mv88e6xxx.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11
#include <linux/delay.h>
12
#include <linux/etherdevice.h>
13
#include <linux/if_bridge.h>
14
#include <linux/jiffies.h>
15
#include <linux/list.h>
16
#include <linux/module.h>
17 18
#include <linux/netdevice.h>
#include <linux/phy.h>
19
#include <net/dsa.h>
20 21
#include "mv88e6xxx.h"

22
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
23 24 25 26 27 28 29 30 31 32 33 34 35
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
36
		ret = mdiobus_read(bus, sw_addr, SMI_CMD);
37 38 39
		if (ret < 0)
			return ret;

40
		if ((ret & SMI_CMD_BUSY) == 0)
41 42 43 44 45 46 47 48 49 50 51 52 53
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

54
	/* Wait for the bus to become free. */
55 56 57 58
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

59
	/* Transmit the read command. */
60 61
	ret = mdiobus_write(bus, sw_addr, SMI_CMD,
			    SMI_CMD_OP_22_READ | (addr << 5) | reg);
62 63 64
	if (ret < 0)
		return ret;

65
	/* Wait for the read command to complete. */
66 67 68 69
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

70
	/* Read the data. */
71
	ret = mdiobus_read(bus, sw_addr, SMI_DATA);
72 73 74 75 76 77
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

78 79
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
80
{
81
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
82 83
	int ret;

84 85 86 87
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
88 89 90 91 92 93
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

94 95 96
	return ret;
}

97 98 99 100 101 102 103 104 105 106 107 108
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

109 110 111 112 113 114 115 116
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

117
	/* Wait for the bus to become free. */
118 119 120 121
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

122
	/* Transmit the data to write. */
123
	ret = mdiobus_write(bus, sw_addr, SMI_DATA, val);
124 125 126
	if (ret < 0)
		return ret;

127
	/* Transmit the write command. */
128 129
	ret = mdiobus_write(bus, sw_addr, SMI_CMD,
			    SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
130 131 132
	if (ret < 0)
		return ret;

133
	/* Wait for the write command to complete. */
134 135 136 137 138 139 140
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

141 142 143
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
144
{
145
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
146

147 148 149
	if (bus == NULL)
		return -EINVAL;

150 151 152
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

153 154 155 156 157 158 159 160
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

161
	mutex_lock(&ps->smi_mutex);
162
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
163 164 165 166 167 168 169
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
170
	/* Configure the IP ToS mapping registers. */
171 172 173 174 175 176 177 178
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
179

180
	/* Configure the IEEE 802.1p priority mapping register. */
181
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
182 183 184 185

	return 0;
}

186 187
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
188 189 190
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

203
		/* Write the MAC address byte. */
204 205
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
206

207
		/* Wait for the write to complete. */
208
		for (j = 0; j < 16; j++) {
209 210
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
211 212 213 214 215 216 217 218 219
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

220 221
/* Must be called with phy mutex held */
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
222 223 224 225 226 227
{
	if (addr >= 0)
		return mv88e6xxx_reg_read(ds, addr, regnum);
	return 0xffff;
}

228 229 230
/* Must be called with phy mutex held */
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
231 232 233 234 235 236
{
	if (addr >= 0)
		return mv88e6xxx_reg_write(ds, addr, regnum, val);
	return 0;
}

237 238 239 240
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
241
	unsigned long timeout;
242

243 244 245
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
246

247 248
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
249
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
250
		usleep_range(1000, 2000);
251 252
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
253
			return 0;
254 255 256 257 258 259 260 261
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
262
	unsigned long timeout;
263

264 265
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
266

267 268
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
269
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
270
		usleep_range(1000, 2000);
271 272
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
273
			return 0;
274 275 276 277 278 279 280 281 282 283 284
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
285
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
286

287 288 289
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
290 291 292 293 294 295 296 297 298 299 300 301
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
302
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
303 304 305 306
	int ret;

	mutex_lock(&ps->ppu_mutex);

307
	/* If the PHY polling unit is enabled, disable it so that
308 309 310 311 312
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
313 314 315 316 317 318
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
319
	} else {
320 321
		del_timer(&ps->ppu_timer);
		ret = 0;
322 323 324 325 326 327 328
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
329
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
330

331
	/* Schedule a timer to re-enable the PHY polling unit. */
332 333 334 335 336 337
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
338
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
339 340 341 342 343 344 345 346 347 348 349 350 351 352

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
353 354
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
355 356 357 358 359 360 361 362 363 364 365 366
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
367 368
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
369 370 371 372 373 374
	}

	return ret;
}
#endif

375 376 377 378 379 380
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
381
		int uninitialized_var(port_status);
382 383 384 385 386 387 388 389 390 391 392
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
393 394
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
							 PORT_STATUS);
395 396 397
			if (port_status < 0)
				continue;

398
			link = !!(port_status & PORT_STATUS_LINK);
399 400 401 402
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
403
				netdev_info(dev, "link down\n");
404 405 406 407 408
				netif_carrier_off(dev);
			}
			continue;
		}

409 410
		switch (port_status & PORT_STATUS_SPEED_MASK) {
		case PORT_STATUS_SPEED_10:
411 412
			speed = 10;
			break;
413
		case PORT_STATUS_SPEED_100:
414 415
			speed = 100;
			break;
416
		case PORT_STATUS_SPEED_1000:
417 418 419 420 421 422
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
423 424
		duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
		fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
425 426

		if (!netif_carrier_ok(dev)) {
427 428 429 430 431
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
432 433 434 435 436
			netif_carrier_on(dev);
		}
	}
}

437 438 439 440 441 442 443 444 445 446 447 448 449
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6352:
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
		return true;
	}
	return false;
}

450 451 452 453 454 455
static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
456 457
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATS_OP);
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
458 459 460 461 462 463 464 465 466 467
			return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
	int ret;

468 469 470
	if (mv88e6xxx_6352_family(ds))
		port = (port + 1) << 5;

471
	/* Snapshot the hardware statistics counters for this port. */
472 473 474
	REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP,
		  GLOBAL_STATS_OP_CAPTURE_PORT |
		  GLOBAL_STATS_OP_HIST_RX_TX | port);
475

476
	/* Wait for the snapshotting to complete. */
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return ret;

	return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
	u32 _val;
	int ret;

	*val = 0;

491 492 493
	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				  GLOBAL_STATS_OP_READ_CAPTURED |
				  GLOBAL_STATS_OP_HIST_RX_TX | stat);
494 495 496 497 498 499 500
	if (ret < 0)
		return;

	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return;

501
	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
502 503 504 505 506
	if (ret < 0)
		return;

	_val = ret << 16;

507
	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
508 509 510 511 512 513
	if (ret < 0)
		return;

	*val = _val | ret;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
	/* Not all devices have the following counters */
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },

};

static bool have_sw_in_discards(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
557 558 559 560 561
	case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
	case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6352:
562 563 564 565 566 567 568 569 570 571
		return true;
	default:
		return false;
	}
}

static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
				   int nr_stats,
				   struct mv88e6xxx_hw_stat *stats,
				   int port, uint8_t *data)
572 573 574 575 576 577 578 579 580
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

581 582 583 584
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
					 int nr_stats,
					 struct mv88e6xxx_hw_stat *stats,
					 int port, uint64_t *data)
585
{
586
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
587 588 589 590 591 592 593 594 595 596 597
	int ret;
	int i;

	mutex_lock(&ps->stats_mutex);

	ret = mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->stats_mutex);
		return;
	}

598
	/* Read each of the counters. */
599 600 601
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
		u32 high = 0;

		if (s->reg >= 0x100) {
			ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
						 s->reg - 0x100);
			if (ret < 0)
				goto error;
			low = ret;
			if (s->sizeof_stat == 4) {
				ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
							 s->reg - 0x100 + 1);
				if (ret < 0)
					goto error;
				high = ret;
			}
			data[i] = (((u64)high) << 16) | low;
			continue;
		}
620 621 622 623 624 625
		mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			mv88e6xxx_stats_read(ds, s->reg + 1, &high);

		data[i] = (((u64)high) << 32) | low;
	}
626
error:
627 628
	mutex_unlock(&ps->stats_mutex);
}
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
				       mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
				       mv88e6xxx_hw_stats, port, data);
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
	if (have_sw_in_discards(ds))
		return ARRAY_SIZE(mv88e6xxx_hw_stats);
	return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
			mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
			mv88e6xxx_hw_stats, port, data);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

687 688 689 690 691 692 693 694 695 696 697 698
#ifdef CONFIG_NET_DSA_HWMON

int  mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->phy_mutex);

699
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
700 701 702 703
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
704
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
705 706 707
	if (ret < 0)
		goto error;

708
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
709 710 711 712 713 714
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

715
	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
716 717 718 719 720 721
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
722
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
723 724 725 726 727 728
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
729
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
730 731 732 733 734
	mutex_unlock(&ps->phy_mutex);
	return ret;
}
#endif /* CONFIG_NET_DSA_HWMON */

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

		ret = REG_READ(reg, offset);
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

int mv88e6xxx_phy_wait(struct dsa_switch *ds)
{
753 754
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			      GLOBAL2_SMI_OP_BUSY);
755 756 757 758
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
759 760
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
761 762 763 764
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
765 766
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
767 768
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
791 792
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
793 794
}

795 796 797
/* Must be called with phy mutex held */
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
798 799 800
{
	int ret;

801 802
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP,
		  GLOBAL2_SMI_OP_22_READ | (addr << 5) | regnum);
803 804 805 806 807

	ret = mv88e6xxx_phy_wait(ds);
	if (ret < 0)
		return ret;

808
	return REG_READ(REG_GLOBAL2, GLOBAL2_SMI_DATA);
809 810
}

811 812 813
/* Must be called with phy mutex held */
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
814
{
815 816 817
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SMI_OP,
		  GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | regnum);
818 819 820 821

	return mv88e6xxx_phy_wait(ds);
}

822 823
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
824
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
825 826
	int reg;

827 828 829
	mutex_lock(&ps->phy_mutex);

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
830
	if (reg < 0)
831
		goto out;
832 833 834 835

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

836
	reg = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
837
	if (reg < 0)
838
		goto out;
839

840
	e->eee_active = !!(reg & PORT_STATUS_EEE);
841
	reg = 0;
842

843 844 845
out:
	mutex_unlock(&ps->phy_mutex);
	return reg;
846 847 848 849 850
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
851 852
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
853 854
	int ret;

855
	mutex_lock(&ps->phy_mutex);
856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
	mutex_unlock(&ps->phy_mutex);

	return ret;
872 873
}

874 875 876 877 878 879 880 881
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid);
	if (ret < 0)
		return ret;

882
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
883 884 885 886 887 888 889 890 891 892 893 894 895 896
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

897
	return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
898 899 900 901 902 903 904 905 906 907
}

static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg, ret;
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

908
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
909 910
	if (reg < 0) {
		ret = reg;
911
		goto abort;
912
	}
913

914
	oldstate = reg & PORT_CONTROL_STATE_MASK;
915 916 917 918 919
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
920 921
		if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
		    state <= PORT_CONTROL_STATE_BLOCKING) {
922 923 924 925
			ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
			if (ret)
				goto abort;
		}
926 927 928
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	u16 reg = fid << 12;

	if (dsa_is_cpu_port(ds, port))
		reg |= ds->phys_port_mask;
	else
		reg |= (ps->bridge_mask[fid] |
		       (1 << dsa_upstream_port(ds))) & ~(1 << port);

949
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int port;
	u32 mask;
	int ret;

	mask = ds->phys_port_mask;
	while (mask) {
		port = __ffs(mask);
		mask &= ~(1 << port);
		if (ps->fid[port] != fid)
			continue;

		ret = _mv88e6xxx_update_port_config(ds, port);
		if (ret)
			return ret;
	}

	return _mv88e6xxx_flush_fid(ds, fid);
}

/* Bridge handling functions */

int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret = 0;
	u32 nmask;
	int fid;

	/* If the bridge group is not empty, join that group.
	 * Otherwise create a new group.
	 */
	fid = ps->fid[port];
	nmask = br_port_mask & ~(1 << port);
	if (nmask)
		fid = ps->fid[__ffs(nmask)];

	nmask = ps->bridge_mask[fid] | (1 << port);
	if (nmask != br_port_mask) {
		netdev_err(ds->ports[port],
			   "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, nmask);
		return -EINVAL;
	}

	mutex_lock(&ps->smi_mutex);

	ps->bridge_mask[fid] = br_port_mask;

	if (fid != ps->fid[port]) {
		ps->fid_mask |= 1 << ps->fid[port];
		ps->fid[port] = fid;
		ret = _mv88e6xxx_update_bridge_config(ds, fid);
	}

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid, newfid;
	int ret;

	fid = ps->fid[port];

	if (ps->bridge_mask[fid] != br_port_mask) {
		netdev_err(ds->ports[port],
			   "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, ps->bridge_mask[fid]);
		return -EINVAL;
	}

	/* If the port was the last port of a bridge, we are done.
	 * Otherwise assign a new fid to the port, and fix up
	 * the bridge configuration.
	 */
	if (br_port_mask == (1 << port))
		return 0;

	mutex_lock(&ps->smi_mutex);

	newfid = __ffs(ps->fid_mask);
	ps->fid[port] = newfid;
	ps->fid_mask &= (1 << newfid);
	ps->bridge_mask[fid] &= ~(1 << port);
	ps->bridge_mask[newfid] = 1 << port;

	ret = _mv88e6xxx_update_bridge_config(ds, fid);
	if (!ret)
		ret = _mv88e6xxx_update_bridge_config(ds, newfid);

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1061
		stp_state = PORT_CONTROL_STATE_DISABLED;
1062 1063 1064
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1065
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1066 1067
		break;
	case BR_STATE_LEARNING:
1068
		stp_state = PORT_CONTROL_STATE_LEARNING;
1069 1070 1071
		break;
	case BR_STATE_FORWARDING:
	default:
1072
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

1088 1089 1090 1091 1092 1093
static int __mv88e6xxx_write_addr(struct dsa_switch *ds,
				  const unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1094 1095 1096
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1109 1110
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
				    const unsigned char *addr, int state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

1135
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
1136 1137 1138 1139
				   (0x10 << port) | state);
	if (ret)
		return ret;

1140
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);
1141 1142 1143 1144 1145 1146 1147 1148

	return ret;
}

int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	int state = is_multicast_ether_addr(addr) ?
1149 1150
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, state);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
1168 1169
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr,
				       GLOBAL_ATU_DATA_STATE_UNUSED);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
				    unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret, state;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

	do {
1191
		ret = _mv88e6xxx_atu_cmd(ds, fid,  GLOBAL_ATU_OP_GET_NEXT_DB);
1192 1193 1194
		if (ret < 0)
			return ret;

1195
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1196 1197
		if (ret < 0)
			return ret;
1198 1199
		state = ret & GLOBAL_ATU_DATA_STATE_MASK;
		if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
1200 1201 1202 1203 1204 1205 1206 1207
			return -ENOENT;
	} while (!(((ret >> 4) & 0xff) & (1 << port)));

	ret = __mv88e6xxx_read_addr(ds, addr);
	if (ret < 0)
		return ret;

	*is_static = state == (is_multicast_ether_addr(addr) ?
1208 1209
			       GLOBAL_ATU_DATA_STATE_MC_STATIC :
			       GLOBAL_ATU_DATA_STATE_UC_STATIC);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	return 0;
}

/* get next entry for port */
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
			       unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_getnext(ds, port, addr, is_static);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

1244 1245 1246
int mv88e6xxx_setup_port_common(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1247
	int ret, fid;
1248 1249 1250

	mutex_lock(&ps->smi_mutex);

1251 1252
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
1253
	 */
1254 1255
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
1256 1257 1258 1259 1260 1261 1262 1263
	if (ret)
		goto abort;

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
1264 1265 1266 1267 1268 1269
	fid = __ffs(ps->fid_mask);
	ps->fid[port] = fid;
	ps->fid_mask &= ~(1 << fid);

	if (!dsa_is_cpu_port(ds, port))
		ps->bridge_mask[fid] = 1 << port;
1270

1271
	ret = _mv88e6xxx_update_port_config(ds, port);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x07, 0x0000);
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

1284 1285 1286 1287 1288 1289 1290 1291
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);
	mutex_init(&ps->stats_mutex);
	mutex_init(&ps->phy_mutex);

1292
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
1293

1294 1295 1296 1297
	ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;

	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

1298 1299 1300
	return 0;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
1311 1312
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

1341 1342 1343 1344 1345 1346
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->phy_mutex);
1347
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1348 1349
	if (ret < 0)
		goto error;
1350
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
1351
error:
1352
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->phy_mutex);
1364
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1365 1366 1367
	if (ret < 0)
		goto error;

1368
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
1369
error:
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

	mutex_lock(&ps->phy_mutex);
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

	mutex_lock(&ps->phy_mutex);
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

	mutex_lock(&ps->phy_mutex);
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

	mutex_lock(&ps->phy_mutex);
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
1445 1446 1447 1448
	mutex_unlock(&ps->phy_mutex);
	return ret;
}

1449 1450 1451 1452 1453 1454 1455
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
1456
#endif
1457 1458 1459
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
1460 1461
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
1462 1463 1464 1465 1466 1467 1468
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
1469 1470 1471
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
1472 1473 1474 1475 1476 1477 1478 1479
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
1480 1481 1482 1483

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");