mv88e6xxx.c 67.6 KB
Newer Older
1 2 3 4
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
5 6 7
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
8 9 10 11 12 13
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

14
#include <linux/debugfs.h>
15
#include <linux/delay.h>
16
#include <linux/etherdevice.h>
17
#include <linux/if_bridge.h>
18
#include <linux/jiffies.h>
19
#include <linux/list.h>
20
#include <linux/module.h>
21 22
#include <linux/netdevice.h>
#include <linux/phy.h>
23
#include <linux/seq_file.h>
24
#include <net/dsa.h>
25 26
#include "mv88e6xxx.h"

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* MDIO bus access can be nested in the case of PHYs connected to the
 * internal MDIO bus of the switch, which is accessed via MDIO bus of
 * the Ethernet interface. Avoid lockdep false positives by using
 * mutex_lock_nested().
 */
static int mv88e6xxx_mdiobus_read(struct mii_bus *bus, int addr, u32 regnum)
{
	int ret;

	mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
	ret = bus->read(bus, addr, regnum);
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int mv88e6xxx_mdiobus_write(struct mii_bus *bus, int addr, u32 regnum,
				   u16 val)
{
	int ret;

	mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
	ret = bus->write(bus, addr, regnum, val);
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

55
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
56 57 58 59 60 61 62 63 64 65 66 67 68
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
69
		ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_CMD);
70 71 72
		if (ret < 0)
			return ret;

73
		if ((ret & SMI_CMD_BUSY) == 0)
74 75 76 77 78 79 80 81 82 83 84
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
85
		return mv88e6xxx_mdiobus_read(bus, addr, reg);
86

87
	/* Wait for the bus to become free. */
88 89 90 91
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

92
	/* Transmit the read command. */
93 94
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
				      SMI_CMD_OP_22_READ | (addr << 5) | reg);
95 96 97
	if (ret < 0)
		return ret;

98
	/* Wait for the read command to complete. */
99 100 101 102
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

103
	/* Read the data. */
104
	ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_DATA);
105 106 107 108 109 110
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

111 112
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
113
{
114
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
115 116
	int ret;

117 118 119 120
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
121 122 123 124 125 126
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

127 128 129
	return ret;
}

130 131 132 133 134 135 136 137 138 139 140 141
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

142 143 144 145 146 147
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
148
		return mv88e6xxx_mdiobus_write(bus, addr, reg, val);
149

150
	/* Wait for the bus to become free. */
151 152 153 154
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

155
	/* Transmit the data to write. */
156
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_DATA, val);
157 158 159
	if (ret < 0)
		return ret;

160
	/* Transmit the write command. */
161 162
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
				      SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Wait for the write command to complete. */
167 168 169 170 171 172 173
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

174 175 176
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
177
{
178
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
179

180 181 182
	if (bus == NULL)
		return -EINVAL;

183 184 185
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

186 187 188 189 190 191 192 193
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

194
	mutex_lock(&ps->smi_mutex);
195
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
196 197 198 199 200
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

201 202
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
203 204 205
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
206 207 208 209

	return 0;
}

210 211 212 213 214 215 216 217
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

218
		/* Write the MAC address byte. */
219 220
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
221

222
		/* Wait for the write to complete. */
223
		for (j = 0; j < 16; j++) {
224 225
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
226 227 228 229 230 231 232 233 234
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

235
/* Must be called with SMI mutex held */
236
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
237 238
{
	if (addr >= 0)
239
		return _mv88e6xxx_reg_read(ds, addr, regnum);
240 241 242
	return 0xffff;
}

243
/* Must be called with SMI mutex held */
244 245
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
246 247
{
	if (addr >= 0)
248
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
249 250 251
	return 0;
}

252 253 254 255
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
256
	unsigned long timeout;
257

258 259 260
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
261

262 263
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
264
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
265
		usleep_range(1000, 2000);
266 267
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
268
			return 0;
269 270 271 272 273 274 275 276
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
277
	unsigned long timeout;
278

279 280
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
281

282 283
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
284
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
285
		usleep_range(1000, 2000);
286 287
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
288
			return 0;
289 290 291 292 293 294 295 296 297 298 299
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
300
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
301

302 303 304
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
305 306 307 308 309 310 311 312 313 314 315 316
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
317
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
318 319 320 321
	int ret;

	mutex_lock(&ps->ppu_mutex);

322
	/* If the PHY polling unit is enabled, disable it so that
323 324 325 326 327
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
328 329 330 331 332 333
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
334
	} else {
335 336
		del_timer(&ps->ppu_timer);
		ret = 0;
337 338 339 340 341 342 343
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
344
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
345

346
	/* Schedule a timer to re-enable the PHY polling unit. */
347 348 349 350 351 352
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
353
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
354 355 356 357 358 359 360 361 362 363 364 365 366 367

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
368 369
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
370 371 372 373 374 375 376 377 378 379 380 381
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
382 383
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
384 385 386 387 388 389
	}

	return ret;
}
#endif

390 391 392 393 394 395
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
396
		int uninitialized_var(port_status);
397 398 399 400 401 402 403 404 405 406 407
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
408 409
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
							 PORT_STATUS);
410 411 412
			if (port_status < 0)
				continue;

413
			link = !!(port_status & PORT_STATUS_LINK);
414 415 416 417
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
418
				netdev_info(dev, "link down\n");
419 420 421 422 423
				netif_carrier_off(dev);
			}
			continue;
		}

424 425
		switch (port_status & PORT_STATUS_SPEED_MASK) {
		case PORT_STATUS_SPEED_10:
426 427
			speed = 10;
			break;
428
		case PORT_STATUS_SPEED_100:
429 430
			speed = 100;
			break;
431
		case PORT_STATUS_SPEED_1000:
432 433 434 435 436 437
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
438 439
		duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
		fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
440 441

		if (!netif_carrier_ok(dev)) {
442 443 444 445 446
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
447 448 449 450 451
			netif_carrier_on(dev);
		}
	}
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

523
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
524 525 526 527 528 529 530 531 532 533 534
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6320:
	case PORT_SWITCH_ID_6321:
		return true;
	}
	return false;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

549 550 551 552 553 554 555
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
556 557
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
558 559 560 561 562
		return true;
	}
	return false;
}

563 564
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
565 566 567 568 569
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
570
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
571
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
572 573 574 575 576 577
			return 0;
	}

	return -ETIMEDOUT;
}

578 579
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
580 581 582
{
	int ret;

583
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
584 585
		port = (port + 1) << 5;

586
	/* Snapshot the hardware statistics counters for this port. */
587 588 589 590 591
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
592

593
	/* Wait for the snapshotting to complete. */
594
	ret = _mv88e6xxx_stats_wait(ds);
595 596 597 598 599 600
	if (ret < 0)
		return ret;

	return 0;
}

601 602
/* Must be called with SMI mutex held */
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
603 604 605 606 607 608
{
	u32 _val;
	int ret;

	*val = 0;

609 610 611
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
612 613 614
	if (ret < 0)
		return;

615
	ret = _mv88e6xxx_stats_wait(ds);
616 617 618
	if (ret < 0)
		return;

619
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
620 621 622 623 624
	if (ret < 0)
		return;

	_val = ret << 16;

625
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
626 627 628 629 630 631
	if (ret < 0)
		return;

	*val = _val | ret;
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
	/* Not all devices have the following counters */
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },

};

static bool have_sw_in_discards(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
675 676 677 678 679
	case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
	case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6352:
680 681 682 683 684 685 686 687 688 689
		return true;
	default:
		return false;
	}
}

static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
				   int nr_stats,
				   struct mv88e6xxx_hw_stat *stats,
				   int port, uint8_t *data)
690 691 692 693 694 695 696 697 698
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
					    int stat,
					    struct mv88e6xxx_hw_stat *stats,
					    int port)
{
	struct mv88e6xxx_hw_stat *s = stats + stat;
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

	if (s->reg >= 0x100) {
		ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
					  s->reg - 0x100);
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
						  s->reg - 0x100 + 1);
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
	} else {
		_mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
	}
	value = (((u64)high) << 16) | low;
	return value;
}

733 734 735 736
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
					 int nr_stats,
					 struct mv88e6xxx_hw_stat *stats,
					 int port, uint64_t *data)
737
{
738
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
739 740 741
	int ret;
	int i;

742
	mutex_lock(&ps->smi_mutex);
743

744
	ret = _mv88e6xxx_stats_snapshot(ds, port);
745
	if (ret < 0) {
746
		mutex_unlock(&ps->smi_mutex);
747 748 749
		return;
	}

750
	/* Read each of the counters. */
751 752
	for (i = 0; i < nr_stats; i++)
		data[i] = _mv88e6xxx_get_ethtool_stat(ds, i, stats, port);
753

754
	mutex_unlock(&ps->smi_mutex);
755
}
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
				       mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
				       mv88e6xxx_hw_stats, port, data);
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
	if (have_sw_in_discards(ds))
		return ARRAY_SIZE(mv88e6xxx_hw_stats);
	return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
			mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
			mv88e6xxx_hw_stats, port, data);
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

814 815 816
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
817 818 819 820 821 822
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

823 824 825
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
826 827 828 829 830 831 832 833
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

834 835 836 837 838 839 840 841 842 843 844 845 846
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
847
{
848 849
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
850 851 852 853
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
854 855
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
856 857 858 859
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
860 861
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
862 863
}

864 865 866
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
867 868
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
869 870
}

871 872 873 874 875 876 877
/* Must be called with SMI lock held */
static int _mv88e6xxx_scratch_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SCRATCH_MISC,
			       GLOBAL2_SCRATCH_BUSY);
}

878
/* Must be called with SMI mutex held */
879 880
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
881 882 883
{
	int ret;

884 885 886 887 888
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
889

890
	ret = _mv88e6xxx_phy_wait(ds);
891 892 893
	if (ret < 0)
		return ret;

894
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
895 896
}

897
/* Must be called with SMI mutex held */
898 899
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
900
{
901 902 903 904 905
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
906

907 908 909 910 911
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
912 913
}

914 915
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
916
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
917 918
	int reg;

919
	mutex_lock(&ps->smi_mutex);
920 921

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
922
	if (reg < 0)
923
		goto out;
924 925 926 927

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

928
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
929
	if (reg < 0)
930
		goto out;
931

932
	e->eee_active = !!(reg & PORT_STATUS_EEE);
933
	reg = 0;
934

935
out:
936
	mutex_unlock(&ps->smi_mutex);
937
	return reg;
938 939 940 941 942
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
943 944
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
945 946
	int ret;

947
	mutex_lock(&ps->smi_mutex);
948

949 950 951 952 953 954 955 956 957 958 959 960
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
961
	mutex_unlock(&ps->smi_mutex);
962 963

	return ret;
964 965
}

966 967 968 969
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
	int ret;

970
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
971 972 973
	if (ret < 0)
		return ret;

974
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
975 976 977 978 979 980 981 982 983 984 985 986 987 988
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

989
	return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
990 991 992 993 994
}

static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
995
	int reg, ret = 0;
996 997 998 999
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

1000
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1001 1002
	if (reg < 0) {
		ret = reg;
1003
		goto abort;
1004
	}
1005

1006
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1007 1008 1009 1010 1011
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1012 1013
		if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
		    state <= PORT_CONTROL_STATE_BLOCKING) {
1014 1015 1016 1017
			ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
			if (ret)
				goto abort;
		}
1018 1019 1020
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	u16 reg = fid << 12;

	if (dsa_is_cpu_port(ds, port))
		reg |= ds->phys_port_mask;
	else
		reg |= (ps->bridge_mask[fid] |
		       (1 << dsa_upstream_port(ds))) & ~(1 << port);

1041
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int port;
	u32 mask;
	int ret;

	mask = ds->phys_port_mask;
	while (mask) {
		port = __ffs(mask);
		mask &= ~(1 << port);
		if (ps->fid[port] != fid)
			continue;

		ret = _mv88e6xxx_update_port_config(ds, port);
		if (ret)
			return ret;
	}

	return _mv88e6xxx_flush_fid(ds, fid);
}

/* Bridge handling functions */

int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret = 0;
	u32 nmask;
	int fid;

	/* If the bridge group is not empty, join that group.
	 * Otherwise create a new group.
	 */
	fid = ps->fid[port];
	nmask = br_port_mask & ~(1 << port);
	if (nmask)
		fid = ps->fid[__ffs(nmask)];

	nmask = ps->bridge_mask[fid] | (1 << port);
	if (nmask != br_port_mask) {
		netdev_err(ds->ports[port],
			   "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, nmask);
		return -EINVAL;
	}

	mutex_lock(&ps->smi_mutex);

	ps->bridge_mask[fid] = br_port_mask;

	if (fid != ps->fid[port]) {
1097
		clear_bit(ps->fid[port], ps->fid_bitmap);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		ps->fid[port] = fid;
		ret = _mv88e6xxx_update_bridge_config(ds, fid);
	}

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid, newfid;
	int ret;

	fid = ps->fid[port];

	if (ps->bridge_mask[fid] != br_port_mask) {
		netdev_err(ds->ports[port],
			   "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, ps->bridge_mask[fid]);
		return -EINVAL;
	}

	/* If the port was the last port of a bridge, we are done.
	 * Otherwise assign a new fid to the port, and fix up
	 * the bridge configuration.
	 */
	if (br_port_mask == (1 << port))
		return 0;

	mutex_lock(&ps->smi_mutex);

1131 1132 1133 1134 1135 1136 1137 1138
	newfid = find_next_zero_bit(ps->fid_bitmap, VLAN_N_VID, 1);
	if (unlikely(newfid > ps->num_ports)) {
		netdev_err(ds->ports[port], "all first %d FIDs are used\n",
			   ps->num_ports);
		ret = -ENOSPC;
		goto unlock;
	}

1139
	ps->fid[port] = newfid;
1140
	set_bit(newfid, ps->fid_bitmap);
1141 1142 1143 1144 1145 1146 1147
	ps->bridge_mask[fid] &= ~(1 << port);
	ps->bridge_mask[newfid] = 1 << port;

	ret = _mv88e6xxx_update_bridge_config(ds, fid);
	if (!ret)
		ret = _mv88e6xxx_update_bridge_config(ds, newfid);

1148
unlock:
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1161
		stp_state = PORT_CONTROL_STATE_DISABLED;
1162 1163 1164
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1165
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1166 1167
		break;
	case BR_STATE_LEARNING:
1168
		stp_state = PORT_CONTROL_STATE_LEARNING;
1169 1170 1171
		break;
	case BR_STATE_FORWARDING:
	default:
1172
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
	int ret;

	ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
	if (ret < 0)
		return ret;

	*pvid = ret & PORT_DEFAULT_VLAN_MASK;

	return 0;
}

1201 1202 1203 1204 1205 1206
int mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
{
	return mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   pvid & PORT_DEFAULT_VLAN_MASK);
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
			       GLOBAL_VTU_OP_BUSY);
}

static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_wait(ds);
}

static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 regs[3] = { 0 };
	int i;
	int ret;

	for (i = 0; i < ps->num_ports; ++i) {
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds, u16 vid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
				   vid & GLOBAL_VTU_VID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
		if (ret < 0)
			return ret;

		if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
		    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;

			ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
	if (ret < 0)
		return ret;

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
		if (ret < 0)
			return ret;

		reg = entry->fid & GLOBAL_VTU_FID_MASK;
		ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
		if (ret < 0)
			return ret;
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
		ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

	ret = _mv88e6xxx_vtu_wait(ds);
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
	ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}

static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
				struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
	int i;

	/* exclude all ports except the CPU */
	for (i = 0; i < ps->num_ports; ++i)
		vlan.data[i] = dsa_is_cpu_port(ds, i) ?
			GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED :
			GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
	    mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
		struct mv88e6xxx_vtu_stu_entry vstp;
		int err;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
		err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

			err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
			if (err)
				return err;
		}

		/* Non-bridged ports and bridge groups use FIDs from 1 to
		 * num_ports; VLANs use FIDs from num_ports+1 to 4095.
		 */
		vlan.fid = find_next_zero_bit(ps->fid_bitmap, VLAN_N_VID,
					      ps->num_ports + 1);
		if (unlikely(vlan.fid == VLAN_N_VID)) {
			pr_err("no more FID available for VLAN %d\n", vid);
			return -ENOSPC;
		}

		err = _mv88e6xxx_flush_fid(ds, vlan.fid);
		if (err)
			return err;

		set_bit(vlan.fid, ps->fid_bitmap);
	}

	*entry = vlan;
	return 0;
}

int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
			    bool untagged)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

	mutex_lock(&ps->smi_mutex);
	err = _mv88e6xxx_vtu_getnext(ds, vid - 1, &vlan);
	if (err)
		goto unlock;

	if (vlan.vid != vid || !vlan.valid) {
		err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
		if (err)
			goto unlock;
	}

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry vlan;
	bool keep = false;
	int i, err;

	mutex_lock(&ps->smi_mutex);

	err = _mv88e6xxx_vtu_getnext(ds, vid - 1, &vlan);
	if (err)
		goto unlock;

	if (vlan.vid != vid || !vlan.valid ||
	    vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
		err = -ENOENT;
		goto unlock;
	}

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
	for (i = 0; i < ps->num_ports; ++i) {
		if (dsa_is_cpu_port(ds, i))
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
			keep = true;
			break;
		}
	}

	vlan.valid = keep;
	err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
	if (err)
		goto unlock;

	if (!keep)
		clear_bit(vlan.fid, ps->fid_bitmap);

unlock:
	mutex_unlock(&ps->smi_mutex);

	return err;
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static int _mv88e6xxx_port_vtu_getnext(struct dsa_switch *ds, int port, u16 vid,
				       struct mv88e6xxx_vtu_stu_entry *entry)
{
	int err;

	do {
		if (vid == 4095)
			return -ENOENT;

		err = _mv88e6xxx_vtu_getnext(ds, vid, entry);
		if (err)
			return err;

		if (!entry->valid)
			return -ENOENT;

		vid = entry->vid;
	} while (entry->data[port] != GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED &&
		 entry->data[port] != GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED);

	return 0;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
			   unsigned long *ports, unsigned long *untagged)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_vtu_stu_entry next;
	int port;
	int err;

	if (*vid == 4095)
		return -ENOENT;

	mutex_lock(&ps->smi_mutex);
	err = _mv88e6xxx_vtu_getnext(ds, *vid, &next);
	mutex_unlock(&ps->smi_mutex);

	if (err)
		return err;

	if (!next.valid)
		return -ENOENT;

	*vid = next.vid;

	for (port = 0; port < ps->num_ports; ++port) {
		clear_bit(port, ports);
		clear_bit(port, untagged);

		if (dsa_is_cpu_port(ds, port))
			continue;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
		    next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			set_bit(port, ports);

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			set_bit(port, untagged);
	}

	return 0;
}

1656 1657
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
				    const unsigned char *addr)
1658 1659 1660 1661
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1662 1663 1664
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1665 1666 1667 1668 1669 1670 1671
		if (ret < 0)
			return ret;
	}

	return 0;
}

1672
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1673 1674 1675 1676
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1677 1678
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1679 1680 1681 1682 1683 1684 1685 1686 1687
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

1688 1689
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
			       struct mv88e6xxx_atu_entry *entry)
1690
{
1691
	u16 reg = 0;
1692 1693
	int ret;

1694 1695 1696 1697
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1698
	ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1699 1700 1701
	if (ret < 0)
		return ret;

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			reg |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		reg |= (entry->portv_trunkid << shift) & mask;
	}

	reg |= entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, reg);
	if (ret < 0)
1721 1722
		return ret;

1723 1724
	return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
}
1725

1726 1727 1728
static int _mv88e6xxx_port_vid_to_fid(struct dsa_switch *ds, int port, u16 vid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1729 1730
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;
1731 1732 1733 1734

	if (vid == 0)
		return ps->fid[port];

1735 1736 1737 1738 1739 1740 1741
	err = _mv88e6xxx_port_vtu_getnext(ds, port, vid - 1, &vlan);
	if (err)
		return err;

	if (vlan.vid == vid)
		return vlan.fid;

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	return -ENOENT;
}

static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
	int ret;

	ret = _mv88e6xxx_port_vid_to_fid(ds, port, vid);
	if (ret < 0)
		return ret;

	entry.fid = ret;
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

	return _mv88e6xxx_atu_load(ds, &entry);
1765 1766
}

1767 1768
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
1769
{
1770
	int state = is_multicast_ether_addr(addr) ?
1771 1772
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
1773
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1774 1775 1776
	int ret;

	mutex_lock(&ps->smi_mutex);
1777
	ret = _mv88e6xxx_port_fdb_load(ds, port, addr, vid, state);
1778 1779 1780 1781 1782
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1783 1784
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
1785 1786 1787 1788 1789
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
1790
	ret = _mv88e6xxx_port_fdb_load(ds, port, addr, vid,
1791
				       GLOBAL_ATU_DATA_STATE_UNUSED);
1792 1793 1794 1795 1796
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1797 1798 1799
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
				  const unsigned char *addr,
				  struct mv88e6xxx_atu_entry *entry)
1800
{
1801 1802 1803 1804
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
1805

1806 1807 1808
	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;
1809

1810
	ret = _mv88e6xxx_atu_mac_write(ds, addr);
1811
	if (ret < 0)
1812
		return ret;
1813

1814 1815 1816
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (ret < 0)
		return ret;
1817

1818 1819 1820
	ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
	if (ret < 0)
		return ret;
1821

1822
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1823 1824
	if (ret < 0)
		return ret;
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
1842

1843
	*entry = next;
1844 1845 1846 1847 1848
	return 0;
}

/* get next entry for port */
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
1849
			       unsigned char *addr, u16 *vid, bool *is_static)
1850 1851
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1852 1853
	struct mv88e6xxx_atu_entry next;
	u16 fid;
1854
	int ret;
1855

1856
	mutex_lock(&ps->smi_mutex);
1857 1858 1859 1860 1861 1862 1863 1864

	ret = _mv88e6xxx_port_vid_to_fid(ds, port, *vid);
	if (ret < 0)
		goto unlock;
	fid = ret;

	do {
		if (is_broadcast_ether_addr(addr)) {
1865 1866 1867 1868 1869 1870 1871 1872
			struct mv88e6xxx_vtu_stu_entry vtu;

			ret = _mv88e6xxx_port_vtu_getnext(ds, port, *vid, &vtu);
			if (ret < 0)
				goto unlock;

			*vid = vtu.vid;
			fid = vtu.fid;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		}

		ret = _mv88e6xxx_atu_getnext(ds, fid, addr, &next);
		if (ret < 0)
			goto unlock;

		ether_addr_copy(addr, next.mac);

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			continue;
	} while (next.trunk || (next.portv_trunkid & BIT(port)) == 0);

	*is_static = next.state == (is_multicast_ether_addr(addr) ?
				    GLOBAL_ATU_DATA_STATE_MC_STATIC :
				    GLOBAL_ATU_DATA_STATE_UC_STATIC);
unlock:
1889 1890 1891 1892 1893
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

1910
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
1911 1912
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1913
	int ret, fid;
1914
	u16 reg;
1915 1916 1917

	mutex_lock(&ps->smi_mutex);

1918 1919 1920
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
1921
	    mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
1922 1923 1924 1925 1926 1927 1928
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
1929
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
1966
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
1967 1968 1969 1970 1971 1972 1973
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
1974 1975
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6320_family(ds)) {
1976 1977 1978 1979 1980 1981 1982 1983 1984
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
1985
		    mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
1986 1987 1988 1989 1990 1991
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
1992 1993
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
1994
		if (dsa_is_dsa_port(ds, port))
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

2007 2008 2009 2010 2011
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
	 * 10240 bytes, enable secure 802.1q tags, don't discard tagged or
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2012 2013 2014 2015
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2016
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
2017 2018 2019
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2020
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2033 2034
	reg |= PORT_CONTROL_2_8021Q_SECURE;

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR,
				   1 << port);
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2059 2060
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2110 2111
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2112 2113 2114 2115 2116 2117 2118
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

2119 2120
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2121
	 */
2122
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2123 2124 2125 2126 2127 2128 2129 2130
	if (ret)
		goto abort;

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
2131
	fid = port + 1;
2132
	ps->fid[port] = fid;
2133
	set_bit(fid, ps->fid_bitmap);
2134 2135 2136

	if (!dsa_is_cpu_port(ds, port))
		ps->bridge_mask[fid] = 1 << port;
2137

2138
	ret = _mv88e6xxx_update_port_config(ds, port);
2139 2140 2141 2142 2143 2144
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2145 2146
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
2147 2148 2149 2150 2151
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
static int mv88e6xxx_regs_show(struct seq_file *s, void *p)
{
	struct dsa_switch *ds = s->private;

	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg, port;

	seq_puts(s, "    GLOBAL GLOBAL2 ");
	for (port = 0 ; port < ps->num_ports; port++)
		seq_printf(s, " %2d  ", port);
	seq_puts(s, "\n");

	for (reg = 0; reg < 32; reg++) {
		seq_printf(s, "%2x: ", reg);
		seq_printf(s, " %4x    %4x  ",
			   mv88e6xxx_reg_read(ds, REG_GLOBAL, reg),
			   mv88e6xxx_reg_read(ds, REG_GLOBAL2, reg));

		for (port = 0 ; port < ps->num_ports; port++)
			seq_printf(s, "%4x ",
				   mv88e6xxx_reg_read(ds, REG_PORT(port), reg));
		seq_puts(s, "\n");
	}

	return 0;
}

static int mv88e6xxx_regs_open(struct inode *inode, struct file *file)
{
	return single_open(file, mv88e6xxx_regs_show, inode->i_private);
}

static const struct file_operations mv88e6xxx_regs_fops = {
	.open   = mv88e6xxx_regs_open,
	.read   = seq_read,
	.llseek = no_llseek,
	.release = single_release,
	.owner  = THIS_MODULE,
};

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static void mv88e6xxx_atu_show_header(struct seq_file *s)
{
	seq_puts(s, "DB   T/P  Vec State Addr\n");
}

static void mv88e6xxx_atu_show_entry(struct seq_file *s, int dbnum,
				     unsigned char *addr, int data)
{
	bool trunk = !!(data & GLOBAL_ATU_DATA_TRUNK);
	int portvec = ((data & GLOBAL_ATU_DATA_PORT_VECTOR_MASK) >>
		       GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT);
	int state = data & GLOBAL_ATU_DATA_STATE_MASK;

	seq_printf(s, "%03x %5s %10pb   %x   %pM\n",
		   dbnum, (trunk ? "Trunk" : "Port"), &portvec, state, addr);
}

static int mv88e6xxx_atu_show_db(struct seq_file *s, struct dsa_switch *ds,
				 int dbnum)
{
	unsigned char bcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
	unsigned char addr[6];
	int ret, data, state;

2230
	ret = _mv88e6xxx_atu_mac_write(ds, bcast);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (ret < 0)
		return ret;

	do {
		ret = _mv88e6xxx_atu_cmd(ds, dbnum, GLOBAL_ATU_OP_GET_NEXT_DB);
		if (ret < 0)
			return ret;
		data = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
		if (data < 0)
			return data;

		state = data & GLOBAL_ATU_DATA_STATE_MASK;
		if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;
2245
		ret = _mv88e6xxx_atu_mac_read(ds, addr);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		if (ret < 0)
			return ret;
		mv88e6xxx_atu_show_entry(s, dbnum, addr, data);
	} while (state != GLOBAL_ATU_DATA_STATE_UNUSED);

	return 0;
}

static int mv88e6xxx_atu_show(struct seq_file *s, void *p)
{
	struct dsa_switch *ds = s->private;
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int dbnum;

	mv88e6xxx_atu_show_header(s);

	for (dbnum = 0; dbnum < 255; dbnum++) {
		mutex_lock(&ps->smi_mutex);
		mv88e6xxx_atu_show_db(s, ds, dbnum);
		mutex_unlock(&ps->smi_mutex);
	}

	return 0;
}

static int mv88e6xxx_atu_open(struct inode *inode, struct file *file)
{
	return single_open(file, mv88e6xxx_atu_show, inode->i_private);
}

static const struct file_operations mv88e6xxx_atu_fops = {
	.open   = mv88e6xxx_atu_open,
	.read   = seq_read,
	.llseek = no_llseek,
	.release = single_release,
	.owner  = THIS_MODULE,
};

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static void mv88e6xxx_stats_show_header(struct seq_file *s,
					struct mv88e6xxx_priv_state *ps)
{
	int port;

	seq_puts(s, "      Statistic       ");
	for (port = 0 ; port < ps->num_ports; port++)
		seq_printf(s, "Port %2d  ", port);
	seq_puts(s, "\n");
}

static int mv88e6xxx_stats_show(struct seq_file *s, void *p)
{
	struct dsa_switch *ds = s->private;
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	struct mv88e6xxx_hw_stat *stats = mv88e6xxx_hw_stats;
	int port, stat, max_stats;
	uint64_t value;

	if (have_sw_in_discards(ds))
		max_stats = ARRAY_SIZE(mv88e6xxx_hw_stats);
	else
		max_stats = ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;

	mv88e6xxx_stats_show_header(s, ps);

	mutex_lock(&ps->smi_mutex);

	for (stat = 0; stat < max_stats; stat++) {
		seq_printf(s, "%19s: ", stats[stat].string);
		for (port = 0 ; port < ps->num_ports; port++) {
			_mv88e6xxx_stats_snapshot(ds, port);
			value = _mv88e6xxx_get_ethtool_stat(ds, stat, stats,
							    port);
			seq_printf(s, "%8llu ", value);
		}
		seq_puts(s, "\n");
	}
	mutex_unlock(&ps->smi_mutex);

	return 0;
}

static int mv88e6xxx_stats_open(struct inode *inode, struct file *file)
{
	return single_open(file, mv88e6xxx_stats_show, inode->i_private);
}

static const struct file_operations mv88e6xxx_stats_fops = {
	.open   = mv88e6xxx_stats_open,
	.read   = seq_read,
	.llseek = no_llseek,
	.release = single_release,
	.owner  = THIS_MODULE,
};

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
static int mv88e6xxx_device_map_show(struct seq_file *s, void *p)
{
	struct dsa_switch *ds = s->private;
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int target, ret;

	seq_puts(s, "Target Port\n");

	mutex_lock(&ps->smi_mutex);
	for (target = 0; target < 32; target++) {
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			target << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT);
		if (ret < 0)
			goto out;
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL2,
					  GLOBAL2_DEVICE_MAPPING);
		seq_printf(s, "  %2d   %2d\n", target,
			   ret & GLOBAL2_DEVICE_MAPPING_PORT_MASK);
	}
out:
	mutex_unlock(&ps->smi_mutex);

	return 0;
}

static int mv88e6xxx_device_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, mv88e6xxx_device_map_show, inode->i_private);
}

static const struct file_operations mv88e6xxx_device_map_fops = {
	.open   = mv88e6xxx_device_map_open,
	.read   = seq_read,
	.llseek = no_llseek,
	.release = single_release,
	.owner  = THIS_MODULE,
};

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static int mv88e6xxx_scratch_show(struct seq_file *s, void *p)
{
	struct dsa_switch *ds = s->private;
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg, ret;

	seq_puts(s, "Register Value\n");

	mutex_lock(&ps->smi_mutex);
	for (reg = 0; reg < 0x80; reg++) {
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL2, GLOBAL2_SCRATCH_MISC,
			reg << GLOBAL2_SCRATCH_REGISTER_SHIFT);
		if (ret < 0)
			goto out;

		ret = _mv88e6xxx_scratch_wait(ds);
		if (ret < 0)
			goto out;

		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL2,
					  GLOBAL2_SCRATCH_MISC);
		seq_printf(s, "  %2x   %2x\n", reg,
			   ret & GLOBAL2_SCRATCH_VALUE_MASK);
	}
out:
	mutex_unlock(&ps->smi_mutex);

	return 0;
}

static int mv88e6xxx_scratch_open(struct inode *inode, struct file *file)
{
	return single_open(file, mv88e6xxx_scratch_show, inode->i_private);
}

static const struct file_operations mv88e6xxx_scratch_fops = {
	.open   = mv88e6xxx_scratch_open,
	.read   = seq_read,
	.llseek = no_llseek,
	.release = single_release,
	.owner  = THIS_MODULE,
};

2423 2424 2425
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2426
	char *name;
2427 2428 2429

	mutex_init(&ps->smi_mutex);

2430
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2431

2432 2433
	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

2434 2435 2436 2437 2438 2439 2440
	name = kasprintf(GFP_KERNEL, "dsa%d", ds->index);
	ps->dbgfs = debugfs_create_dir(name, NULL);
	kfree(name);

	debugfs_create_file("regs", S_IRUGO, ps->dbgfs, ds,
			    &mv88e6xxx_regs_fops);

2441 2442 2443
	debugfs_create_file("atu", S_IRUGO, ps->dbgfs, ds,
			    &mv88e6xxx_atu_fops);

2444 2445 2446
	debugfs_create_file("stats", S_IRUGO, ps->dbgfs, ds,
			    &mv88e6xxx_stats_fops);

2447 2448
	debugfs_create_file("device_map", S_IRUGO, ps->dbgfs, ds,
			    &mv88e6xxx_device_map_fops);
2449 2450 2451

	debugfs_create_file("scratch", S_IRUGO, ps->dbgfs, ds,
			    &mv88e6xxx_scratch_fops);
2452 2453 2454
	return 0;
}

2455 2456 2457
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2458
	int ret;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2522 2523
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2542 2543
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6320_family(ds)) {
2544 2545 2546 2547 2548 2549 2550 2551 2552
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

2553 2554 2555 2556
	/* Clear the statistics counters for all ports */
	REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);

	/* Wait for the flush to complete. */
2557 2558
	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_stats_wait(ds);
2559 2560 2561 2562 2563 2564
	if (ret < 0)
		goto unlock;

	/* Clear all the VTU and STU entries */
	ret = _mv88e6xxx_vtu_stu_flush(ds);
unlock:
2565
	mutex_unlock(&ps->smi_mutex);
2566

2567
	return ret;
2568 2569
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
2580 2581
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

2610 2611 2612 2613 2614
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2615
	mutex_lock(&ps->smi_mutex);
2616
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2617 2618
	if (ret < 0)
		goto error;
2619
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
2620
error:
2621
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2622
	mutex_unlock(&ps->smi_mutex);
2623 2624 2625 2626 2627 2628 2629 2630 2631
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

2632
	mutex_lock(&ps->smi_mutex);
2633
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2634 2635 2636
	if (ret < 0)
		goto error;

2637
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
2638
error:
2639
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2640
	mutex_unlock(&ps->smi_mutex);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2663
	mutex_lock(&ps->smi_mutex);
2664
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2665
	mutex_unlock(&ps->smi_mutex);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2679
	mutex_lock(&ps->smi_mutex);
2680
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2681
	mutex_unlock(&ps->smi_mutex);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2695
	mutex_lock(&ps->smi_mutex);
2696
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2697
	mutex_unlock(&ps->smi_mutex);
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

2712
	mutex_lock(&ps->smi_mutex);
2713
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2714
	mutex_unlock(&ps->smi_mutex);
2715 2716 2717
	return ret;
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->smi_mutex);

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*temp = 0;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
	return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
					(ret & 0xe0ff) | (temp << 8));
}

int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
	int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
	int ret;

	if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
		return -EOPNOTSUPP;

	*alarm = false;

	ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

2844 2845 2846 2847 2848 2849 2850
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
2851
#endif
2852 2853 2854
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
2855 2856
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
2857 2858 2859 2860 2861 2862 2863
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
2864 2865 2866
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
2867 2868 2869
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
2870 2871 2872 2873 2874 2875 2876 2877
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
2878 2879 2880 2881

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");