mv88e6xxx.c 75.9 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/delay.h>
15
#include <linux/etherdevice.h>
16
#include <linux/ethtool.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21
#include <linux/netdevice.h>
22
#include <linux/gpio/consumer.h>
23
#include <linux/phy.h>
24
#include <net/dsa.h>
25
#include <net/switchdev.h>
26 27
#include "mv88e6xxx.h"

28 29 30 31 32 33 34 35 36 37
static void assert_smi_lock(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
		dev_err(ds->master_dev, "SMI lock not held!\n");
		dump_stack();
	}
}

38
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
52
		ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 54 55
		if (ret < 0)
			return ret;

56
		if ((ret & SMI_CMD_BUSY) == 0)
57 58 59 60 61 62
			return 0;
	}

	return -ETIMEDOUT;
}

63 64
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
				int reg)
65 66 67 68
{
	int ret;

	if (sw_addr == 0)
69
		return mdiobus_read_nested(bus, addr, reg);
70

71
	/* Wait for the bus to become free. */
72 73 74 75
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

76
	/* Transmit the read command. */
77 78
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 80 81
	if (ret < 0)
		return ret;

82
	/* Wait for the read command to complete. */
83 84 85 86
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

87
	/* Read the data. */
88
	ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 90 91 92 93 94
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

95
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96
{
97
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
98 99
	int ret;

100 101
	assert_smi_lock(ds);

102
	ret = __mv88e6xxx_reg_read(ps->bus, ps->sw_addr, addr, reg);
103 104 105 106 107 108
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

109 110 111
	return ret;
}

112 113 114 115 116 117 118 119 120 121 122 123
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

124 125
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
				 int reg, u16 val)
126 127 128 129
{
	int ret;

	if (sw_addr == 0)
130
		return mdiobus_write_nested(bus, addr, reg, val);
131

132
	/* Wait for the bus to become free. */
133 134 135 136
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

137
	/* Transmit the data to write. */
138
	ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
139 140 141
	if (ret < 0)
		return ret;

142
	/* Transmit the write command. */
143 144
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
145 146 147
	if (ret < 0)
		return ret;

148
	/* Wait for the write command to complete. */
149 150 151 152 153 154 155
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

156 157
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
158
{
159
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
160

161 162
	assert_smi_lock(ds);

163 164 165
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

166
	return __mv88e6xxx_reg_write(ps->bus, ps->sw_addr, addr, reg, val);
167 168 169 170 171 172 173
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

174
	mutex_lock(&ps->smi_mutex);
175
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
176 177 178 179 180
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

181 182
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
183 184 185
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
186 187 188 189

	return 0;
}

190 191 192 193 194 195 196 197
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

198
		/* Write the MAC address byte. */
199 200
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
201

202
		/* Wait for the write to complete. */
203
		for (j = 0; j < 16; j++) {
204 205
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
206 207 208 209 210 211 212 213 214
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

215
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
216 217
{
	if (addr >= 0)
218
		return _mv88e6xxx_reg_read(ds, addr, regnum);
219 220 221
	return 0xffff;
}

222 223
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
224 225
{
	if (addr >= 0)
226
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
227 228 229
	return 0;
}

230 231 232 233
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
234
	unsigned long timeout;
235

236 237 238
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
239

240 241
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
242
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
243
		usleep_range(1000, 2000);
244 245
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
246
			return 0;
247 248 249 250 251 252 253 254
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
255
	unsigned long timeout;
256

257 258
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
259

260 261
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
262
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
263
		usleep_range(1000, 2000);
264 265
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
266
			return 0;
267 268 269 270 271 272 273 274 275 276 277
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
278
		struct dsa_switch *ds = ps->ds;
279

280 281 282
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
283 284 285 286 287 288 289 290 291 292 293 294
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
295
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
296 297 298 299
	int ret;

	mutex_lock(&ps->ppu_mutex);

300
	/* If the PHY polling unit is enabled, disable it so that
301 302 303 304 305
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
306 307 308 309 310 311
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
312
	} else {
313 314
		del_timer(&ps->ppu_timer);
		ret = 0;
315 316 317 318 319 320 321
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
322
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
323

324
	/* Schedule a timer to re-enable the PHY polling unit. */
325 326 327 328 329 330
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
331
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
332 333 334 335 336 337 338 339 340 341 342 343 344 345

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
346 347
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
348 349 350 351 352 353 354 355 356 357 358 359
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
360 361
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
362 363 364 365 366 367
	}

	return ret;
}
#endif

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

439
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
440 441 442 443 444 445 446 447 448 449 450
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6320:
	case PORT_SWITCH_ID_6321:
		return true;
	}
	return false;
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

465 466 467 468 469 470 471
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
472 473
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
474 475 476 477 478
		return true;
	}
	return false;
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static unsigned int mv88e6xxx_num_databases(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	/* The following devices have 4-bit identifiers for 16 databases */
	if (ps->id == PORT_SWITCH_ID_6061)
		return 16;

	/* The following devices have 6-bit identifiers for 64 databases */
	if (ps->id == PORT_SWITCH_ID_6065)
		return 64;

	/* The following devices have 8-bit identifiers for 256 databases */
	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
		return 256;

	/* The following devices have 12-bit identifiers for 4096 databases */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return 4096;

	return 0;
}

503 504 505 506 507 508 509 510 511 512
static bool mv88e6xxx_has_fid_reg(struct dsa_switch *ds)
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

513 514 515 516 517 518 519 520 521 522
static bool mv88e6xxx_has_stu(struct dsa_switch *ds)
{
	/* Does the device have STU and dedicated SID registers for VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

523 524 525 526 527 528 529 530
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
			   struct phy_device *phydev)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
531 532
	u32 reg;
	int ret;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
			reg |= PORT_PCS_CTRL_LINK_UP;

	if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

575 576 577 578 579 580 581 582 583 584
	if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
	    (port >= ps->num_ports - 2)) {
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
585 586 587 588 589 590
	_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);

out:
	mutex_unlock(&ps->smi_mutex);
}

591
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
592 593 594 595 596
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
597
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
598
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
599 600 601 602 603 604
			return 0;
	}

	return -ETIMEDOUT;
}

605
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
606 607 608
{
	int ret;

609
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
610 611
		port = (port + 1) << 5;

612
	/* Snapshot the hardware statistics counters for this port. */
613 614 615 616 617
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
618

619
	/* Wait for the snapshotting to complete. */
620
	ret = _mv88e6xxx_stats_wait(ds);
621 622 623 624 625 626
	if (ret < 0)
		return ret;

	return 0;
}

627
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
628 629 630 631 632 633
{
	u32 _val;
	int ret;

	*val = 0;

634 635 636
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
637 638 639
	if (ret < 0)
		return;

640
	ret = _mv88e6xxx_stats_wait(ds);
641 642 643
	if (ret < 0)
		return;

644
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
645 646 647 648 649
	if (ret < 0)
		return;

	_val = ret << 16;

650
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
651 652 653 654 655 656
	if (ret < 0)
		return;

	*val = _val | ret;
}

657
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
717 718
};

719 720
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
			       struct mv88e6xxx_hw_stat *stat)
721
{
722 723
	switch (stat->type) {
	case BANK0:
724
		return true;
725 726 727 728 729 730 731 732 733
	case BANK1:
		return mv88e6xxx_6320_family(ds);
	case PORT:
		return mv88e6xxx_6095_family(ds) ||
			mv88e6xxx_6185_family(ds) ||
			mv88e6xxx_6097_family(ds) ||
			mv88e6xxx_6165_family(ds) ||
			mv88e6xxx_6351_family(ds) ||
			mv88e6xxx_6352_family(ds);
734
	}
735
	return false;
736 737
}

738
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
739
					    struct mv88e6xxx_hw_stat *s,
740 741 742 743 744 745 746
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

747 748 749
	switch (s->type) {
	case PORT:
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
750 751 752 753 754 755
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
756
						  s->reg + 1);
757 758 759 760
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
761 762 763
		break;
	case BANK0:
	case BANK1:
764 765 766 767 768 769 770 771
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

772
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
773
{
774 775
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
776

777 778 779 780 781 782 783
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
784
	}
785 786 787 788
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
789 790 791 792 793 794 795 796 797
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat))
			j++;
	}
	return j;
798 799 800 801 802 803
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->smi_mutex);
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
			j++;
		}
	}

	mutex_unlock(&ps->smi_mutex);
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

851 852
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
853 854 855 856 857 858
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

859 860 861
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
862 863 864 865 866 867 868 869
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

870 871 872 873 874 875 876 877 878 879 880 881 882
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
883
{
884 885
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
886 887 888 889
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
890 891
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
892 893 894 895
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
896 897
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
898 899
}

900 901
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
902 903
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
904 905
}

906 907
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
908 909 910
{
	int ret;

911 912 913 914 915
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
916

917
	ret = _mv88e6xxx_phy_wait(ds);
918 919 920
	if (ret < 0)
		return ret;

921
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
922 923
}

924 925
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
926
{
927 928 929 930 931
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
932

933 934 935 936 937
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
938 939
}

940 941
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
942
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
943 944
	int reg;

945
	mutex_lock(&ps->smi_mutex);
946 947

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
948
	if (reg < 0)
949
		goto out;
950 951 952 953

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

954
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
955
	if (reg < 0)
956
		goto out;
957

958
	e->eee_active = !!(reg & PORT_STATUS_EEE);
959
	reg = 0;
960

961
out:
962
	mutex_unlock(&ps->smi_mutex);
963
	return reg;
964 965 966 967 968
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
969 970
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
971 972
	int ret;

973
	mutex_lock(&ps->smi_mutex);
974

975 976 977 978 979 980 981 982 983 984 985 986
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
987
	mutex_unlock(&ps->smi_mutex);
988 989

	return ret;
990 991
}

992
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 fid, u16 cmd)
993 994 995
{
	int ret;

996 997 998 999
	if (mv88e6xxx_has_fid_reg(ds)) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
		if (ret < 0)
			return ret;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	} else if (mv88e6xxx_num_databases(ds) == 256) {
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL);
		if (ret < 0)
			return ret;

		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL,
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1014 1015
	}

1016
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1017 1018 1019 1020 1021 1022
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}

1046 1047 1048
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1049
{
1050 1051
	int op;
	int err;
1052

1053 1054 1055
	err = _mv88e6xxx_atu_wait(ds);
	if (err)
		return err;
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	err = _mv88e6xxx_atu_data_write(ds, entry);
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1069
	return _mv88e6xxx_atu_cmd(ds, entry->fid, op);
1070 1071 1072 1073 1074 1075 1076 1077
}

static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1078

1079 1080 1081
	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
			       int to_port, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
				 bool static_too)
{
	/* Destination port 0xF means remove the entries */
	return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
}

1107 1108 1109 1110 1111 1112 1113 1114
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state)
1115
{
1116
	int reg, ret = 0;
1117 1118
	u8 oldstate;

1119
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1120 1121
	if (reg < 0)
		return reg;
1122

1123
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1124

1125 1126 1127 1128 1129
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1130 1131 1132 1133
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
		     oldstate == PORT_CONTROL_STATE_FORWARDING)
		    && (state == PORT_CONTROL_STATE_DISABLED ||
			state == PORT_CONTROL_STATE_BLOCKING)) {
1134
			ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1135
			if (ret)
1136
				return ret;
1137
		}
1138

1139 1140 1141
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1142 1143 1144 1145 1146 1147
		if (ret)
			return ret;

		netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1148 1149 1150 1151 1152
	}

	return ret;
}

1153
static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port)
1154 1155
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1156
	struct net_device *bridge = ps->ports[port].bridge_dev;
1157
	const u16 mask = (1 << ps->num_ports) - 1;
1158
	u16 output_ports = 0;
1159
	int reg;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
		for (i = 0; i < ps->num_ports; ++i) {
			/* allow sending frames to every group member */
			if (bridge && ps->ports[i].bridge_dev == bridge)
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1179

1180 1181 1182
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (reg < 0)
		return reg;
1183

1184 1185
	reg &= ~mask;
	reg |= output_ports & mask;
1186

1187
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1188 1189
}

1190
void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1191 1192 1193 1194 1195 1196
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1197
		stp_state = PORT_CONTROL_STATE_DISABLED;
1198 1199 1200
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1201
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1202 1203
		break;
	case BR_STATE_LEARNING:
1204
		stp_state = PORT_CONTROL_STATE_LEARNING;
1205 1206 1207
		break;
	case BR_STATE_FORWARDING:
	default:
1208
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1209 1210 1211
		break;
	}

1212
	/* mv88e6xxx_port_stp_state_set may be called with softirqs disabled,
1213 1214
	 * so we can not update the port state directly but need to schedule it.
	 */
1215
	ps->ports[port].state = stp_state;
1216
	set_bit(port, ps->port_state_update_mask);
1217 1218 1219
	schedule_work(&ps->bridge_work);
}

1220 1221
static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new,
				u16 *old)
1222
{
1223
	u16 pvid;
1224 1225 1226 1227 1228 1229
	int ret;

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
			   pvid);
	}

	if (old)
		*old = pvid;
1247 1248 1249 1250

	return 0;
}

1251 1252 1253 1254 1255
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	return _mv88e6xxx_port_pvid(ds, port, NULL, pvid);
}

1256
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1257
{
1258
	return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL);
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1343 1344 1345 1346 1347 1348 1349
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
{
	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				    vid & GLOBAL_VTU_VID_MASK);
}

static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

1375
		if (mv88e6xxx_has_fid_reg(ds)) {
1376 1377 1378 1379 1380 1381
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		} else if (mv88e6xxx_num_databases(ds) == 256) {
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1393
		}
1394

1395
		if (mv88e6xxx_has_stu(ds)) {
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_vlan *vlan,
			     int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &next);
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
		vlan->vid_begin = vlan->vid_end = next.vid;
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1460 1461 1462
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1463
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

1479
	if (mv88e6xxx_has_stu(ds)) {
1480 1481 1482 1483
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;
1484
	}
1485

1486
	if (mv88e6xxx_has_fid_reg(ds)) {
1487 1488 1489 1490
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
1491 1492 1493 1494 1495 1496
	} else if (mv88e6xxx_num_databases(ds) == 256) {
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1497 1498 1499 1500 1501 1502 1503 1504 1505
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

1506
	return _mv88e6xxx_vtu_cmd(ds, op);
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

1582 1583 1584
static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new,
			       u16 *old)
{
1585
	u16 upper_mask;
1586 1587 1588
	u16 fid;
	int ret;

1589 1590
	if (mv88e6xxx_num_databases(ds) == 4096)
		upper_mask = 0xff;
1591 1592
	else if (mv88e6xxx_num_databases(ds) == 256)
		upper_mask = 0xf;
1593 1594 1595
	else
		return -EOPNOTSUPP;

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN,
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1);
	if (ret < 0)
		return ret;

1618
	fid |= (ret & upper_mask) << 4;
1619 1620

	if (new) {
1621 1622
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1,
					   ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
	}

	if (old)
		*old = fid;

	return 0;
}

static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid)
{
	return _mv88e6xxx_port_fid(ds, port, NULL, fid);
}

static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid)
{
	return _mv88e6xxx_port_fid(ds, port, &fid, NULL);
}

1648 1649
static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid)
{
1650
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1651 1652
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1653
	int i, err;
1654 1655 1656

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1657 1658 1659 1660 1661 1662 1663 1664 1665
	/* Set every FID bit used by the (un)bridged ports */
	for (i = 0; i < ps->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(ds, i, fid);
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/* Set every FID bit used by the VLAN entries */
	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1686
	if (unlikely(*fid >= mv88e6xxx_num_databases(ds)))
1687 1688 1689 1690 1691 1692
		return -ENOSPC;

	/* Clear the database */
	return _mv88e6xxx_atu_flush(ds, *fid, true);
}

1693 1694
static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry)
1695 1696 1697 1698 1699 1700
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1701 1702 1703 1704 1705
	int i, err;

	err = _mv88e6xxx_fid_new(ds, &vlan.fid);
	if (err)
		return err;
1706

1707
	/* exclude all ports except the CPU and DSA ports */
1708
	for (i = 0; i < ps->num_ports; ++i)
1709 1710 1711
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
		return err;

	err = _mv88e6xxx_vtu_getnext(ds, entry);
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

		err = _mv88e6xxx_vtu_new(ds, vid, entry);
	}

	return err;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

		for (i = 0; i < ps->num_ports; ++i) {
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

			if (ps->ports[i].bridge_dev ==
			    ps->ports[port].bridge_dev)
				break; /* same bridge, check next VLAN */

			netdev_warn(ds->ports[port],
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
				    netdev_name(ps->ports[i].bridge_dev));
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
				  bool vlan_filtering)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2);
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1847 1848 1849
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2,
					   ret);
		if (ret < 0)
			goto unlock;

		netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1860

1861
	ret = 0;
1862 1863 1864 1865 1866 1867
unlock:
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1868 1869 1870 1871
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	int err;

	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1882 1883 1884 1885 1886 1887 1888 1889
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
				    bool untagged)
1890 1891 1892 1893
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1894
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true);
1895
	if (err)
1896
		return err;
1897 1898 1899 1900 1901

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1902 1903 1904
	return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
}

1905 1906 1907
void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
			     const struct switchdev_obj_port_vlan *vlan,
			     struct switchdev_trans *trans)
1908 1909 1910 1911 1912 1913 1914 1915
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

	mutex_lock(&ps->smi_mutex);

1916 1917 1918 1919
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
		if (_mv88e6xxx_port_vlan_add(ds, port, vid, untagged))
			netdev_err(ds->ports[port], "failed to add VLAN %d%c\n",
				   vid, untagged ? 'u' : 't');
1920

1921 1922 1923
	if (pvid && _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end))
		netdev_err(ds->ports[port], "failed to set PVID %d\n",
			   vlan->vid_end);
1924

1925
	mutex_unlock(&ps->smi_mutex);
1926 1927
}

1928
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1929 1930 1931 1932 1933
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1934
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1935
	if (err)
1936
		return err;
1937

1938 1939
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1940
		return -EOPNOTSUPP;
1941 1942 1943 1944

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1945
	vlan.valid = false;
1946
	for (i = 0; i < ps->num_ports; ++i) {
1947
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1948 1949 1950
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1951
			vlan.valid = true;
1952 1953 1954 1955 1956
			break;
		}
	}

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	if (err)
		return err;

	return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
}

int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 pvid, vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1973 1974 1975
	if (err)
		goto unlock;

1976 1977 1978 1979 1980 1981
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_del(ds, port, vid);
		if (err)
			goto unlock;

		if (vid == pvid) {
1982
			err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1983 1984 1985 1986 1987
			if (err)
				goto unlock;
		}
	}

1988 1989 1990 1991 1992 1993
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1994 1995
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1996 1997 1998 1999
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2000 2001 2002
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2003 2004 2005 2006 2007 2008 2009
		if (ret < 0)
			return ret;
	}

	return 0;
}

2010
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
2011 2012 2013 2014
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2015 2016
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
2017 2018 2019 2020 2021 2022 2023 2024 2025
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2026 2027
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
2028
{
2029 2030
	int ret;

2031 2032 2033 2034
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

2035
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
2036 2037 2038
	if (ret < 0)
		return ret;

2039
	ret = _mv88e6xxx_atu_data_write(ds, entry);
2040
	if (ret < 0)
2041 2042
		return ret;

2043
	return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2044
}
2045

2046 2047 2048 2049 2050
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2051 2052 2053
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2054 2055 2056 2057 2058
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
		err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid);
	else
		err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
2059 2060
	if (err)
		return err;
2061

2062
	entry.fid = vlan.fid;
2063 2064 2065 2066 2067 2068 2069 2070
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
2071 2072
}

V
Vivien Didelot 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2083 2084 2085
void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_fdb *fdb,
			    struct switchdev_trans *trans)
2086
{
2087
	int state = is_multicast_ether_addr(fdb->addr) ?
2088 2089
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2090
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2091 2092

	mutex_lock(&ps->smi_mutex);
2093 2094
	if (_mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state))
		netdev_err(ds->ports[port], "failed to load MAC address\n");
2095 2096 2097
	mutex_unlock(&ps->smi_mutex);
}

2098
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2099
			   const struct switchdev_obj_port_fdb *fdb)
2100 2101 2102 2103 2104
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
2105
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
2106
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2107 2108 2109 2110 2111
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2112 2113
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  struct mv88e6xxx_atu_entry *entry)
2114
{
2115 2116 2117 2118
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2119

2120 2121 2122
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
2123

2124
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2125 2126
	if (ret < 0)
		return ret;
2127

2128 2129 2130
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
2131

2132
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
2133 2134
	if (ret < 0)
		return ret;
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2152

2153
	*entry = next;
2154 2155 2156
	return 0;
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid,
					int port,
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

	err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(ds, fid, &addr);
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2198 2199 2200 2201 2202 2203 2204 2205
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
			    struct switchdev_obj_port_fdb *fdb,
			    int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2206
	u16 fid;
2207 2208 2209 2210
	int err;

	mutex_lock(&ps->smi_mutex);

2211 2212 2213 2214 2215 2216 2217 2218 2219
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
	err = _mv88e6xxx_port_fid_get(ds, port, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb);
	if (err)
		goto unlock;

2220
	/* Dump VLANs' Filtering Information Databases */
2221 2222 2223 2224 2225 2226 2227
	err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
2228
			break;
2229 2230 2231 2232

		if (!vlan.valid)
			break;

2233 2234
		err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port,
						   fdb, cb);
2235
		if (err)
2236
			break;
2237 2238 2239 2240 2241 2242 2243 2244
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

2245 2246
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
			       struct net_device *bridge)
2247
{
2248
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	u16 fid;
	int i, err;

	mutex_lock(&ps->smi_mutex);

	/* Get or create the bridge FID and assign it to the port */
	for (i = 0; i < ps->num_ports; ++i)
		if (ps->ports[i].bridge_dev == bridge)
			break;

	if (i < ps->num_ports)
		err = _mv88e6xxx_port_fid_get(ds, i, &fid);
	else
		err = _mv88e6xxx_fid_new(ds, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fid_set(ds, port, fid);
	if (err)
		goto unlock;
2269

2270
	/* Assign the bridge and remap each port's VLANTable */
2271
	ps->ports[port].bridge_dev = bridge;
2272 2273 2274 2275 2276 2277 2278 2279 2280

	for (i = 0; i < ps->num_ports; ++i) {
		if (ps->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(ds, i);
			if (err)
				break;
		}
	}

2281 2282
unlock:
	mutex_unlock(&ps->smi_mutex);
2283

2284
	return err;
2285 2286
}

2287
void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2288
{
2289
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2290
	struct net_device *bridge = ps->ports[port].bridge_dev;
2291
	u16 fid;
2292
	int i;
2293 2294 2295 2296

	mutex_lock(&ps->smi_mutex);

	/* Give the port a fresh Filtering Information Database */
2297 2298 2299
	if (_mv88e6xxx_fid_new(ds, &fid) ||
	    _mv88e6xxx_port_fid_set(ds, port, fid))
		netdev_warn(ds->ports[port], "failed to assign a new FID\n");
2300

2301
	/* Unassign the bridge and remap each port's VLANTable */
2302
	ps->ports[port].bridge_dev = NULL;
2303

2304 2305 2306 2307
	for (i = 0; i < ps->num_ports; ++i)
		if (i == port || ps->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(ds, i))
				netdev_warn(ds->ports[i], "failed to remap\n");
2308

2309
	mutex_unlock(&ps->smi_mutex);
2310 2311
}

2312 2313 2314 2315 2316 2317 2318
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
2319
	ds = ps->ds;
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329
	mutex_lock(&ps->smi_mutex);

	for (port = 0; port < ps->num_ports; ++port)
		if (test_and_clear_bit(port, ps->port_state_update_mask) &&
		    _mv88e6xxx_port_state(ds, port, ps->ports[port].state))
			netdev_warn(ds->ports[port], "failed to update state to %s\n",
				    mv88e6xxx_port_state_names[ps->ports[port].state]);

	mutex_unlock(&ps->smi_mutex);
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static int _mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

static int _mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
static int mv88e6xxx_power_on_serdes(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_phy_page_read(ds, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
				       MII_BMCR);
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
		ret = _mv88e6xxx_phy_page_write(ds, REG_FIBER_SERDES,
						PAGE_FIBER_SERDES, MII_BMCR,
						ret);
	}

	return ret;
}

2383
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2384 2385
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2386
	int ret;
2387
	u16 reg;
2388 2389 2390

	mutex_lock(&ps->smi_mutex);

2391 2392 2393
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2394
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2395 2396 2397 2398 2399 2400 2401
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2402
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2403
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2440
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2441 2442 2443 2444 2445 2446 2447
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2448 2449
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2450 2451 2452 2453
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
2454 2455
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2456 2457 2458 2459 2460
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2461
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2462 2463 2464 2465
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
2466 2467 2468 2469 2470 2471
	if (dsa_is_dsa_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2472
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2473 2474
		}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
	if (mv88e6xxx_6352_family(ds)) {
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
		if (ret < 0)
			goto abort;
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
			ret = mv88e6xxx_power_on_serdes(ds);
			if (ret < 0)
				goto abort;
		}
	}

2503
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2504
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2505 2506 2507
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2508 2509 2510 2511
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2512 2513
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds) ||
	    mv88e6xxx_6185_family(ds))
2514 2515 2516
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2517
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2530
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2544 2545 2546 2547 2548 2549
	reg = 1 << port;
	/* Disable learning for DSA and CPU ports */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		reg = PORT_ASSOC_VECTOR_LOCKED_PORT;

	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2560 2561
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2611 2612
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2613 2614 2615 2616 2617 2618 2619
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2620 2621
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2622
	 */
2623
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2624 2625 2626
	if (ret)
		goto abort;

2627
	/* Port based VLAN map: give each port its own address
2628 2629
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2630
	 */
2631 2632 2633 2634
	ret = _mv88e6xxx_port_fid_set(ds, port, port + 1);
	if (ret)
		goto abort;

2635
	ret = _mv88e6xxx_port_based_vlan_map(ds, port);
2636 2637 2638 2639 2640 2641
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2642 2643
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2644 2645 2646 2647 2648
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2663 2664 2665 2666
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

2667
	ps->ds = ds;
2668 2669
	mutex_init(&ps->smi_mutex);

2670
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2671

2672 2673
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2674 2675 2676
	return 0;
}

2677 2678 2679
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2680
	int ret;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2744 2745
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2764 2765
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2766 2767 2768 2769 2770 2771 2772 2773 2774
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

2775 2776 2777 2778
	/* Clear the statistics counters for all ports */
	REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);

	/* Wait for the flush to complete. */
2779 2780
	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_stats_wait(ds);
2781 2782 2783
	if (ret < 0)
		goto unlock;

2784 2785 2786 2787 2788
	/* Clear all ATU entries */
	ret = _mv88e6xxx_atu_flush(ds, 0, true);
	if (ret < 0)
		goto unlock;

2789 2790 2791
	/* Clear all the VTU and STU entries */
	ret = _mv88e6xxx_vtu_stu_flush(ds);
unlock:
2792
	mutex_unlock(&ps->smi_mutex);
2793

2794
	return ret;
2795 2796
}

2797 2798 2799 2800
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2801
	struct gpio_desc *gpiod = ds->pd->reset;
2802 2803 2804 2805 2806 2807
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
2808 2809
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2810 2811 2812 2813 2814
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

2815 2816 2817 2818 2819 2820 2821 2822
	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

2846 2847 2848 2849 2850
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2851
	mutex_lock(&ps->smi_mutex);
2852
	ret = _mv88e6xxx_phy_page_read(ds, port, page, reg);
2853
	mutex_unlock(&ps->smi_mutex);
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2864
	mutex_lock(&ps->smi_mutex);
2865
	ret = _mv88e6xxx_phy_page_write(ds, port, page, reg, val);
2866
	mutex_unlock(&ps->smi_mutex);
2867

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2890
	mutex_lock(&ps->smi_mutex);
2891
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2892
	mutex_unlock(&ps->smi_mutex);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2906
	mutex_lock(&ps->smi_mutex);
2907
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2908
	mutex_unlock(&ps->smi_mutex);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2922
	mutex_lock(&ps->smi_mutex);
2923
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2924
	mutex_unlock(&ps->smi_mutex);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2939
	mutex_lock(&ps->smi_mutex);
2940
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2941
	mutex_unlock(&ps->smi_mutex);
2942 2943 2944
	return ret;
}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3071 3072 3073
static char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
				   const struct mv88e6xxx_switch_id *table,
				   unsigned int num)
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
{
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
	int i, ret;

	if (!bus)
		return NULL;

	ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
	if (ret < 0)
		return NULL;

	/* Look up the exact switch ID */
	for (i = 0; i < num; ++i)
		if (table[i].id == ret)
			return table[i].name;

	/* Look up only the product number */
	for (i = 0; i < num; ++i) {
		if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
			dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
				 ret & PORT_SWITCH_ID_REV_MASK,
				 ret & PORT_SWITCH_ID_PROD_NUM_MASK);
			return table[i].name;
		}
	}

	return NULL;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
char *mv88e6xxx_drv_probe(struct device *dsa_dev, struct device *host_dev,
			  int sw_addr, void **priv,
			  const struct mv88e6xxx_switch_id *table,
			  unsigned int num)
{
	struct mv88e6xxx_priv_state *ps;
	char *name;

	name = mv88e6xxx_lookup_name(host_dev, sw_addr, table, num);
	if (name) {
		ps = devm_kzalloc(dsa_dev, sizeof(*ps), GFP_KERNEL);
		if (!ps)
			return NULL;
		*priv = ps;
		ps->bus = dsa_host_dev_to_mii_bus(host_dev);
		if (!ps->bus)
			return NULL;
		ps->sw_addr = sw_addr;
	}
	return name;
}

3125 3126 3127 3128 3129
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
3130 3131
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	register_switch_driver(&mv88e6123_switch_driver);
3132
#endif
3133 3134 3135
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
3136 3137
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
3138 3139 3140 3141 3142 3143 3144
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3145 3146 3147
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
3148 3149 3150
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
3151 3152
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	unregister_switch_driver(&mv88e6123_switch_driver);
3153 3154 3155 3156 3157 3158
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
3159 3160 3161 3162

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");