goto unlock;
	}
2755 2756

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2757 2758
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2759 2760 2761
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
2762 2763 2764 2765
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
					   GLOBAL2_MGMT_EN_2X, 0xffff);
		if (err)
			goto unlock;
2766 2767 2768 2769

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
2770 2771 2772 2773
		err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
					   GLOBAL2_PVT_ADDR, 0x9000);
		if (err)
			goto unlock;
2774 2775

		/* Clear the priority override table. */
2776 2777 2778 2779 2780 2781 2782
		for (i = 0; i < 16; i++) {
			err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
						   GLOBAL2_PRIO_OVERRIDE,
						   0x8000 | (i << 8));
			if (err)
				goto unlock;
		}
2783 2784 2785 2786
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2787 2788
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2789 2790 2791 2792
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
2793
		for (i = 0; i < ps->info->num_ports; i++) {
2794 2795 2796 2797 2798 2799
			err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2,
						   GLOBAL2_INGRESS_OP,
						   0x9000 | (i << 8));
			if (err)
				goto unlock;
		}
2800 2801
	}

2802
	/* Clear the statistics counters for all ports */
2803 2804 2805 2806
	err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		goto unlock;
2807 2808

	/* Wait for the flush to complete. */
2809 2810
	err = _mv88e6xxx_stats_wait(ds);
	if (err < 0)
2811 2812
		goto unlock;

2813
	/* Clear all ATU entries */
2814 2815
	err = _mv88e6xxx_atu_flush(ds, 0, true);
	if (err < 0)
2816 2817
		goto unlock;

2818
	/* Clear all the VTU and STU entries */
2819
	err = _mv88e6xxx_vtu_stu_flush(ds);
2820
unlock:
2821
	mutex_unlock(&ps->smi_mutex);
2822

2823
	return err;
2824 2825
}

2826 2827 2828 2829
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2830
	struct gpio_desc *gpiod = ds->pd->reset;
2831 2832 2833 2834
	unsigned long timeout;
	int ret;
	int i;

2835 2836
	mutex_lock(&ps->smi_mutex);

2837
	/* Set all ports to the disabled state. */
2838
	for (i = 0; i < ps->info->num_ports; i++) {
2839 2840 2841 2842 2843 2844 2845 2846
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(i), PORT_CONTROL);
		if (ret < 0)
			goto unlock;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(i), PORT_CONTROL,
					   ret & 0xfffc);
		if (ret)
			goto unlock;
2847 2848 2849 2850 2851
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

2852 2853 2854 2855 2856 2857 2858 2859
	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

2860 2861 2862 2863 2864
	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2865
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x04, 0xc000);
2866
	else
2867 2868 2869
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x04, 0xc400);
	if (ret)
		goto unlock;
2870 2871 2872 2873

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2874 2875 2876 2877
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x00);
		if (ret < 0)
			goto unlock;

2878 2879 2880 2881 2882
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2883 2884 2885 2886 2887
		ret = -ETIMEDOUT;
	else
		ret = 0;
unlock:
	mutex_unlock(&ps->smi_mutex);
2888

2889
	return ret;
2890 2891
}

2892 2893 2894 2895 2896
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2897
	mutex_lock(&ps->smi_mutex);
2898
	ret = _mv88e6xxx_phy_page_read(ds, port, page, reg);
2899
	mutex_unlock(&ps->smi_mutex);
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2910
	mutex_lock(&ps->smi_mutex);
2911
	ret = _mv88e6xxx_phy_page_write(ds, port, page, reg, val);
2912
	mutex_unlock(&ps->smi_mutex);
2913

2914 2915 2916 2917 2918 2919 2920
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

2921
	if (port >= 0 && port < ps->info->num_ports)
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2936
	mutex_lock(&ps->smi_mutex);
2937
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2938
	mutex_unlock(&ps->smi_mutex);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2952
	mutex_lock(&ps->smi_mutex);
2953
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2954
	mutex_unlock(&ps->smi_mutex);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2968
	mutex_lock(&ps->smi_mutex);
2969
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2970
	mutex_unlock(&ps->smi_mutex);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2985
	mutex_lock(&ps->smi_mutex);
2986
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2987
	mutex_unlock(&ps->smi_mutex);
2988 2989 2990
	return ret;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3117 3118
static const struct mv88e6xxx_info *
mv88e6xxx_lookup_info(unsigned int prod_num, const struct mv88e6xxx_info *table,
V
Vivien Didelot 已提交
3119
		      unsigned int num)
3120
{
3121
	int i;
3122 3123

	for (i = 0; i < num; ++i)
3124 3125
		if (table[i].prod_num == prod_num)
			return &table[i];
3126 3127 3128 3129

	return NULL;
}

V
Vivien Didelot 已提交
3130 3131
const char *mv88e6xxx_drv_probe(struct device *dsa_dev, struct device *host_dev,
				int sw_addr, void **priv,
3132
				const struct mv88e6xxx_info *table,
V
Vivien Didelot 已提交
3133
				unsigned int num)
3134
{
3135
	const struct mv88e6xxx_info *info;
3136
	struct mv88e6xxx_priv_state *ps;
3137
	struct mii_bus *bus;
V
Vivien Didelot 已提交
3138
	const char *name;
3139
	int id, prod_num, rev;
3140

3141
	bus = dsa_host_dev_to_mii_bus(host_dev);
3142 3143 3144
	if (!bus)
		return NULL;

3145 3146 3147 3148 3149 3150 3151
	id = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
	if (id < 0)
		return NULL;

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

3152 3153
	info = mv88e6xxx_lookup_info(prod_num, table, num);
	if (!info)
3154 3155
		return NULL;

3156 3157
	name = info->name;

3158 3159 3160 3161 3162 3163
	ps = devm_kzalloc(dsa_dev, sizeof(*ps), GFP_KERNEL);
	if (!ps)
		return NULL;

	ps->bus = bus;
	ps->sw_addr = sw_addr;
3164
	ps->info = info;
3165 3166 3167 3168 3169 3170 3171
	ps->id = id & 0xfff0;

	*priv = ps;

	dev_info(&ps->bus->dev, "switch 0x%x probed: %s, revision %u\n",
		 prod_num, name, rev);

3172 3173 3174
	return name;
}

3175 3176 3177 3178 3179
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
3180 3181
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	register_switch_driver(&mv88e6123_switch_driver);
3182
#endif
3183 3184 3185
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
3186 3187
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
3188 3189 3190 3191 3192 3193 3194
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3195 3196 3197
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
3198 3199 3200
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
3201 3202
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	unregister_switch_driver(&mv88e6123_switch_driver);
3203 3204 3205 3206 3207 3208
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
3209 3210 3211 3212

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");