mv88e6xxx.c 73.5 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/delay.h>
15
#include <linux/etherdevice.h>
16
#include <linux/ethtool.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21
#include <linux/netdevice.h>
22
#include <linux/gpio/consumer.h>
23
#include <linux/phy.h>
24
#include <net/dsa.h>
25
#include <net/switchdev.h>
26 27
#include "mv88e6xxx.h"

28 29 30 31 32 33 34 35 36 37
static void assert_smi_lock(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
		dev_err(ds->master_dev, "SMI lock not held!\n");
		dump_stack();
	}
}

38
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 40 41 42 43 44 45 46 47 48 49 50 51
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
52
		ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 54 55
		if (ret < 0)
			return ret;

56
		if ((ret & SMI_CMD_BUSY) == 0)
57 58 59 60 61 62
			return 0;
	}

	return -ETIMEDOUT;
}

63 64
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
				int reg)
65 66 67 68
{
	int ret;

	if (sw_addr == 0)
69
		return mdiobus_read_nested(bus, addr, reg);
70

71
	/* Wait for the bus to become free. */
72 73 74 75
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

76
	/* Transmit the read command. */
77 78
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 80 81
	if (ret < 0)
		return ret;

82
	/* Wait for the read command to complete. */
83 84 85 86
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

87
	/* Read the data. */
88
	ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 90 91 92 93 94
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

95
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96
{
97
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
98 99
	int ret;

100 101
	assert_smi_lock(ds);

102 103 104 105
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
106 107 108 109 110 111
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

112 113 114
	return ret;
}

115 116 117 118 119 120 121 122 123 124 125 126
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

127 128
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
				 int reg, u16 val)
129 130 131 132
{
	int ret;

	if (sw_addr == 0)
133
		return mdiobus_write_nested(bus, addr, reg, val);
134

135
	/* Wait for the bus to become free. */
136 137 138 139
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

140
	/* Transmit the data to write. */
141
	ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
142 143 144
	if (ret < 0)
		return ret;

145
	/* Transmit the write command. */
146 147
	ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
148 149 150
	if (ret < 0)
		return ret;

151
	/* Wait for the write command to complete. */
152 153 154 155 156 157 158
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

159 160
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
161
{
162
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
163

164 165
	assert_smi_lock(ds);

166 167 168
	if (bus == NULL)
		return -EINVAL;

169 170 171
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

172 173 174 175 176 177 178 179
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

180
	mutex_lock(&ps->smi_mutex);
181
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
182 183 184 185 186
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

187 188
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
189 190 191
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
192 193 194 195

	return 0;
}

196 197 198 199 200 201 202 203
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

204
		/* Write the MAC address byte. */
205 206
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
207

208
		/* Wait for the write to complete. */
209
		for (j = 0; j < 16; j++) {
210 211
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
212 213 214 215 216 217 218 219 220
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

221
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
222 223
{
	if (addr >= 0)
224
		return _mv88e6xxx_reg_read(ds, addr, regnum);
225 226 227
	return 0xffff;
}

228 229
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
230 231
{
	if (addr >= 0)
232
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
233 234 235
	return 0;
}

236 237 238 239
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
240
	unsigned long timeout;
241

242 243 244
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
245

246 247
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
248
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
249
		usleep_range(1000, 2000);
250 251
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
252
			return 0;
253 254 255 256 257 258 259 260
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
261
	unsigned long timeout;
262

263 264
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
265

266 267
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
268
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
269
		usleep_range(1000, 2000);
270 271
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
272
			return 0;
273 274 275 276 277 278 279 280 281 282 283
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
284
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
285

286 287 288
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
289 290 291 292 293 294 295 296 297 298 299 300
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
301
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
302 303 304 305
	int ret;

	mutex_lock(&ps->ppu_mutex);

306
	/* If the PHY polling unit is enabled, disable it so that
307 308 309 310 311
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
312 313 314 315 316 317
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
318
	} else {
319 320
		del_timer(&ps->ppu_timer);
		ret = 0;
321 322 323 324 325 326 327
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
328
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329

330
	/* Schedule a timer to re-enable the PHY polling unit. */
331 332 333 334 335 336
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
337
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
338 339 340 341 342 343 344 345 346 347 348 349 350 351

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
352 353
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
354 355 356 357 358 359 360 361 362 363 364 365
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
366 367
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
368 369 370 371 372 373
	}

	return ret;
}
#endif

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

445
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
446 447 448 449 450 451 452 453 454 455 456
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6320:
	case PORT_SWITCH_ID_6321:
		return true;
	}
	return false;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

471 472 473 474 475 476 477
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
478 479
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
480 481 482 483 484
		return true;
	}
	return false;
}

485 486 487 488 489 490 491 492 493 494
static bool mv88e6xxx_has_fid_reg(struct dsa_switch *ds)
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

495 496 497 498 499 500 501 502 503 504
static bool mv88e6xxx_has_stu(struct dsa_switch *ds)
{
	/* Does the device have STU and dedicated SID registers for VTU ops? */
	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds))
		return true;

	return false;
}

505 506 507 508 509 510 511 512
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
			   struct phy_device *phydev)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
513 514
	u32 reg;
	int ret;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
			reg |= PORT_PCS_CTRL_LINK_UP;

	if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

557 558 559 560 561 562 563 564 565 566
	if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
	    (port >= ps->num_ports - 2)) {
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
567 568 569 570 571 572
	_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);

out:
	mutex_unlock(&ps->smi_mutex);
}

573
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
574 575 576 577 578
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
579
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
580
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
581 582 583 584 585 586
			return 0;
	}

	return -ETIMEDOUT;
}

587
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
588 589 590
{
	int ret;

591
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
592 593
		port = (port + 1) << 5;

594
	/* Snapshot the hardware statistics counters for this port. */
595 596 597 598 599
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
600

601
	/* Wait for the snapshotting to complete. */
602
	ret = _mv88e6xxx_stats_wait(ds);
603 604 605 606 607 608
	if (ret < 0)
		return ret;

	return 0;
}

609
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
610 611 612 613 614 615
{
	u32 _val;
	int ret;

	*val = 0;

616 617 618
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
619 620 621
	if (ret < 0)
		return;

622
	ret = _mv88e6xxx_stats_wait(ds);
623 624 625
	if (ret < 0)
		return;

626
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
627 628 629 630 631
	if (ret < 0)
		return;

	_val = ret << 16;

632
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
633 634 635 636 637 638
	if (ret < 0)
		return;

	*val = _val | ret;
}

639
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
699 700
};

701 702
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
			       struct mv88e6xxx_hw_stat *stat)
703
{
704 705
	switch (stat->type) {
	case BANK0:
706
		return true;
707 708 709 710 711 712 713 714 715
	case BANK1:
		return mv88e6xxx_6320_family(ds);
	case PORT:
		return mv88e6xxx_6095_family(ds) ||
			mv88e6xxx_6185_family(ds) ||
			mv88e6xxx_6097_family(ds) ||
			mv88e6xxx_6165_family(ds) ||
			mv88e6xxx_6351_family(ds) ||
			mv88e6xxx_6352_family(ds);
716
	}
717
	return false;
718 719
}

720
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
721
					    struct mv88e6xxx_hw_stat *s,
722 723 724 725 726 727 728
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

729 730 731
	switch (s->type) {
	case PORT:
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
732 733 734 735 736 737
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
738
						  s->reg + 1);
739 740 741 742
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
743 744 745
		break;
	case BANK0:
	case BANK1:
746 747 748 749 750 751 752 753
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

754
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
755
{
756 757
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
758

759 760 761 762 763 764 765
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
766
	}
767 768 769 770
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
771 772 773 774 775 776 777 778 779
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat))
			j++;
	}
	return j;
780 781 782 783 784 785
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->smi_mutex);
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
		if (mv88e6xxx_has_stat(ds, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
			j++;
		}
	}

	mutex_unlock(&ps->smi_mutex);
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

833 834
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
835 836 837 838 839 840
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

841 842 843
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
844 845 846 847 848 849 850 851
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

852 853 854 855 856 857 858 859 860 861 862 863 864
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
865
{
866 867
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
868 869 870 871
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
872 873
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
874 875 876 877
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
878 879
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
880 881
}

882 883
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
884 885
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
886 887
}

888 889
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
890 891 892
{
	int ret;

893 894 895 896 897
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
898

899
	ret = _mv88e6xxx_phy_wait(ds);
900 901 902
	if (ret < 0)
		return ret;

903
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
904 905
}

906 907
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
908
{
909 910 911 912 913
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
914

915 916 917 918 919
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
920 921
}

922 923
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
924
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
925 926
	int reg;

927
	mutex_lock(&ps->smi_mutex);
928 929

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
930
	if (reg < 0)
931
		goto out;
932 933 934 935

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

936
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
937
	if (reg < 0)
938
		goto out;
939

940
	e->eee_active = !!(reg & PORT_STATUS_EEE);
941
	reg = 0;
942

943
out:
944
	mutex_unlock(&ps->smi_mutex);
945
	return reg;
946 947 948 949 950
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
951 952
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
953 954
	int ret;

955
	mutex_lock(&ps->smi_mutex);
956

957 958 959 960 961 962 963 964 965 966 967 968
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
969
	mutex_unlock(&ps->smi_mutex);
970 971

	return ret;
972 973
}

974
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 fid, u16 cmd)
975 976 977
{
	int ret;

978 979 980 981 982 983
	if (mv88e6xxx_has_fid_reg(ds)) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
		if (ret < 0)
			return ret;
	}

984
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
985 986 987 988 989 990
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}

1014 1015 1016
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1017
{
1018 1019
	int op;
	int err;
1020

1021 1022 1023
	err = _mv88e6xxx_atu_wait(ds);
	if (err)
		return err;
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	err = _mv88e6xxx_atu_data_write(ds, entry);
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1037
	return _mv88e6xxx_atu_cmd(ds, entry->fid, op);
1038 1039 1040 1041 1042 1043 1044 1045
}

static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1046

1047 1048 1049
	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
			       int to_port, bool static_too)
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

	return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
}

static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
				 bool static_too)
{
	/* Destination port 0xF means remove the entries */
	return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
}

1075 1076 1077 1078 1079 1080 1081 1082
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state)
1083
{
1084
	int reg, ret = 0;
1085 1086
	u8 oldstate;

1087
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1088 1089
	if (reg < 0)
		return reg;
1090

1091
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1092

1093 1094 1095 1096 1097
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1098 1099 1100 1101
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
		     oldstate == PORT_CONTROL_STATE_FORWARDING)
		    && (state == PORT_CONTROL_STATE_DISABLED ||
			state == PORT_CONTROL_STATE_BLOCKING)) {
1102
			ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1103
			if (ret)
1104
				return ret;
1105
		}
1106

1107 1108 1109
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1110 1111 1112 1113 1114 1115
		if (ret)
			return ret;

		netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1116 1117 1118 1119 1120
	}

	return ret;
}

1121
static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port)
1122 1123
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1124
	struct net_device *bridge = ps->ports[port].bridge_dev;
1125
	const u16 mask = (1 << ps->num_ports) - 1;
1126
	u16 output_ports = 0;
1127
	int reg;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
		for (i = 0; i < ps->num_ports; ++i) {
			/* allow sending frames to every group member */
			if (bridge && ps->ports[i].bridge_dev == bridge)
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1147

1148 1149 1150
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (reg < 0)
		return reg;
1151

1152 1153
	reg &= ~mask;
	reg |= output_ports & mask;
1154

1155
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1156 1157 1158 1159 1160 1161 1162 1163 1164
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1165
		stp_state = PORT_CONTROL_STATE_DISABLED;
1166 1167 1168
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1169
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1170 1171
		break;
	case BR_STATE_LEARNING:
1172
		stp_state = PORT_CONTROL_STATE_LEARNING;
1173 1174 1175
		break;
	case BR_STATE_FORWARDING:
	default:
1176
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1177 1178 1179 1180 1181 1182
		break;
	}

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
1183
	ps->ports[port].state = stp_state;
1184
	set_bit(port, ps->port_state_update_mask);
1185 1186 1187 1188 1189
	schedule_work(&ps->bridge_work);

	return 0;
}

1190 1191
static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new,
				u16 *old)
1192
{
1193
	u16 pvid;
1194 1195 1196 1197 1198 1199
	int ret;

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
			   pvid);
	}

	if (old)
		*old = pvid;
1217 1218 1219 1220

	return 0;
}

1221 1222 1223 1224 1225
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	return _mv88e6xxx_port_pvid(ds, port, NULL, pvid);
}

1226
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1227
{
1228
	return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL);
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1313 1314 1315 1316 1317 1318 1319
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
{
	return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				    vid & GLOBAL_VTU_VID_MASK);
}

static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

1345
		if (mv88e6xxx_has_fid_reg(ds)) {
1346 1347 1348 1349 1350 1351
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1352
		}
1353

1354
		if (mv88e6xxx_has_stu(ds)) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_vlan *vlan,
			     int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &next);
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
		vlan->vid_begin = vlan->vid_end = next.vid;
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

1437
	if (mv88e6xxx_has_stu(ds)) {
1438 1439 1440 1441
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;
1442
	}
1443

1444
	if (mv88e6xxx_has_fid_reg(ds)) {
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new,
			       u16 *old)
{
	u16 fid;
	int ret;

	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN,
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1);
	if (ret < 0)
		return ret;

	fid |= (ret & PORT_CONTROL_1_FID_11_4_MASK) << 4;

	if (new) {
		ret &= ~PORT_CONTROL_1_FID_11_4_MASK;
		ret |= (*new >> 4) & PORT_CONTROL_1_FID_11_4_MASK;

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1,
					   ret);
		if (ret < 0)
			return ret;

		netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
	}

	if (old)
		*old = fid;

	return 0;
}

static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid)
{
	return _mv88e6xxx_port_fid(ds, port, NULL, fid);
}

static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid)
{
	return _mv88e6xxx_port_fid(ds, port, &fid, NULL);
}

1592 1593
static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid)
{
1594
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1595 1596
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1597
	int i, err;
1598 1599 1600

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1601 1602 1603 1604 1605 1606 1607 1608 1609
	/* Set every FID bit used by the (un)bridged ports */
	for (i = 0; i < ps->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(ds, i, fid);
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	/* Set every FID bit used by the VLAN entries */
	err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
	if (unlikely(*fid == MV88E6XXX_N_FID))
		return -ENOSPC;

	/* Clear the database */
	return _mv88e6xxx_atu_flush(ds, *fid, true);
}

1637 1638
static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry)
1639 1640 1641 1642 1643 1644
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1645 1646 1647 1648 1649
	int i, err;

	err = _mv88e6xxx_fid_new(ds, &vlan.fid);
	if (err)
		return err;
1650

1651
	/* exclude all ports except the CPU and DSA ports */
1652
	for (i = 0; i < ps->num_ports; ++i)
1653 1654 1655
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid,
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

	err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
	if (err)
		return err;

	err = _mv88e6xxx_vtu_getnext(ds, entry);
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

		err = _mv88e6xxx_vtu_new(ds, vid, entry);
	}

	return err;
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

		for (i = 0; i < ps->num_ports; ++i) {
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

			if (ps->ports[i].bridge_dev ==
			    ps->ports[port].bridge_dev)
				break; /* same bridge, check next VLAN */

			netdev_warn(ds->ports[port],
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
				    netdev_name(ps->ports[i].bridge_dev));
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
				  bool vlan_filtering)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2);
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1791 1792 1793
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2,
					   ret);
		if (ret < 0)
			goto unlock;

		netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1804

1805
	ret = 0;
1806 1807 1808 1809 1810 1811
unlock:
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1812 1813 1814 1815
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	int err;

	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1826 1827 1828 1829 1830 1831 1832 1833
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
				    bool untagged)
1834 1835 1836 1837
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1838
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true);
1839
	if (err)
1840
		return err;
1841 1842 1843 1844 1845

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
}

int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
		if (err)
			goto unlock;
	}

	/* no PVID with ranges, otherwise it's a bug */
	if (pvid)
R
Russell King 已提交
1869
		err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end);
1870 1871 1872 1873 1874 1875
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1876
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1877 1878 1879 1880 1881
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1882
	err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1883
	if (err)
1884
		return err;
1885

1886 1887
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1888
		return -EOPNOTSUPP;
1889 1890 1891 1892

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1893
	vlan.valid = false;
1894
	for (i = 0; i < ps->num_ports; ++i) {
1895
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1896 1897 1898
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1899
			vlan.valid = true;
1900 1901 1902 1903 1904
			break;
		}
	}

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	if (err)
		return err;

	return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
}

int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 pvid, vid;
	int err = 0;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1921 1922 1923
	if (err)
		goto unlock;

1924 1925 1926 1927 1928 1929
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		err = _mv88e6xxx_port_vlan_del(ds, port, vid);
		if (err)
			goto unlock;

		if (vid == pvid) {
1930
			err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1931 1932 1933 1934 1935
			if (err)
				goto unlock;
		}
	}

1936 1937 1938 1939 1940 1941
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1942 1943
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1944 1945 1946 1947
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1948 1949 1950
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1951 1952 1953 1954 1955 1956 1957
		if (ret < 0)
			return ret;
	}

	return 0;
}

1958
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1959 1960 1961 1962
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1963 1964
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1965 1966 1967 1968 1969 1970 1971 1972 1973
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

1974 1975
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
1976
{
1977 1978
	int ret;

1979 1980 1981 1982
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1983
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1984 1985 1986
	if (ret < 0)
		return ret;

1987
	ret = _mv88e6xxx_atu_data_write(ds, entry);
1988
	if (ret < 0)
1989 1990
		return ret;

1991
	return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
1992
}
1993

1994 1995 1996 1997 1998
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
1999 2000 2001
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2002 2003 2004 2005 2006
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
		err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid);
	else
		err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
2007 2008
	if (err)
		return err;
2009

2010
	entry.fid = vlan.fid;
2011 2012 2013 2014 2015 2016 2017 2018
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
2019 2020
}

V
Vivien Didelot 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2031
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2032 2033
			   const struct switchdev_obj_port_fdb *fdb,
			   struct switchdev_trans *trans)
2034
{
2035
	int state = is_multicast_ether_addr(fdb->addr) ?
2036 2037
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2038
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2039 2040 2041
	int ret;

	mutex_lock(&ps->smi_mutex);
2042
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
2043 2044 2045 2046 2047
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2048
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2049
			   const struct switchdev_obj_port_fdb *fdb)
2050 2051 2052 2053 2054
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
2055
	ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
2056
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2057 2058 2059 2060 2061
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

2062 2063
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  struct mv88e6xxx_atu_entry *entry)
2064
{
2065 2066 2067 2068
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2069

2070 2071 2072
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
2073

2074
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2075 2076
	if (ret < 0)
		return ret;
2077

2078 2079 2080
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
2081

2082
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
2083 2084
	if (ret < 0)
		return ret;
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2102

2103
	*entry = next;
2104 2105 2106
	return 0;
}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid,
					int port,
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

	err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(ds, fid, &addr);
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2148 2149 2150 2151 2152 2153 2154 2155
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
			    struct switchdev_obj_port_fdb *fdb,
			    int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2156
	u16 fid;
2157 2158 2159 2160
	int err;

	mutex_lock(&ps->smi_mutex);

2161 2162 2163 2164 2165 2166 2167 2168 2169
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
	err = _mv88e6xxx_port_fid_get(ds, port, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb);
	if (err)
		goto unlock;

2170
	/* Dump VLANs' Filtering Information Databases */
2171 2172 2173 2174 2175 2176 2177
	err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
	if (err)
		goto unlock;

	do {
		err = _mv88e6xxx_vtu_getnext(ds, &vlan);
		if (err)
2178
			break;
2179 2180 2181 2182

		if (!vlan.valid)
			break;

2183 2184
		err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port,
						   fdb, cb);
2185
		if (err)
2186
			break;
2187 2188 2189 2190 2191 2192 2193 2194
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

2195 2196
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
			       struct net_device *bridge)
2197
{
2198
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	u16 fid;
	int i, err;

	mutex_lock(&ps->smi_mutex);

	/* Get or create the bridge FID and assign it to the port */
	for (i = 0; i < ps->num_ports; ++i)
		if (ps->ports[i].bridge_dev == bridge)
			break;

	if (i < ps->num_ports)
		err = _mv88e6xxx_port_fid_get(ds, i, &fid);
	else
		err = _mv88e6xxx_fid_new(ds, &fid);
	if (err)
		goto unlock;

	err = _mv88e6xxx_port_fid_set(ds, port, fid);
	if (err)
		goto unlock;
2219

2220
	/* Assign the bridge and remap each port's VLANTable */
2221
	ps->ports[port].bridge_dev = bridge;
2222 2223 2224 2225 2226 2227 2228 2229 2230

	for (i = 0; i < ps->num_ports; ++i) {
		if (ps->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(ds, i);
			if (err)
				break;
		}
	}

2231 2232
unlock:
	mutex_unlock(&ps->smi_mutex);
2233

2234
	return err;
2235 2236
}

2237
void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2238
{
2239
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2240
	struct net_device *bridge = ps->ports[port].bridge_dev;
2241
	u16 fid;
2242
	int i;
2243 2244 2245 2246

	mutex_lock(&ps->smi_mutex);

	/* Give the port a fresh Filtering Information Database */
2247 2248 2249
	if (_mv88e6xxx_fid_new(ds, &fid) ||
	    _mv88e6xxx_port_fid_set(ds, port, fid))
		netdev_warn(ds->ports[port], "failed to assign a new FID\n");
2250

2251
	/* Unassign the bridge and remap each port's VLANTable */
2252
	ps->ports[port].bridge_dev = NULL;
2253

2254 2255 2256 2257
	for (i = 0; i < ps->num_ports; ++i)
		if (i == port || ps->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(ds, i))
				netdev_warn(ds->ports[i], "failed to remap\n");
2258

2259
	mutex_unlock(&ps->smi_mutex);
2260 2261
}

2262 2263 2264 2265 2266 2267 2268 2269 2270
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

2271 2272 2273 2274 2275 2276 2277 2278 2279
	mutex_lock(&ps->smi_mutex);

	for (port = 0; port < ps->num_ports; ++port)
		if (test_and_clear_bit(port, ps->port_state_update_mask) &&
		    _mv88e6xxx_port_state(ds, port, ps->ports[port].state))
			netdev_warn(ds->ports[port], "failed to update state to %s\n",
				    mv88e6xxx_port_state_names[ps->ports[port].state]);

	mutex_unlock(&ps->smi_mutex);
2280 2281
}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static int _mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

static int _mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
{
	int ret;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
	if (ret < 0)
		goto restore_page_0;

	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
restore_page_0:
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);

	return ret;
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
static int mv88e6xxx_power_on_serdes(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_phy_page_read(ds, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
				       MII_BMCR);
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
		ret = _mv88e6xxx_phy_page_write(ds, REG_FIBER_SERDES,
						PAGE_FIBER_SERDES, MII_BMCR,
						ret);
	}

	return ret;
}

2333
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2334 2335
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2336
	int ret;
2337
	u16 reg;
2338 2339 2340

	mutex_lock(&ps->smi_mutex);

2341 2342 2343
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2344
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2345 2346 2347 2348 2349 2350 2351
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2352
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2353
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2390
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2391 2392 2393 2394 2395 2396 2397
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2398 2399
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2400 2401 2402 2403
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
2404 2405
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2406 2407 2408 2409 2410
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2411
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2412 2413 2414 2415
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
2416 2417 2418 2419 2420 2421
	if (dsa_is_dsa_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
2422
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2423 2424
		}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
	if (mv88e6xxx_6352_family(ds)) {
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
		if (ret < 0)
			goto abort;
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
			ret = mv88e6xxx_power_on_serdes(ds);
			if (ret < 0)
				goto abort;
		}
	}

2453
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2454
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2455 2456 2457
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2458 2459 2460 2461
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2462
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
2463 2464 2465
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2466
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2479
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2493 2494 2495 2496 2497 2498
	reg = 1 << port;
	/* Disable learning for DSA and CPU ports */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		reg = PORT_ASSOC_VECTOR_LOCKED_PORT;

	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2509 2510
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2560 2561
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2562 2563 2564 2565 2566 2567 2568
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2569 2570
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2571
	 */
2572
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2573 2574 2575
	if (ret)
		goto abort;

2576
	/* Port based VLAN map: give each port its own address
2577 2578
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2579
	 */
2580 2581 2582 2583
	ret = _mv88e6xxx_port_fid_set(ds, port, port + 1);
	if (ret)
		goto abort;

2584
	ret = _mv88e6xxx_port_based_vlan_map(ds, port);
2585 2586 2587 2588 2589 2590
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2591 2592
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2593 2594 2595 2596 2597
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2612 2613 2614 2615 2616 2617
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);

2618
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2619

2620 2621
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2622 2623 2624
	return 0;
}

2625 2626 2627
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2628
	int ret;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2692 2693
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2712 2713
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2714 2715 2716 2717 2718 2719 2720 2721 2722
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

2723 2724 2725 2726
	/* Clear the statistics counters for all ports */
	REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);

	/* Wait for the flush to complete. */
2727 2728
	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_stats_wait(ds);
2729 2730 2731
	if (ret < 0)
		goto unlock;

2732 2733 2734 2735 2736
	/* Clear all ATU entries */
	ret = _mv88e6xxx_atu_flush(ds, 0, true);
	if (ret < 0)
		goto unlock;

2737 2738 2739
	/* Clear all the VTU and STU entries */
	ret = _mv88e6xxx_vtu_stu_flush(ds);
unlock:
2740
	mutex_unlock(&ps->smi_mutex);
2741

2742
	return ret;
2743 2744
}

2745 2746 2747 2748
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2749
	struct gpio_desc *gpiod = ds->pd->reset;
2750 2751 2752 2753 2754 2755
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
2756 2757
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2758 2759 2760 2761 2762
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

2763 2764 2765 2766 2767 2768 2769 2770
	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

2794 2795 2796 2797 2798
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2799
	mutex_lock(&ps->smi_mutex);
2800
	ret = _mv88e6xxx_phy_page_read(ds, port, page, reg);
2801
	mutex_unlock(&ps->smi_mutex);
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2812
	mutex_lock(&ps->smi_mutex);
2813
	ret = _mv88e6xxx_phy_page_write(ds, port, page, reg, val);
2814
	mutex_unlock(&ps->smi_mutex);
2815

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2838
	mutex_lock(&ps->smi_mutex);
2839
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2840
	mutex_unlock(&ps->smi_mutex);
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2854
	mutex_lock(&ps->smi_mutex);
2855
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2856
	mutex_unlock(&ps->smi_mutex);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2870
	mutex_lock(&ps->smi_mutex);
2871
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2872
	mutex_unlock(&ps->smi_mutex);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2887
	mutex_lock(&ps->smi_mutex);
2888
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2889
	mutex_unlock(&ps->smi_mutex);
2890 2891 2892
	return ret;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
			    const struct mv88e6xxx_switch_id *table,
			    unsigned int num)
{
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
	int i, ret;

	if (!bus)
		return NULL;

	ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
	if (ret < 0)
		return NULL;

	/* Look up the exact switch ID */
	for (i = 0; i < num; ++i)
		if (table[i].id == ret)
			return table[i].name;

	/* Look up only the product number */
	for (i = 0; i < num; ++i) {
		if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
			dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
				 ret & PORT_SWITCH_ID_REV_MASK,
				 ret & PORT_SWITCH_ID_PROD_NUM_MASK);
			return table[i].name;
		}
	}

	return NULL;
}

3051 3052 3053 3054 3055
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
3056 3057
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	register_switch_driver(&mv88e6123_switch_driver);
3058
#endif
3059 3060 3061
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
3062 3063
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
3064 3065 3066 3067 3068 3069 3070
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3071 3072 3073
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
3074 3075 3076
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
3077 3078
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
	unregister_switch_driver(&mv88e6123_switch_driver);
3079 3080 3081 3082 3083 3084
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
3085 3086 3087 3088

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");