hpsa.c 250.8 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46
#include <scsi/scsi_eh.h>
47
#include <scsi/scsi_dbg.h>
48 49 50
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
51
#include <linux/atomic.h>
52
#include <linux/jiffies.h>
D
Don Brace 已提交
53
#include <linux/percpu-defs.h>
54
#include <linux/percpu.h>
D
Don Brace 已提交
55
#include <asm/unaligned.h>
56
#include <asm/div64.h>
57 58 59 60
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61
#define HPSA_DRIVER_VERSION "3.4.4-1"
62
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63
#define HPSA "hpsa"
64

65 66 67 68 69
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
87 88 89 90
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
91 92 93 94 95 96 97 98

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 103 104 105 106 107 108
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 110 111 112 113 114
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
115 116 117 118 119 120 121 122 123 124
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
125
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
126 127 128
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
129 130 131 132 133
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
134 135 136 137 138
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
139
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
140
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
156 157
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
158
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
159 160 161 162 163 164 165
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
166 167 168 169 170 171 172
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
173 174 175 176
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
177
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
178 179
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
180
	{0x21C4103C, "Smart Array", &SA5_access},
181 182 183 184
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
185
	{0x21C9103C, "Smart Array", &SA5_access},
186 187
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
188 189
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
190
	{0x21CE103C, "Smart HBA", &SA5_access},
191 192 193 194 195
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
196 197 198
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

199 200 201 202
#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
static const struct scsi_cmnd hpsa_cmd_busy;
#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
static const struct scsi_cmnd hpsa_cmd_idle;
203 204
static int number_of_controllers;

205 206
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
207
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
208 209

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
210 211
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
212 213 214 215
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
216 217 218
static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd);
219
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
220
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
221
	int cmd_type);
222
static void hpsa_free_cmd_pool(struct ctlr_info *h);
223
#define VPD_PAGE (1 << 8)
224

J
Jeff Garzik 已提交
225
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
226 227 228
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
229
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
230 231

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
232
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
233
static int hpsa_slave_alloc(struct scsi_device *sdev);
234
static int hpsa_slave_configure(struct scsi_device *sdev);
235 236 237 238 239 240 241
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
242 243
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
244
	int nsgs, int min_blocks, u32 *bucket_map);
R
Robert Elliott 已提交
245 246
static void hpsa_free_performant_mode(struct ctlr_info *h);
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
247
static inline u32 next_command(struct ctlr_info *h, u8 q);
248 249 250 251 252 253 254 255
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
256
static inline void finish_cmd(struct CommandList *c);
257
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
258 259
#define BOARD_NOT_READY 0
#define BOARD_READY 1
260
static void hpsa_drain_accel_commands(struct ctlr_info *h);
261
static void hpsa_flush_cache(struct ctlr_info *h);
262 263
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
264
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
265
static void hpsa_command_resubmit_worker(struct work_struct *work);
266 267
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
268 269 270 271 272 273 274

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

275 276 277 278 279 280
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

281 282 283 284 285
static inline bool hpsa_is_cmd_idle(struct CommandList *c)
{
	return c->scsi_cmd == SCSI_CMD_IDLE;
}

W
Webb Scales 已提交
286 287 288 289 290
static inline bool hpsa_is_pending_event(struct CommandList *c)
{
	return c->abort_pending || c->reset_pending;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

313 314 315
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
316 317 318 319 320 321 322 323 324 325 326
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == -1)
327 328
		return 0;

329
	switch (asc) {
330
	case STATE_CHANGED:
331
		dev_warn(&h->pdev->dev,
332 333
			"%s: a state change detected, command retried\n",
			h->devname);
334 335
		break;
	case LUN_FAILED:
336
		dev_warn(&h->pdev->dev,
337
			"%s: LUN failure detected\n", h->devname);
338 339
		break;
	case REPORT_LUNS_CHANGED:
340
		dev_warn(&h->pdev->dev,
341
			"%s: report LUN data changed\n", h->devname);
342
	/*
343 344
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
345 346 347
	 */
		break;
	case POWER_OR_RESET:
348 349 350
		dev_warn(&h->pdev->dev,
			"%s: a power on or device reset detected\n",
			h->devname);
351 352
		break;
	case UNIT_ATTENTION_CLEARED:
353 354 355
		dev_warn(&h->pdev->dev,
			"%s: unit attention cleared by another initiator\n",
			h->devname);
356 357
		break;
	default:
358 359 360
		dev_warn(&h->pdev->dev,
			"%s: unknown unit attention detected\n",
			h->devname);
361 362 363 364 365
		break;
	}
	return 1;
}

366 367 368 369 370 371 372 373 374 375
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389
static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

439 440 441 442 443 444
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
445
	h = shost_to_hba(shost);
M
Mike Miller 已提交
446
	hpsa_scan_start(h->scsi_host);
447 448 449
	return count;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

465 466 467 468 469 470
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

471 472
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
473 474
}

475 476 477 478 479 480 481 482
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
483
		h->transMethod & CFGTBL_Trans_Performant ?
484 485 486
			"performant" : "simple");
}

487 488 489 490 491 492 493 494 495 496 497
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

498
/* List of controllers which cannot be hard reset on kexec with reset_devices */
499 500
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
501
	0x324b103C, /* Smart Array P711m */
502 503 504 505 506 507 508 509 510 511
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
512
	0x40800E11, /* Smart Array 5i */
513 514
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
515 516 517 518 519 520
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
521 522
};

523 524
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
525
	0x40800E11, /* Smart Array 5i */
526 527 528 529 530 531
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
532 533 534 535 536 537 538 539 540 541 542
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
543 544 545 546 547 548 549
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
550 551 552
{
	int i;

S
Stephen Cameron 已提交
553 554 555 556
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
557 558
}

S
Stephen Cameron 已提交
559
static int ctlr_is_hard_resettable(u32 board_id)
560
{
S
Stephen Cameron 已提交
561 562 563
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
564

S
Stephen Cameron 已提交
565 566 567 568
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
569 570
}

571 572 573 574 575 576
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
577 578 579 580 581 582
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

583 584 585 586 587 588 589
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
590
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
591 592
}

593 594 595 596 597
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

598 599
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
600
};
601 602 603 604 605 606 607
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
608 609 610 611 612 613
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
614
	unsigned char rlevel;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
638
	if (rlevel > RAID_UNKNOWN)
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

718 719 720 721
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
722 723
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
724 725 726
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
727 728
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
729 730 731 732 733 734
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
735 736
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
737 738
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
739 740 741 742 743

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
744
	&dev_attr_hp_ssd_smart_path_enabled,
745
	&dev_attr_lockup_detected,
746 747 748 749 750 751 752 753
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
754
	&dev_attr_resettable,
755
	&dev_attr_hp_ssd_smart_path_status,
756
	&dev_attr_raid_offload_debug,
757 758 759
	NULL,
};

760 761 762
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

763 764
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
765 766
	.name			= HPSA,
	.proc_name		= HPSA,
767 768 769
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
770
	.change_queue_depth	= hpsa_change_queue_depth,
771 772
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
773
	.eh_abort_handler	= hpsa_eh_abort_handler,
774 775 776
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
777
	.slave_configure	= hpsa_slave_configure,
778 779 780 781 782 783
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
784
	.max_sectors = 8192,
785
	.no_write_same = 1,
786 787
};

788
static inline u32 next_command(struct ctlr_info *h, u8 q)
789 790
{
	u32 a;
791
	struct reply_queue_buffer *rq = &h->reply_queue[q];
792

793 794 795
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

796
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
797
		return h->access.command_completed(h, q);
798

799 800 801
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
802
		atomic_dec(&h->commands_outstanding);
803 804 805 806
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
807 808 809
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
810 811 812 813
	}
	return a;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

840 841
/*
 * set_performant_mode: Modify the tag for cciss performant
842 843 844
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
845 846 847
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
848
{
849
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
850
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
851 852 853
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
854
			c->Header.ReplyQueue =
855
				raw_smp_processor_id() % h->nreply_queues;
856 857
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
858
	}
859 860
}

861
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
862 863
						struct CommandList *c,
						int reply_queue)
864 865 866
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

867 868
	/*
	 * Tell the controller to post the reply to the queue for this
869 870
	 * processor.  This seems to give the best I/O throughput.
	 */
871 872 873 874 875 876
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
877 878 879 880 881 882 883 884
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
		&h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= h->ioaccel2_blockFetchTable[0];
}

907
static void set_ioaccel2_performant_mode(struct ctlr_info *h,
908 909
						struct CommandList *c,
						int reply_queue)
910 911 912
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

913 914
	/*
	 * Tell the controller to post the reply to the queue for this
915 916
	 * processor.  This seems to give the best I/O throughput.
	 */
917 918 919 920 921 922
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
923 924 925 926 927 928 929
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

959 960
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
961
{
962 963
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
964 965
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
966
		set_ioaccel1_performant_mode(h, c, reply_queue);
967
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
968 969
		break;
	case CMD_IOACCEL2:
970
		set_ioaccel2_performant_mode(h, c, reply_queue);
971
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
972
		break;
973 974 975 976
	case IOACCEL2_TMF:
		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
977
	default:
978
		set_performant_mode(h, c, reply_queue);
979
		h->access.submit_command(h, c);
980
	}
981 982
}

983
static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
984
{
W
Webb Scales 已提交
985
	if (unlikely(hpsa_is_pending_event(c)))
986 987
		return finish_cmd(c);

988 989 990
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

1005 1006 1007 1008 1009 1010 1011
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
1012
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1013

1014
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1015 1016 1017

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1018
			__set_bit(h->dev[i]->target, lun_taken);
1019 1020
	}

1021 1022 1023 1024 1025 1026
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
1027 1028 1029 1030
	}
	return !found;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

1059
	if (n >= HPSA_MAX_DEVICES) {
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
1072
	 * unit no, zero otherwise.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;
1115 1116
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1117 1118
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1119 1120 1121
	return 0;
}

1122 1123 1124 1125
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
1126
	int offload_enabled;
1127 1128 1129 1130 1131
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1146 1147 1148 1149 1150
	if (new_entry->hba_ioaccel_enabled) {
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
	}
	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1151
	h->dev[entry]->offload_config = new_entry->offload_config;
1152
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1153
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1164 1165
	offload_enabled = h->dev[entry]->offload_enabled;
	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1166
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1167
	h->dev[entry]->offload_enabled = offload_enabled;
1168 1169
}

1170 1171 1172 1173 1174 1175 1176
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1177
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1178 1179
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1190 1191 1192
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1193
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1194 1195
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1206
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1207 1208 1209 1210 1211 1212 1213 1214

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1215
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1274 1275 1276 1277 1278 1279 1280 1281 1282
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1283 1284 1285 1286
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1287 1288
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1289 1290 1291
	return 0;
}

1292 1293 1294
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1295 1296 1297 1298
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1299 1300 1301 1302 1303 1304 1305 1306 1307
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1308
#define DEVICE_UPDATED 3
1309
	for (i = 0; i < haystack_size; i++) {
1310 1311
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1312 1313
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1314 1315 1316
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1317
				return DEVICE_SAME;
1318
			} else {
1319 1320 1321
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1322
				return DEVICE_CHANGED;
1323
			}
1324 1325 1326 1327 1328 1329
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

W
Webb Scales 已提交
1457 1458
	logical_drive->nphysical_disks = nraid_map_entries;

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1488 1489
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1522 1523 1524 1525
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1526
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1540 1541
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1555 1556
	 * If minor device attributes change, just update
	 * the existing device structure.
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1571 1572
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1573 1574 1575 1576
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1577 1578
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1590 1591 1592 1593 1594 1595 1596 1597

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1598
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1599 1600 1601
			continue;
		}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1618 1619 1620 1621 1622 1623 1624 1625
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1626 1627
	spin_unlock_irqrestore(&h->devlock, flags);

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1662 1663
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1664
			}
1665 1666 1667 1668 1669 1670 1671
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1672 1673
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1674 1675 1676
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1677 1678
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1679 1680 1681 1682
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
R
Robert Elliott 已提交
1683
		added[i] = NULL;
1684 1685 1686 1687 1688 1689 1690 1691
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1692
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1719
	if (likely(sd)) {
1720
		atomic_set(&sd->ioaccel_cmds_out, 0);
1721 1722 1723
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1724 1725 1726 1727
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1748 1749
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1750
	/* nothing to do. */
1751 1752
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->ioaccel2_cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->ioaccel2_cmd_sg_list[i]);
		h->ioaccel2_cmd_sg_list[i] = NULL;
	}
	kfree(h->ioaccel2_cmd_sg_list);
	h->ioaccel2_cmd_sg_list = NULL;
}

static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->ioaccel2_cmd_sg_list =
		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
					GFP_KERNEL);
	if (!h->ioaccel2_cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->ioaccel2_cmd_sg_list[i] =
			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
					h->maxsgentries, GFP_KERNEL);
		if (!h->ioaccel2_cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	return -ENOMEM;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

R
Robert Elliott 已提交
1807
static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1808 1809 1810 1811 1812 1813 1814 1815
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1816 1817
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1818
		return -ENOMEM;
1819
	}
1820 1821 1822
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1823 1824
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1825
			goto clean;
1826
		}
1827 1828 1829 1830 1831 1832 1833 1834
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp, struct CommandList *c)
{
	struct ioaccel2_sg_element *chain_block;
	u64 temp64;
	u32 chain_size;

	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
	chain_size = le32_to_cpu(cp->data_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
				PCI_DMA_TODEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		cp->sg->address = 0;
		return -1;
	}
	cp->sg->address = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp)
{
	struct ioaccel2_sg_element *chain_sg;
	u64 temp64;
	u32 chain_size;

	chain_sg = cp->sg;
	temp64 = le64_to_cpu(chain_sg->address);
	chain_size = le32_to_cpu(cp->data_len);
	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
}

1868
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1869 1870 1871 1872
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1873
	u32 chain_len;
1874 1875 1876

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1877 1878
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1879
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1880 1881
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1882
				PCI_DMA_TODEVICE);
1883 1884
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1885
		chain_sg->Addr = cpu_to_le64(0);
1886 1887
		return -1;
	}
1888
	chain_sg->Addr = cpu_to_le64(temp64);
1889
	return 0;
1890 1891 1892 1893 1894 1895 1896
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1897
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1898 1899 1900
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1901 1902
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1903 1904
}

1905 1906 1907 1908 1909 1910

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1911 1912 1913 1914 1915
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1916
	int retry = 0;
1917
	u32 ioaccel2_resid = 0;
1918 1919 1920 1921 1922 1923 1924

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1925
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1926
			if (c2->error_data.data_present !=
1927 1928 1929
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1930
				break;
1931
			}
1932 1933 1934 1935 1936 1937 1938 1939 1940
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1941
			retry = 1;
1942 1943
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1944
			retry = 1;
1945 1946
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1947
			retry = 1;
1948 1949
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1950
			retry = 1;
1951 1952
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1953
			retry = 1;
1954 1955
			break;
		default:
1956
			retry = 1;
1957 1958 1959 1960
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_IO_ERROR:
		case IOACCEL2_STATUS_SR_IO_ABORTED:
		case IOACCEL2_STATUS_SR_OVERRUN:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_UNDERRUN:
			cmd->result = (DID_OK << 16);		/* host byte */
			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
			ioaccel2_resid = get_unaligned_le32(
						&c2->error_data.resid_cnt[0]);
			scsi_set_resid(cmd, ioaccel2_resid);
			break;
		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
			/* We will get an event from ctlr to trigger rescan */
			retry = 1;
			break;
		default:
			retry = 1;
		}
1983 1984 1985 1986 1987 1988
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1989
		retry = 1;
1990 1991 1992 1993
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		break;
	default:
1994
		retry = 1;
1995 1996
		break;
	}
1997 1998

	return retry;	/* retry on raid path? */
1999 2000
}

2001 2002 2003
static void hpsa_cmd_resolve_events(struct ctlr_info *h,
		struct CommandList *c)
{
W
Webb Scales 已提交
2004 2005
	bool do_wake = false;

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * Prevent the following race in the abort handler:
	 *
	 * 1. LLD is requested to abort a SCSI command
	 * 2. The SCSI command completes
	 * 3. The struct CommandList associated with step 2 is made available
	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
	 * 5. Abort handler follows scsi_cmnd->host_scribble and
	 *    finds struct CommandList and tries to aborts it
	 * Now we have aborted the wrong command.
	 *
W
Webb Scales 已提交
2017 2018
	 * Reset c->scsi_cmd here so that the abort or reset handler will know
	 * this command has completed.  Then, check to see if the handler is
2019 2020 2021
	 * waiting for this command, and, if so, wake it.
	 */
	c->scsi_cmd = SCSI_CMD_IDLE;
W
Webb Scales 已提交
2022
	mb();	/* Declare command idle before checking for pending events. */
2023
	if (c->abort_pending) {
W
Webb Scales 已提交
2024
		do_wake = true;
2025 2026
		c->abort_pending = false;
	}
W
Webb Scales 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	if (c->reset_pending) {
		unsigned long flags;
		struct hpsa_scsi_dev_t *dev;

		/*
		 * There appears to be a reset pending; lock the lock and
		 * reconfirm.  If so, then decrement the count of outstanding
		 * commands and wake the reset command if this is the last one.
		 */
		spin_lock_irqsave(&h->lock, flags);
		dev = c->reset_pending;		/* Re-fetch under the lock. */
		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
			do_wake = true;
		c->reset_pending = NULL;
		spin_unlock_irqrestore(&h->lock, flags);
	}

	if (do_wake)
		wake_up_all(&h->event_sync_wait_queue);
2046 2047
}

2048 2049 2050 2051 2052 2053 2054
static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
				      struct CommandList *c)
{
	hpsa_cmd_resolve_events(h, c);
	cmd_tagged_free(h, c);
}

2055 2056 2057
static void hpsa_cmd_free_and_done(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd)
{
2058
	hpsa_cmd_resolve_and_free(h, c);
2059 2060 2061 2062 2063 2064 2065 2066 2067
	cmd->scsi_done(cmd);
}

static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
{
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
{
	cmd->result = DID_ABORT << 16;
}

static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
				    struct scsi_cmnd *cmd)
{
	hpsa_set_scsi_cmd_aborted(cmd);
	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
			 c->Request.CDB, c->err_info->ScsiStatus);
2079
	hpsa_cmd_resolve_and_free(h, c);
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089
static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
2090 2091
			c2->error_data.status == 0))
		return hpsa_cmd_free_and_done(h, c, cmd);
2092

2093 2094
	/*
	 * Any RAID offload error results in retry which will use
2095 2096 2097 2098 2099 2100
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
2101 2102 2103
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
2104 2105

		return hpsa_retry_cmd(h, c);
2106
	}
2107 2108

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2109
		return hpsa_retry_cmd(h, c);
2110

2111
	return hpsa_cmd_free_and_done(h, c, cmd);
2112 2113
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

2142
static void complete_scsi_command(struct CommandList *cp)
2143 2144 2145 2146
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
2147
	struct hpsa_scsi_dev_t *dev;
2148
	struct io_accel2_cmd *c2;
2149

2150 2151 2152
	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
2153
	unsigned long sense_data_size;
2154 2155

	ei = cp->err_info;
2156
	cmd = cp->scsi_cmd;
2157
	h = cp->h;
2158
	dev = cmd->device->hostdata;
2159
	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2160 2161

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2162
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
2163
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2164
		hpsa_unmap_sg_chain_block(h, cp);
2165

2166 2167 2168 2169
	if ((cp->cmd_type == CMD_IOACCEL2) &&
		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);

2170 2171
	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2172

2173 2174 2175
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

2176 2177 2178 2179 2180 2181 2182 2183
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
2184
		return hpsa_cmd_free_and_done(h, cp, cmd);
2185 2186
	}

W
Webb Scales 已提交
2187 2188 2189 2190 2191 2192 2193
	if ((unlikely(hpsa_is_pending_event(cp)))) {
		if (cp->reset_pending)
			return hpsa_cmd_resolve_and_free(h, cp);
		if (cp->abort_pending)
			return hpsa_cmd_abort_and_free(h, cp, cmd);
	}

2194 2195 2196
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

2197
	scsi_set_resid(cmd, ei->ResidualCnt);
2198 2199
	if (ei->CommandStatus == 0)
		return hpsa_cmd_free_and_done(h, cp, cmd);
2200

2201 2202 2203 2204 2205
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
2206 2207 2208 2209
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2210
		cp->Header.tag = c->tag;
2211 2212
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2213 2214 2215 2216 2217 2218 2219 2220

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
W
Webb Scales 已提交
2221
			return hpsa_retry_cmd(h, cp);
2222
		}
2223 2224
	}

2225 2226 2227 2228
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
2241
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2242
			if (sense_key == ABORTED_COMMAND) {
2243
				cmd->result |= DID_SOFT_ERROR << 16;
2244 2245
				break;
			}
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2281 2282
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2297
		cmd->result = DID_ERROR << 16;
2298 2299
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2300 2301 2302
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2303 2304
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2305 2306 2307
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2308 2309
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2310 2311
		break;
	case CMD_ABORTED:
2312 2313
		/* Return now to avoid calling scsi_done(). */
		return hpsa_cmd_abort_and_free(h, cp, cmd);
2314 2315
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2316 2317
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2318 2319
		break;
	case CMD_UNSOLICITED_ABORT:
2320
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2321 2322
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2323 2324 2325
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2326 2327
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2328
		break;
2329 2330 2331 2332
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2333 2334 2335 2336
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
2337 2338 2339 2340 2341 2342 2343 2344
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2345 2346 2347 2348 2349
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
2350 2351

	return hpsa_cmd_free_and_done(h, cp, cmd);
2352 2353 2354 2355 2356 2357 2358
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2359 2360 2361 2362
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2363 2364
}

2365
static int hpsa_map_one(struct pci_dev *pdev,
2366 2367 2368 2369 2370
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2371
	u64 addr64;
2372 2373 2374

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2375
		cp->Header.SGTotal = cpu_to_le16(0);
2376
		return 0;
2377 2378
	}

2379
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2380
	if (dma_mapping_error(&pdev->dev, addr64)) {
2381
		/* Prevent subsequent unmap of something never mapped */
2382
		cp->Header.SGList = 0;
2383
		cp->Header.SGTotal = cpu_to_le16(0);
2384
		return -1;
2385
	}
2386 2387 2388 2389 2390
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2391
	return 0;
2392 2393
}

2394 2395 2396 2397
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2398 2399 2400 2401
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2424 2425
}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2438
#define MAX_DRIVER_CMD_RETRIES 25
2439 2440
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2441
{
2442
	int backoff_time = 10, retry_count = 0;
2443
	int rc;
2444 2445

	do {
2446
		memset(c->err_info, 0, sizeof(*c->err_info));
2447 2448 2449 2450
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2451
		retry_count++;
2452 2453 2454 2455 2456
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2457
	} while ((check_for_unit_attention(h, c) ||
2458 2459
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2460
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2461 2462 2463
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2464 2465
}

2466 2467
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2468
{
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2486
	struct device *d = &cp->h->pdev->dev;
2487 2488
	u8 sense_key, asc, ascq;
	int sense_len;
2489 2490 2491

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2492 2493 2494 2495 2496 2497
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
2498 2499
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2500 2501
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
2502
		else
2503
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2504 2505 2506 2507 2508 2509 2510 2511 2512
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2513
		hpsa_print_cmd(h, "overrun condition", cp);
2514 2515 2516 2517 2518
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2519 2520
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2521 2522 2523
		}
		break;
	case CMD_PROTOCOL_ERR:
2524
		hpsa_print_cmd(h, "protocol error", cp);
2525 2526
		break;
	case CMD_HARDWARE_ERR:
2527
		hpsa_print_cmd(h, "hardware error", cp);
2528 2529
		break;
	case CMD_CONNECTION_LOST:
2530
		hpsa_print_cmd(h, "connection lost", cp);
2531 2532
		break;
	case CMD_ABORTED:
2533
		hpsa_print_cmd(h, "aborted", cp);
2534 2535
		break;
	case CMD_ABORT_FAILED:
2536
		hpsa_print_cmd(h, "abort failed", cp);
2537 2538
		break;
	case CMD_UNSOLICITED_ABORT:
2539
		hpsa_print_cmd(h, "unsolicited abort", cp);
2540 2541
		break;
	case CMD_TIMEOUT:
2542
		hpsa_print_cmd(h, "timed out", cp);
2543
		break;
2544
	case CMD_UNABORTABLE:
2545
		hpsa_print_cmd(h, "unabortable", cp);
2546
		break;
2547 2548 2549
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2550
	default:
2551 2552
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2553 2554 2555 2556 2557
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2558
			u16 page, unsigned char *buf,
2559 2560 2561 2562 2563 2564
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2565
	c = cmd_alloc(h);
2566

2567 2568 2569 2570 2571
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2572 2573 2574 2575
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2576 2577
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2578
		hpsa_scsi_interpret_error(h, c);
2579 2580
		rc = -1;
	}
2581
out:
2582
	cmd_free(h, c);
2583 2584 2585
	return rc;
}

2586 2587 2588 2589 2590 2591 2592 2593
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2594
	c = cmd_alloc(h);
2595 2596 2597 2598 2599
	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2600 2601 2602 2603
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2604 2605 2606 2607 2608 2609
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2610
	cmd_free(h, c);
2611
	return rc;
2612
}
2613

2614
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2615
	u8 reset_type, int reply_queue)
2616 2617 2618 2619 2620
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2621
	c = cmd_alloc(h);
2622 2623


2624
	/* fill_cmd can't fail here, no data buffer to map. */
2625 2626 2627
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2628 2629 2630 2631 2632
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2633 2634 2635 2636
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2637
		hpsa_scsi_interpret_error(h, c);
2638 2639
		rc = -1;
	}
2640
out:
2641
	cmd_free(h, c);
2642 2643 2644
	return rc;
}

W
Webb Scales 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
			       struct hpsa_scsi_dev_t *dev,
			       unsigned char *scsi3addr)
{
	int i;
	bool match = false;
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;

	if (hpsa_is_cmd_idle(c))
		return false;

	switch (c->cmd_type) {
	case CMD_SCSI:
	case CMD_IOCTL_PEND:
		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
				sizeof(c->Header.LUN.LunAddrBytes));
		break;

	case CMD_IOACCEL1:
	case CMD_IOACCEL2:
		if (c->phys_disk == dev) {
			/* HBA mode match */
			match = true;
		} else {
			/* Possible RAID mode -- check each phys dev. */
			/* FIXME:  Do we need to take out a lock here?  If
			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
			 * instead. */
			for (i = 0; i < dev->nphysical_disks && !match; i++) {
				/* FIXME: an alternate test might be
				 *
				 * match = dev->phys_disk[i]->ioaccel_handle
				 *              == c2->scsi_nexus;      */
				match = dev->phys_disk[i] == c->phys_disk;
			}
		}
		break;

	case IOACCEL2_TMF:
		for (i = 0; i < dev->nphysical_disks && !match; i++) {
			match = dev->phys_disk[i]->ioaccel_handle ==
					le32_to_cpu(ac->it_nexus);
		}
		break;

	case 0:		/* The command is in the middle of being initialized. */
		match = false;
		break;

	default:
		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
			c->cmd_type);
		BUG();
	}

	return match;
}

static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
{
	int i;
	int rc = 0;

	/* We can really only handle one reset at a time */
	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
		return -EINTR;
	}

	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;
		int refcount = atomic_inc_return(&c->refcount);

		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
			unsigned long flags;

			/*
			 * Mark the target command as having a reset pending,
			 * then lock a lock so that the command cannot complete
			 * while we're considering it.  If the command is not
			 * idle then count it; otherwise revoke the event.
			 */
			c->reset_pending = dev;
			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
			if (!hpsa_is_cmd_idle(c))
				atomic_inc(&dev->reset_cmds_out);
			else
				c->reset_pending = NULL;
			spin_unlock_irqrestore(&h->lock, flags);
		}

		cmd_free(h, c);
	}

	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
	if (!rc)
		wait_event(h->event_sync_wait_queue,
			atomic_read(&dev->reset_cmds_out) == 0 ||
			lockup_detected(h));

	if (unlikely(lockup_detected(h))) {
			dev_warn(&h->pdev->dev,
				 "Controller lockup detected during reset wait\n");
			mutex_unlock(&h->reset_mutex);
			rc = -ENODEV;
		}

	if (unlikely(rc))
		atomic_set(&dev->reset_cmds_out, 0);

	mutex_unlock(&h->reset_mutex);
	return rc;
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2773
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2774 2775 2776 2777 2778 2779 2780 2781
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2794 2795 2796 2797
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2822
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2823
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2824 2825 2826
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2827 2828
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2867
	c = cmd_alloc(h);
2868

2869 2870 2871
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
2872 2873 2874
		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
		cmd_free(h, c);
		return -1;
2875
	}
2876 2877 2878 2879
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2880 2881
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2882
		hpsa_scsi_interpret_error(h, c);
2883 2884
		rc = -1;
		goto out;
2885
	}
2886
	cmd_free(h, c);
2887 2888 2889 2890 2891 2892 2893 2894 2895

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2896 2897 2898
out:
	cmd_free(h, c);
	return rc;
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2918 2919
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2982
	this_device->offload_to_be_enabled = 0;
2983 2984 2985 2986

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2987 2988
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2989
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2990
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
3006
	this_device->offload_to_be_enabled = this_device->offload_enabled;
3007 3008 3009 3010 3011
out:
	kfree(buf);
	return;
}

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
3023
		return -ENOMEM;
3024
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3025 3026 3027 3028 3029 3030 3031
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3032
		void *buf, int bufsize,
3033 3034 3035 3036 3037 3038 3039
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

3040
	c = cmd_alloc(h);
3041

3042 3043
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
3044 3045 3046 3047 3048
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
3049 3050
	if (extended_response)
		c->Request.CDB[1] = extended_response;
3051 3052 3053 3054
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
3055 3056 3057
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3058
		hpsa_scsi_interpret_error(h, c);
3059
		rc = -1;
3060
	} else {
3061 3062 3063
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
3064 3065 3066
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
3067
				rld->extended_response_flag);
3068 3069
			rc = -1;
		}
3070
	}
3071
out:
3072
	cmd_free(h, c);
3073 3074 3075 3076
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3077
		struct ReportExtendedLUNdata *buf, int bufsize)
3078
{
3079 3080
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
3111
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3112 3113 3114 3115 3116
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
3117
	if (rc != 0)
3118 3119 3120 3121 3122 3123
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
3124
	if (rc != 0)
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
3138
 *  0xff (offline for unknown reasons)
3139 3140 3141
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
3142
static int hpsa_volume_offline(struct ctlr_info *h,
3143 3144 3145
					unsigned char scsi3addr[])
{
	struct CommandList *c;
3146 3147 3148
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
3149
	int rc, ldstat = 0;
3150 3151 3152 3153 3154 3155 3156
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
3157

3158
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3159 3160 3161 3162 3163
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
3164
	sense = c->err_info->SenseInfo;
3165 3166 3167 3168 3169
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
3231

S
Stephen Cameron 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
3244 3245 3246
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
S
Stephen Cameron 已提交
3247 3248 3249 3250 3251 3252 3253 3254
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

3255
static int hpsa_update_device_info(struct ctlr_info *h,
3256 3257
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
3258
{
3259 3260 3261 3262 3263 3264

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

3265
	unsigned char *inq_buff;
3266
	unsigned char *obdr_sig;
3267

3268
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
3293
		is_logical_dev_addr_mode(scsi3addr)) {
3294 3295
		int volume_offline;

3296
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3297 3298
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3299 3300 3301 3302
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
3303
	} else {
3304
		this_device->raid_level = RAID_UNKNOWN;
3305 3306
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
3307
		this_device->offload_to_be_enabled = 0;
3308
		this_device->hba_ioaccel_enabled = 0;
3309
		this_device->volume_offline = 0;
3310
		this_device->queue_depth = h->nr_cmds;
3311
	}
3312

3313 3314 3315 3316 3317 3318 3319 3320 3321
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
3322 3323 3324 3325 3326 3327 3328 3329
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

3355
static unsigned char *ext_target_model[] = {
3356 3357 3358 3359
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
3360
	"P2000 G3 SAS",
3361
	"MSA 2040 SAS",
3362 3363 3364
	NULL,
};

3365
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3366 3367 3368
{
	int i;

3369 3370 3371
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
3372 3373 3374 3375 3376
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
3377
 * Puts non-external target logical volumes on bus 0, external target logical
3378 3379 3380 3381 3382 3383
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
3384
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3385
{
3386 3387 3388 3389
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
3390
		if (is_hba_lunid(lunaddrbytes))
3391
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3392
		else
3393 3394 3395 3396 3397
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3398 3399
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3400 3401 3402 3403 3404 3405
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3406
	}
3407
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3408 3409 3410 3411
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3412
 * For the external targets (arrays), we have to manually detect the enclosure
3413 3414 3415 3416 3417 3418 3419 3420
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3421
static int add_ext_target_dev(struct ctlr_info *h,
3422
	struct hpsa_scsi_dev_t *tmpdevice,
3423
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3424
	unsigned long lunzerobits[], int *n_ext_target_devs)
3425 3426 3427
{
	unsigned char scsi3addr[8];

3428
	if (test_bit(tmpdevice->target, lunzerobits))
3429 3430 3431 3432 3433
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3434 3435
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3436

3437
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3438 3439
		return 0;

3440
	memset(scsi3addr, 0, 8);
3441
	scsi3addr[3] = tmpdevice->target;
3442 3443 3444
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3445 3446 3447
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3448
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3449 3450
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3451 3452 3453 3454
			"configuration.");
		return 0;
	}

3455
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3456
		return 0;
3457
	(*n_ext_target_devs)++;
3458 3459
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3460
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3461
	set_bit(tmpdevice->target, lunzerobits);
3462 3463 3464
	return 1;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3476 3477 3478
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3479 3480
	int i;

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3491
}
3492

3493 3494 3495 3496 3497 3498 3499
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3500
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3501
	struct ReportLUNdata *logdev, u32 *nlogicals)
3502
{
3503
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3504 3505 3506
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3507
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3508
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3509 3510
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3511 3512
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3513
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3514 3515 3516
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3517
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3536 3537
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3538
	struct ReportExtendedLUNdata *physdev_list,
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3553 3554
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3555 3556 3557 3558 3559 3560 3561 3562

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3563 3564 3565
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3566
	int hba_mode_enabled;
3567 3568 3569 3570 3571
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3572
		return -ENOMEM;
3573 3574
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3575
	if (rc) {
3576
		kfree(ctlr_params);
3577
		return rc;
3578
	}
3579 3580 3581 3582 3583

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3584 3585
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
3597 3598
	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
		dev->hba_ioaccel_enabled = 1;
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
W
Webb Scales 已提交
3613
	atomic_set(&dev->reset_cmds_out, 0);
3614 3615
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3628
	struct ReportExtendedLUNdata *physdev_list = NULL;
3629
	struct ReportLUNdata *logdev_list = NULL;
3630
	struct bmic_identify_physical_device *id_phys = NULL;
3631 3632 3633
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3634 3635
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3636
	int i, n_ext_target_devs, ndevs_to_allocate;
3637
	int raid_ctlr_position;
3638
	int rescan_hba_mode;
3639
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3640

3641
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3642 3643
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3644
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3645
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3646

3647 3648
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3649 3650 3651 3652 3653
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3654
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3655 3656
	if (rescan_hba_mode < 0)
		goto out;
3657 3658 3659 3660 3661 3662 3663 3664

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3665 3666
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3667 3668
		goto out;

3669 3670 3671
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3672
	 */
3673
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3674 3675 3676

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3677 3678 3679 3680 3681 3682 3683
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3684 3685 3686 3687 3688 3689 3690 3691 3692
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3693
	if (is_scsi_rev_5(h))
3694 3695 3696 3697
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3698
	/* adjust our table of devices */
3699
	n_ext_target_devs = 0;
3700
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3701
		u8 *lunaddrbytes, is_OBDR = 0;
3702 3703

		/* Figure out where the LUN ID info is coming from */
3704 3705
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3706 3707 3708 3709 3710 3711

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3712 3713

		/* Get device type, vendor, model, device id */
3714 3715
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3716
			continue; /* skip it if we can't talk to it. */
3717
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3718
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3719 3720 3721
		this_device = currentsd[ncurrent];

		/*
3722
		 * For external target devices, we have to insert a LUN 0 which
3723 3724 3725 3726 3727
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3728
		if (add_ext_target_dev(h, tmpdevice, this_device,
3729
				lunaddrbytes, lunzerobits,
3730
				&n_ext_target_devs)) {
3731 3732 3733 3734 3735 3736
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3749
		switch (this_device->devtype) {
3750
		case TYPE_ROM:
3751 3752 3753 3754 3755 3756 3757
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3758 3759
			if (is_OBDR)
				ncurrent++;
3760 3761
			break;
		case TYPE_DISK:
3762
			if (i >= nphysicals) {
3763 3764
				ncurrent++;
				break;
3765
			}
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

			if (h->hba_mode_enabled)
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
			else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2))
				break;

			hpsa_get_ioaccel_drive_info(h, this_device,
						lunaddrbytes, id_phys);
			atomic_set(&this_device->ioaccel_cmds_out, 0);
			ncurrent++;
3778 3779 3780 3781 3782
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3783 3784 3785 3786
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3800
		if (ncurrent >= HPSA_MAX_DEVICES)
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3811
	kfree(id_phys);
3812 3813
}

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3825 3826
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3827 3828 3829
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3830
static int hpsa_scatter_gather(struct ctlr_info *h,
3831 3832 3833 3834
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3835
	int use_sg, i, sg_limit, chained, last_sg;
3836
	struct SGDescriptor *curr_sg;
3837

3838
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3839 3840 3841 3842 3843 3844 3845 3846

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3847 3848 3849 3850 3851 3852 3853
	/*
	 * If the number of entries is greater than the max for a single list,
	 * then we have a chained list; we will set up all but one entry in the
	 * first list (the last entry is saved for link information);
	 * otherwise, we don't have a chained list and we'll set up at each of
	 * the entries in the one list.
	 */
3854
	curr_sg = cp->SG;
3855 3856 3857 3858
	chained = use_sg > h->max_cmd_sg_entries;
	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
	last_sg = scsi_sg_count(cmd) - 1;
	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3859
		hpsa_set_sg_descriptor(curr_sg, sg);
3860 3861
		curr_sg++;
	}
3862

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	if (chained) {
		/*
		 * Continue with the chained list.  Set curr_sg to the chained
		 * list.  Modify the limit to the total count less the entries
		 * we've already set up.  Resume the scan at the list entry
		 * where the previous loop left off.
		 */
		curr_sg = h->cmd_sg_list[cp->cmdindex];
		sg_limit = use_sg - sg_limit;
		for_each_sg(sg, sg, sg_limit, i) {
			hpsa_set_sg_descriptor(curr_sg, sg);
			curr_sg++;
		}
	}

3878
	/* Back the pointer up to the last entry and mark it as "last". */
3879
	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3880 3881 3882 3883 3884 3885

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3886
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3887 3888 3889 3890
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3891
		return 0;
3892 3893 3894 3895
	}

sglist_finished:

3896
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3897
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3898 3899 3900
	return 0;
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3949
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3950
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3951
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3963
	/* TODO: implement chaining support */
3964 3965
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3966
		return IO_ACCEL_INELIGIBLE;
3967
	}
3968

3969 3970
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3971 3972
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3973
		return IO_ACCEL_INELIGIBLE;
3974
	}
3975

3976 3977 3978 3979 3980 3981 3982 3983
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3984 3985
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3986
		return use_sg;
3987
	}
3988 3989 3990 3991 3992 3993 3994

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3995 3996 3997
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3998 3999
			curr_sg++;
		}
4000
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

4022
	c->Header.SGList = use_sg;
4023
	/* Fill out the command structure to submit */
D
Don Brace 已提交
4024 4025 4026 4027 4028
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
4029 4030
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
4031
	/* Tag was already set at init time. */
4032
	enqueue_cmd_and_start_io(h, c);
4033 4034
	return 0;
}
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

4046 4047
	c->phys_disk = dev;

4048
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4049
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4050 4051
}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
4064
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
4080
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4081 4082 4083 4084 4085 4086
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
4087
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4088 4089 4090
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
4091
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4092 4093 4094
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
4095 4096
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
4097 4098 4099
		BUG();
		break;
	}
D
Don Brace 已提交
4100 4101 4102 4103 4104 4105 4106

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4107 4108
}

4109 4110
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4111
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

4122
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4123

4124 4125
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
4126
		return IO_ACCEL_INELIGIBLE;
4127 4128
	}

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
4139 4140
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
4141
		return use_sg;
4142
	}
4143 4144 4145

	if (use_sg) {
		curr_sg = cp->sg;
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		if (use_sg > h->ioaccel_maxsg) {
			addr64 = le64_to_cpu(
				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = 0;
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0x80;

			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
		}
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
4173 4174
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4175 4176
			break;
		case DMA_FROM_DEVICE:
4177 4178
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
4179 4180
			break;
		case DMA_NONE:
4181 4182
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
4183 4184 4185 4186 4187 4188 4189 4190
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
4191 4192
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
4193
	}
4194 4195 4196 4197

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
4198
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4199
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4200 4201 4202 4203 4204
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
4205
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4206

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	/* fill in sg elements */
	if (use_sg > h->ioaccel_maxsg) {
		cp->sg_count = 1;
		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
			atomic_dec(&phys_disk->ioaccel_cmds_out);
			scsi_dma_unmap(cmd);
			return -1;
		}
	} else
		cp->sg_count = (u8) use_sg;

4218 4219 4220 4221 4222 4223 4224 4225 4226
	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4227
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4228
{
4229 4230 4231 4232 4233 4234
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
4235 4236
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4237 4238
						cdb, cdb_len, scsi3addr,
						phys_disk);
4239 4240
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4241 4242
						cdb, cdb_len, scsi3addr,
						phys_disk);
4243 4244
}

4245 4246 4247 4248 4249
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
4250
		*map_index %= le16_to_cpu(map->data_disks_per_row);
4251 4252 4253 4254
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
4255 4256
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
4257 4258
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
4259
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4260
			/* select map index from next group */
D
Don Brace 已提交
4261
			*map_index += le16_to_cpu(map->data_disks_per_row);
4262 4263 4264
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
4265
			*map_index %= le16_to_cpu(map->data_disks_per_row);
4266 4267 4268 4269 4270
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
4289 4290 4291 4292 4293 4294 4295 4296
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
4297 4298 4299 4300 4301 4302
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
4303
	u16 strip_size;
4304 4305 4306
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
4307
	int offload_to_mirror;
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
4318 4319
		if (block_cnt == 0)
			block_cnt = 256;
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
4375 4376
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
4377 4378 4379
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
4380 4381 4382
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
4393
	(void) do_div(tmpdiv, strip_size);
4394 4395
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
4396
	(void) do_div(tmpdiv, strip_size);
4397 4398 4399 4400 4401 4402
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
4403 4404
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
4405 4406 4407 4408 4409 4410 4411
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
4412 4413
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
4414
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4415
				le16_to_cpu(map->row_cnt);
4416 4417 4418 4419 4420 4421 4422 4423 4424
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4425
		 */
D
Don Brace 已提交
4426
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4427
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4428
			map_index += le16_to_cpu(map->data_disks_per_row);
4429
		dev->offload_to_mirror = !dev->offload_to_mirror;
4430 4431 4432 4433 4434
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4435
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4436 4437 4438 4439 4440 4441

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4442 4443
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4444 4445 4446 4447 4448 4449 4450 4451 4452
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4453
		if (le16_to_cpu(map->layout_map_count) <= 1)
4454 4455 4456 4457
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4458 4459
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4460
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4461 4462
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4478
		if (first_group != last_group)
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4525
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4526
		r5or6_last_column =
D
Don Brace 已提交
4527
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4528 4529 4530 4531 4532 4533
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4534
			le16_to_cpu(map->row_cnt);
4535 4536

		map_index = (first_group *
D
Don Brace 已提交
4537
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4538 4539 4540 4541
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4542
	}
4543

4544 4545 4546
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4547 4548
	c->phys_disk = dev->phys_disk[map_index];

4549
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4550 4551 4552 4553
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4596 4597
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4598 4599
}

4600 4601 4602 4603 4604
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4605 4606 4607
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4608 4609 4610 4611 4612 4613
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4614
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4615 4616 4617 4618 4619 4620 4621 4622 4623

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4624 4625
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4626 4627
		break;
	case DMA_FROM_DEVICE:
4628 4629
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4630 4631
		break;
	case DMA_NONE:
4632 4633
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4634 4635 4636 4637 4638 4639 4640
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4641 4642
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4660
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4661
		hpsa_cmd_resolve_and_free(h, c);
4662 4663 4664 4665 4666 4667 4668
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
static void hpsa_cmd_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle, err_dma_handle;

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
	c->err_info = h->errinfo_pool + index;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + index * sizeof(*c->err_info);
	c->cmdindex = index;
	c->busaddr = (u32) cmd_dma_handle;
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
	c->h = h;
4687
	c->scsi_cmd = SCSI_CMD_IDLE;
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
}

static void hpsa_preinitialize_commands(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;

		hpsa_cmd_init(h, i, c);
		atomic_set(&c->refcount, 0);
	}
}

static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);

4707 4708
	BUG_ON(c->cmdindex != index);

4709 4710 4711 4712 4713
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	memset(c->err_info, 0, sizeof(*c->err_info));
	c->busaddr = (u32) cmd_dma_handle;
}

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
static int hpsa_ioaccel_submit(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		unsigned char *scsi3addr)
{
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	int rc = IO_ACCEL_INELIGIBLE;

	cmd->host_scribble = (unsigned char *) c;

	if (dev->offload_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_raid_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
4730
	} else if (dev->hba_ioaccel_enabled) {
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_direct_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	}
	return rc;
}

4741 4742 4743 4744
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
4745
	struct CommandList *c = container_of(work, struct CommandList, work);
4746 4747 4748 4749 4750

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
4751
		return hpsa_cmd_free_and_done(c->h, c, cmd);
4752
	}
W
Webb Scales 已提交
4753 4754
	if (c->reset_pending)
		return hpsa_cmd_resolve_and_free(c->h, c);
4755 4756
	if (c->abort_pending)
		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	if (c->cmd_type == CMD_IOACCEL2) {
		struct ctlr_info *h = c->h;
		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
		int rc;

		if (c2->error_data.serv_response ==
				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
			if (rc == 0)
				return;
			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
				/*
				 * If we get here, it means dma mapping failed.
				 * Try again via scsi mid layer, which will
				 * then get SCSI_MLQUEUE_HOST_BUSY.
				 */
				cmd->result = DID_IMM_RETRY << 16;
4774
				return hpsa_cmd_free_and_done(h, c, cmd);
4775 4776 4777 4778
			}
			/* else, fall thru and resubmit down CISS path */
		}
	}
4779
	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4780 4781 4782 4783 4784
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
4785 4786 4787
		 *
		 * hpsa_ciss_submit will have already freed c
		 * if it encountered a dma mapping failure.
4788 4789 4790 4791 4792 4793
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
4805 4806 4807

	BUG_ON(cmd->request->tag < 0);

4808 4809 4810 4811 4812 4813 4814
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}

4815
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4816

4817
	if (unlikely(lockup_detected(h))) {
4818
		cmd->result = DID_NO_CONNECT << 16;
4819 4820 4821
		cmd->scsi_done(cmd);
		return 0;
	}
4822
	c = cmd_tagged_alloc(h, cmd);
4823

4824 4825
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4826 4827 4828 4829 4830
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
4831 4832 4833 4834
		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
		if (rc == 0)
			return 0;
		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4835
			hpsa_cmd_resolve_and_free(h, c);
4836
			return SCSI_MLQUEUE_HOST_BUSY;
4837 4838 4839 4840 4841
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4842
static void hpsa_scan_complete(struct ctlr_info *h)
4843 4844 4845
{
	unsigned long flags;

4846 4847 4848 4849
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4850 4851
}

4852 4853 4854 4855 4856
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4857 4858 4859 4860 4861 4862 4863 4864
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4865

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4882 4883
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4884

4885 4886
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4887
	hpsa_scan_complete(h);
4888 4889
}

D
Don Brace 已提交
4890 4891
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4892 4893 4894 4895
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4896 4897 4898

	if (qdepth < 1)
		qdepth = 1;
4899 4900 4901 4902
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4903 4904
}

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4918
static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4919
{
4920 4921
	struct Scsi_Host *sh;
	int error;
4922

4923
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4924 4925 4926 4927
	if (sh == NULL) {
		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
		return -ENOMEM;
	}
4928 4929 4930 4931 4932 4933 4934 4935

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4936
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4937
	sh->cmd_per_lun = sh->can_queue;
4938 4939 4940 4941
	sh->sg_tablesize = h->maxsgentries;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
4942 4943 4944 4945 4946
	error = scsi_init_shared_tag_map(sh, sh->can_queue);
	if (error) {
		dev_err(&h->pdev->dev,
			"%s: scsi_init_shared_tag_map failed for controller %d\n",
			__func__, h->ctlr);
4947 4948
			scsi_host_put(sh);
			return error;
4949
	}
4950
	h->scsi_host = sh;
4951
	return 0;
4952
}
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
static int hpsa_scsi_add_host(struct ctlr_info *h)
{
	int rv;

	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
	if (rv) {
		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
		return rv;
	}
	scsi_scan_host(h->scsi_host);
	return 0;
4965 4966
}

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
/*
 * The block layer has already gone to the trouble of picking out a unique,
 * small-integer tag for this request.  We use an offset from that value as
 * an index to select our command block.  (The offset allows us to reserve the
 * low-numbered entries for our own uses.)
 */
static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
{
	int idx = scmd->request->tag;

	if (idx < 0)
		return idx;

	/* Offset to leave space for internal cmds. */
	return idx += HPSA_NRESERVED_CMDS;
}

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
/*
 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 */
static int hpsa_send_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c, unsigned char lunaddr[],
				int reply_queue)
{
	int rc;

	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
	(void) fill_cmd(c, TEST_UNIT_READY, h,
			NULL, 0, 0, lunaddr, TYPE_CMD);
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc)
		return rc;
	/* no unmap needed here because no data xfer. */

	/* Check if the unit is already ready. */
	if (c->err_info->CommandStatus == CMD_SUCCESS)
		return 0;

	/*
	 * The first command sent after reset will receive "unit attention" to
	 * indicate that the LUN has been reset...this is actually what we're
	 * looking for (but, success is good too).
	 */
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
		return 0;

	return 1;
}

/*
 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 * returns zero when the unit is ready, and non-zero when giving up.
 */
static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c,
				unsigned char lunaddr[], int reply_queue)
5027
{
5028
	int rc;
5029 5030 5031 5032
	int count = 0;
	int waittime = 1; /* seconds */

	/* Send test unit ready until device ready, or give up. */
5033
	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5034

5035 5036
		/*
		 * Wait for a bit.  do this first, because if we send
5037 5038 5039
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
5040 5041 5042 5043

		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
		if (!rc)
			break;
5044 5045 5046

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5047
			waittime *= 2;
5048

5049 5050 5051 5052
		dev_warn(&h->pdev->dev,
			 "waiting %d secs for device to become ready.\n",
			 waittime);
	}
5053

5054 5055
	return rc;
}
5056

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
static int wait_for_device_to_become_ready(struct ctlr_info *h,
					   unsigned char lunaddr[],
					   int reply_queue)
{
	int first_queue;
	int last_queue;
	int rq;
	int rc = 0;
	struct CommandList *c;

	c = cmd_alloc(h);

	/*
	 * If no specific reply queue was requested, then send the TUR
	 * repeatedly, requesting a reply on each reply queue; otherwise execute
	 * the loop exactly once using only the specified queue.
	 */
	if (reply_queue == DEFAULT_REPLY_QUEUE) {
		first_queue = 0;
		last_queue = h->nreply_queues - 1;
	} else {
		first_queue = reply_queue;
		last_queue = reply_queue;
	}

	for (rq = first_queue; rq <= last_queue; rq++) {
		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
		if (rc)
5085 5086 5087 5088 5089 5090 5091 5092
			break;
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

5093
	cmd_free(h, c);
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
5105
	char msg[40];
5106 5107 5108 5109 5110

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
5111 5112 5113 5114

	if (lockup_detected(h))
		return FAILED;

5115 5116
	dev = scsicmd->device->hostdata;
	if (!dev) {
W
Webb Scales 已提交
5117
		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5118 5119
		return FAILED;
	}
5120 5121 5122

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
5123 5124 5125
		sprintf(msg, "cmd %d RESET FAILED, lockup detected",
				hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5126 5127 5128 5129 5130
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
5131 5132 5133
		sprintf(msg, "cmd %d RESET FAILED, new lockup detected",
				hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5134 5135 5136
		return FAILED;
	}

W
Webb Scales 已提交
5137 5138 5139 5140
	/* Do not attempt on controller */
	if (is_hba_lunid(dev->scsi3addr))
		return SUCCESS;

5141 5142
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

5143
	/* send a reset to the SCSI LUN which the command was sent to */
W
Webb Scales 已提交
5144 5145 5146 5147 5148
	rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			   DEFAULT_REPLY_QUEUE);
	sprintf(msg, "reset %s", rc == 0 ? "completed successfully" : "failed");
	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
	return rc == 0 ? SUCCESS : FAILED;
5149 5150
}

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

5166
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
5167
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5168
{
D
Don Brace 已提交
5169
	u64 tag;
5170 5171 5172
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
5173 5174 5175
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
5176 5177 5178 5179 5180
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
5181 5182 5183
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
5184
		return;
5185
	}
D
Don Brace 已提交
5186 5187 5188
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
5189 5190
}

5191
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
5192
	struct CommandList *abort, int reply_queue)
5193 5194 5195 5196
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
5197
	__le32 tagupper, taglower;
5198

5199
	c = cmd_alloc(h);
5200

5201
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
5202
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5203
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
5204
	if (h->needs_abort_tags_swizzled)
5205
		swizzle_abort_tag(&c->Request.CDB[4]);
5206
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5207
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5208
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5209
		__func__, tagupper, taglower);
5210 5211 5212 5213 5214 5215
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
5216 5217 5218
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
5219 5220 5221 5222 5223
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5224
			__func__, tagupper, taglower);
5225
		hpsa_scsi_interpret_error(h, c);
5226 5227 5228
		rc = -1;
		break;
	}
5229
	cmd_free(h, c);
5230 5231
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
5232 5233 5234
	return rc;
}

5235 5236 5237 5238 5239 5240 5241
static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
	struct CommandList *command_to_abort, int reply_queue)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
	struct io_accel2_cmd *c2a =
		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5242
	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;

	/*
	 * We're overlaying struct hpsa_tmf_struct on top of something which
	 * was allocated as a struct io_accel2_cmd, so we better be sure it
	 * actually fits, and doesn't overrun the error info space.
	 */
	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
			sizeof(struct io_accel2_cmd));
	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
			offsetof(struct hpsa_tmf_struct, error_len) +
				sizeof(ac->error_len));

	c->cmd_type = IOACCEL2_TMF;
5257 5258
	c->scsi_cmd = SCSI_CMD_BUSY;

5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(struct io_accel2_cmd));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
	ac->reply_queue = reply_queue;
	ac->tmf = IOACCEL2_TMF_ABORT;
	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
	memset(ac->lun_id, 0, sizeof(ac->lun_id));
	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
	ac->error_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
}

5277 5278 5279 5280 5281 5282 5283 5284
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5285
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5286 5287 5288 5289 5290 5291 5292 5293
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
5294
	scmd = abort->scsi_cmd;
5295 5296 5297 5298 5299 5300 5301
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

5302 5303
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
5304
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5305
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5306
			"Reset as abort",
5307 5308 5309
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
5323 5324 5325 5326 5327
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
W
Webb Scales 已提交
5328
	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5329 5330 5331 5332 5333 5334 5335 5336 5337
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
5338
	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
	struct CommandList *abort, int reply_queue)
{
	int rc = IO_OK;
	struct CommandList *c;
	__le32 taglower, tagupper;
	struct hpsa_scsi_dev_t *dev;
	struct io_accel2_cmd *c2;

	dev = abort->scsi_cmd->device->hostdata;
	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
		return -1;

	c = cmd_alloc(h);
	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
		__func__, tagupper, taglower);
	/* no unmap needed here because no data xfer. */

	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
		__func__, tagupper, taglower, c2->error_data.serv_response);
	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		rc = 0;
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
	case IOACCEL2_SERV_RESPONSE_FAILURE:
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		rc = -1;
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
			__func__, tagupper, taglower,
			c2->error_data.serv_response);
		rc = -1;
	}
	cmd_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		tagupper, taglower);
	return rc;
}

5404
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5405
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5406
{
5407 5408
	/*
	 * ioccelerator mode 2 commands should be aborted via the
5409
	 * accelerated path, since RAID path is unaware of these commands,
5410 5411
	 * but not all underlying firmware can handle abort TMF.
	 * Change abort to physical device reset when abort TMF is unsupported.
5412
	 */
5413 5414 5415 5416 5417 5418
	if (abort->cmd_type == CMD_IOACCEL2) {
		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
			return hpsa_send_abort_ioaccel2(h, abort,
						reply_queue);
		else
			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5419
							abort, reply_queue);
5420
	}
S
Stephen Cameron 已提交
5421
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5422
}
5423

5424 5425 5426 5427 5428 5429 5430
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
5431 5432
}

S
Stephen Cameron 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

5445 5446 5447 5448 5449 5450 5451
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

5452
	int rc;
5453 5454 5455 5456 5457 5458
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
5459
	__le32 tagupper, taglower;
5460 5461 5462 5463
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
5464

S
Stephen Cameron 已提交
5465 5466 5467
	if (sc->device == NULL)
		return FAILED;

5468 5469
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
5470
	if (h == NULL)
5471 5472
		return FAILED;

5473 5474 5475 5476 5477
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
5478
		return FAILED;
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
5494

5495 5496 5497 5498 5499 5500
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
5501
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5502
		h->scsi_host->host_no, sc->device->channel,
5503
		sc->device->id, sc->device->lun,
5504
		"Aborting command", sc);
5505 5506 5507 5508

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
5509 5510 5511 5512 5513 5514 5515
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
5516
	}
S
Stephen Cameron 已提交
5517 5518 5519 5520 5521 5522 5523 5524

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
	/*
	 * Check that we're aborting the right command.
	 * It's possible the CommandList already completed and got re-used.
	 */
	if (abort->scsi_cmd != sc) {
		cmd_free(h, abort);
		return SUCCESS;
	}

	abort->abort_pending = true;
5535
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5536
	reply_queue = hpsa_extract_reply_queue(h, abort);
5537
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5538
	as  = abort->scsi_cmd;
5539
	if (as != NULL)
5540 5541 5542 5543 5544
		ml += sprintf(msg+ml,
			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
			as->cmd_len, as->cmnd[0], as->cmnd[1],
			as->serial_number);
	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5545
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5546

5547 5548 5549 5550 5551
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
5552 5553
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
5554 5555
			"%s FAILED, timeout waiting for an abort command to become available.\n",
			msg);
S
Stephen Cameron 已提交
5556 5557 5558
		cmd_free(h, abort);
		return FAILED;
	}
5559
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
5560 5561
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
5562
	if (rc != 0) {
5563
		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5564
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5565
				"FAILED to abort command");
5566
		cmd_free(h, abort);
5567 5568
		return FAILED;
	}
5569
	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
W
Webb Scales 已提交
5570
	wait_event(h->event_sync_wait_queue,
5571
		   abort->scsi_cmd != sc || lockup_detected(h));
5572
	cmd_free(h, abort);
5573
	return !lockup_detected(h) ? SUCCESS : FAILED;
5574 5575
}

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
/*
 * For operations with an associated SCSI command, a command block is allocated
 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 * block request tag as an index into a table of entries.  cmd_tagged_free() is
 * the complement, although cmd_free() may be called instead.
 */
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd)
{
	int idx = hpsa_get_cmd_index(scmd);
	struct CommandList *c = h->cmd_pool + idx;

	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
		/* The index value comes from the block layer, so if it's out of
		 * bounds, it's probably not our bug.
		 */
		BUG();
	}

	atomic_inc(&c->refcount);
	if (unlikely(!hpsa_is_cmd_idle(c))) {
		/*
		 * We expect that the SCSI layer will hand us a unique tag
		 * value.  Thus, there should never be a collision here between
		 * two requests...because if the selected command isn't idle
		 * then someone is going to be very disappointed.
		 */
		dev_err(&h->pdev->dev,
			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
			idx);
		if (c->scsi_cmd != NULL)
			scsi_print_command(c->scsi_cmd);
		scsi_print_command(scmd);
	}

	hpsa_cmd_partial_init(h, idx, c);
	return c;
}

static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
{
	/*
	 * Release our reference to the block.  We don't need to do anything
	 * else to free it, because it is accessed by index.  (There's no point
	 * in checking the result of the decrement, since we cannot guarantee
	 * that there isn't a concurrent abort which is also accessing it.)
	 */
	(void)atomic_dec(&c->refcount);
}

5628 5629 5630 5631 5632
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
5633 5634
 * This function never gives up and returns NULL.  If it hangs,
 * another thread must call cmd_free() to free some tags.
5635
 */
5636

5637 5638 5639
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
5640
	int refcount, i;
5641
	int offset = 0;
5642

5643 5644
	/*
	 * There is some *extremely* small but non-zero chance that that
5645 5646 5647 5648 5649 5650 5651 5652
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
5653 5654 5655 5656 5657 5658 5659
	 *
	 * Note that we start allocating commands before the SCSI host structure
	 * is initialized.  Since the search starts at bit zero, this
	 * all works, since we have at least one command structure available;
	 * however, it means that the structures with the low indexes have to be
	 * reserved for driver-initiated requests, while requests from the block
	 * layer will use the higher indexes.
5660
	 */
5661

5662
	for (;;) {
5663 5664 5665 5666
		i = find_next_zero_bit(h->cmd_pool_bits,
					HPSA_NRESERVED_CMDS,
					offset);
		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5667 5668 5669 5670 5671 5672 5673
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
5674
			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5675 5676 5677 5678 5679 5680
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
5681
	hpsa_cmd_partial_init(h, i, c);
5682 5683 5684
	return c;
}

5685 5686 5687 5688 5689 5690
/*
 * This is the complementary operation to cmd_alloc().  Note, however, in some
 * corner cases it may also be used to free blocks allocated by
 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 * the clear-bit is harmless.
 */
5691 5692
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
5693 5694
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
5695

5696 5697 5698 5699
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
5700 5701 5702 5703
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
5704 5705
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
5706 5707 5708 5709 5710 5711 5712 5713
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5714
	memset(&arg64, 0, sizeof(arg64));
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5730
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5741
	int cmd, void __user *arg)
5742 5743 5744 5745 5746 5747 5748 5749 5750
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5751
	memset(&arg64, 0, sizeof(arg64));
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5768
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5769 5770 5771 5772 5773 5774 5775 5776
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5777

D
Don Brace 已提交
5778
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5852
	u64 temp64;
5853
	int rc = 0;
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
5868
			return -ENOMEM;
5869
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5870 5871 5872
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5873 5874
				rc = -EFAULT;
				goto out_kfree;
5875 5876 5877
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5878
		}
5879
	}
5880
	c = cmd_alloc(h);
5881

5882 5883
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
5884
	c->scsi_cmd = SCSI_CMD_BUSY;
5885 5886 5887 5888
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5889
		c->Header.SGTotal = cpu_to_le16(1);
5890 5891
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5892
		c->Header.SGTotal = cpu_to_le16(0);
5893 5894 5895 5896 5897 5898 5899 5900 5901
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5902
		temp64 = pci_map_single(h->pdev, buff,
5903
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5904 5905 5906
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5907 5908 5909
			rc = -ENOMEM;
			goto out;
		}
5910 5911 5912
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5913
	}
5914
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5915 5916
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5917
	check_ioctl_unit_attention(h, c);
5918 5919 5920 5921
	if (rc) {
		rc = -EIO;
		goto out;
	}
5922 5923 5924 5925 5926

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5927 5928
		rc = -EFAULT;
		goto out;
5929
	}
5930
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5931
		iocommand.buf_size > 0) {
5932 5933
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5934 5935
			rc = -EFAULT;
			goto out;
5936 5937
		}
	}
5938
out:
5939
	cmd_free(h, c);
5940 5941 5942
out_kfree:
	kfree(buff);
	return rc;
5943 5944 5945 5946 5947 5948 5949 5950
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5951
	u64 temp64;
5952 5953
	BYTE sg_used = 0;
	int status = 0;
5954 5955
	u32 left;
	u32 sz;
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5982
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5983 5984 5985
		status = -EINVAL;
		goto cleanup1;
	}
5986
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5987 5988 5989 5990
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5991
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
6006
		if (ioc->Request.Type.Direction & XFER_WRITE) {
6007
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6008
				status = -EFAULT;
6009 6010 6011 6012 6013 6014 6015 6016
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
6017
	c = cmd_alloc(h);
6018

6019
	c->cmd_type = CMD_IOCTL_PEND;
6020
	c->scsi_cmd = SCSI_CMD_BUSY;
6021
	c->Header.ReplyQueue = 0;
6022 6023
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
6024 6025 6026 6027 6028
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
6029
			temp64 = pci_map_single(h->pdev, buff[i],
6030
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6031 6032 6033 6034
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
6035 6036 6037
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
6038
				goto cleanup0;
6039
			}
6040 6041 6042
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
6043
		}
6044
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6045
	}
6046
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6047 6048
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6049
	check_ioctl_unit_attention(h, c);
6050 6051 6052 6053 6054
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

6055 6056 6057 6058
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
6059
		goto cleanup0;
6060
	}
6061
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
6062 6063
		int i;

6064 6065 6066 6067 6068
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
6069
				goto cleanup0;
6070 6071 6072 6073 6074
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
6075
cleanup0:
6076
	cmd_free(h, c);
6077 6078
cleanup1:
	if (buff) {
D
Don Brace 已提交
6079 6080
		int i;

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
6097

6098 6099 6100
/*
 * ioctl
 */
D
Don Brace 已提交
6101
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6102 6103 6104
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
6105
	int rc;
6106 6107 6108 6109 6110 6111 6112

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
6113
		hpsa_scan_start(h->scsi_host);
6114 6115 6116 6117 6118 6119
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
6120
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6121 6122
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
6123
		atomic_inc(&h->passthru_cmds_avail);
6124
		return rc;
6125
	case CCISS_BIG_PASSTHRU:
6126
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6127 6128
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
6129
		atomic_inc(&h->passthru_cmds_avail);
6130
		return rc;
6131 6132 6133 6134 6135
	default:
		return -ENOTTY;
	}
}

6136
static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6137
				u8 reset_type)
6138 6139 6140 6141
{
	struct CommandList *c;

	c = cmd_alloc(h);
6142

6143 6144
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6145 6146 6147 6148 6149 6150 6151 6152
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
6153
	return;
6154 6155
}

6156
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6157
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6158 6159 6160
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
6161
	u64 tag; /* for commands to be aborted */
6162 6163

	c->cmd_type = CMD_IOCTL_PEND;
6164
	c->scsi_cmd = SCSI_CMD_BUSY;
6165 6166 6167
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
6168
		c->Header.SGTotal = cpu_to_le16(1);
6169 6170
	} else {
		c->Header.SGList = 0;
6171
		c->Header.SGTotal = cpu_to_le16(0);
6172 6173 6174 6175 6176 6177 6178
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
6179
			if (page_code & VPD_PAGE) {
6180
				c->Request.CDB[1] = 0x01;
6181
				c->Request.CDB[2] = (page_code & 0xff);
6182 6183
			}
			c->Request.CDBLen = 6;
6184 6185
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
6196 6197
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6198 6199 6200 6201 6202 6203 6204 6205 6206
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
6207 6208 6209
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6210 6211 6212
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6213 6214
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
6215 6216 6217
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
6218 6219
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6220 6221
			c->Request.Timeout = 0;
			break;
6222 6223
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
6224 6225
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6226 6227 6228 6229 6230 6231 6232 6233
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
6234 6235
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
6236 6237
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6238 6239 6240 6241 6242 6243
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
6254 6255 6256
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
6257
			return -1;
6258 6259 6260 6261 6262 6263
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
6264 6265
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6266
			c->Request.Timeout = 0; /* Don't time out */
6267 6268
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
6269
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6270 6271 6272 6273 6274 6275
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
6276 6277
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
6278
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
6279
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
6280 6281
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
6282
			c->Request.CDBLen = 16;
6283 6284 6285
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6286 6287 6288 6289 6290 6291
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
6292
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6293 6294 6295 6296
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

6308
	switch (GET_DIR(c->Request.type_attr_dir)) {
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
6321 6322 6323
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
6324 6325 6326 6327 6328 6329 6330 6331 6332
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
6333 6334
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
6335 6336 6337 6338

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

6339
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6340
{
6341
	return h->access.command_completed(h, q);
6342 6343
}

6344
static inline bool interrupt_pending(struct ctlr_info *h)
6345 6346 6347 6348 6349 6350
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
6351 6352
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
6353 6354
}

6355 6356
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
6357 6358 6359 6360 6361 6362 6363 6364
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

6365
static inline void finish_cmd(struct CommandList *c)
6366
{
6367
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6368 6369
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
6370
		complete_scsi_command(c);
6371
	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6372
		complete(c->waiting);
6373 6374
}

6375 6376

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6377
{
6378 6379
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
6380
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6381 6382
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
6383 6384
}

6385
/* process completion of an indexed ("direct lookup") command */
6386
static inline void process_indexed_cmd(struct ctlr_info *h,
6387 6388 6389 6390 6391
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

6392
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6393 6394 6395 6396
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
6397 6398
}

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

6418 6419 6420 6421 6422 6423
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
6424
{
6425 6426 6427 6428 6429 6430 6431
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
6432 6433 6434 6435 6436 6437 6438
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6439
	h->last_intr_timestamp = get_jiffies_64();
6440
	while (interrupt_pending(h)) {
6441
		raw_tag = get_next_completion(h, q);
6442
		while (raw_tag != FIFO_EMPTY)
6443
			raw_tag = next_command(h, q);
6444 6445 6446 6447
	}
	return IRQ_HANDLED;
}

6448
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6449
{
6450
	struct ctlr_info *h = queue_to_hba(queue);
6451
	u32 raw_tag;
6452
	u8 q = *(u8 *) queue;
6453 6454 6455 6456

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

6457
	h->last_intr_timestamp = get_jiffies_64();
6458
	raw_tag = get_next_completion(h, q);
6459
	while (raw_tag != FIFO_EMPTY)
6460
		raw_tag = next_command(h, q);
6461 6462 6463
	return IRQ_HANDLED;
}

6464
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6465
{
6466
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6467
	u32 raw_tag;
6468
	u8 q = *(u8 *) queue;
6469 6470 6471

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6472
	h->last_intr_timestamp = get_jiffies_64();
6473
	while (interrupt_pending(h)) {
6474
		raw_tag = get_next_completion(h, q);
6475
		while (raw_tag != FIFO_EMPTY) {
6476
			process_indexed_cmd(h, raw_tag);
6477
			raw_tag = next_command(h, q);
6478 6479 6480 6481 6482
		}
	}
	return IRQ_HANDLED;
}

6483
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6484
{
6485
	struct ctlr_info *h = queue_to_hba(queue);
6486
	u32 raw_tag;
6487
	u8 q = *(u8 *) queue;
6488

6489
	h->last_intr_timestamp = get_jiffies_64();
6490
	raw_tag = get_next_completion(h, q);
6491
	while (raw_tag != FIFO_EMPTY) {
6492
		process_indexed_cmd(h, raw_tag);
6493
		raw_tag = next_command(h, q);
6494 6495 6496 6497
	}
	return IRQ_HANDLED;
}

6498 6499 6500 6501
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
6502 6503
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
6514 6515
	__le32 paddr32;
	u32 tag;
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
6530
		return err;
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
6543
	paddr32 = cpu_to_le32(paddr64);
6544 6545 6546

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
6547
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
6548
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6549 6550 6551
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
6552 6553
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6554 6555 6556 6557
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6558
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
6559
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6560
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6561

D
Don Brace 已提交
6562
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6563 6564 6565

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
6566
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

6597
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
6598
	void __iomem *vaddr, u32 use_doorbell)
6599 6600 6601 6602 6603 6604 6605 6606
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6607
		writel(use_doorbell, vaddr + SA5_DOORBELL);
6608

6609
		/* PMC hardware guys tell us we need a 10 second delay after
6610 6611 6612 6613
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
6614
		msleep(10000);
6615 6616 6617 6618 6619 6620 6621 6622 6623
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
6624 6625 6626

		int rc = 0;

6627
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6628

6629
		/* enter the D3hot power management state */
6630 6631 6632
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
6633 6634 6635 6636

		msleep(500);

		/* enter the D0 power management state */
6637 6638 6639
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
6640 6641 6642 6643 6644 6645 6646

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
6647 6648 6649 6650
	}
	return 0;
}

6651
static void init_driver_version(char *driver_version, int len)
6652 6653
{
	memset(driver_version, 0, len);
6654
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6655 6656
}

6657
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

6673 6674
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
6675 6676 6677 6678 6679 6680 6681
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

6682
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
6702
/* This does a hard reset of the controller using PCI power management
6703
 * states or the using the doorbell register.
6704
 */
6705
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6706
{
6707 6708 6709 6710 6711
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6712
	u32 misc_fw_support;
6713
	int rc;
6714
	struct CfgTable __iomem *cfgtable;
6715
	u32 use_doorbell;
6716
	u16 command_register;
6717

6718 6719
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6720 6721 6722 6723 6724 6725
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6726 6727 6728
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6729
	 */
6730

6731 6732
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6733 6734
		return -ENODEV;
	}
6735 6736 6737 6738

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6739

6740 6741 6742
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6743

6744 6745 6746 6747 6748 6749 6750
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6751

6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6763 6764
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6765
		goto unmap_cfgtable;
6766

6767 6768 6769
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6770
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6771 6772 6773 6774 6775 6776
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6777 6778
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6779
			rc = -ENOTSUPP; /* try soft reset */
6780 6781 6782
			goto unmap_cfgtable;
		}
	}
6783

6784 6785 6786
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6787

6788 6789
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6790

6791 6792 6793 6794
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6795 6796 6797
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6798
			"Failed waiting for board to become ready after hard reset\n");
6799 6800 6801
		goto unmap_cfgtable;
	}

6802 6803 6804 6805
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6806 6807 6808
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6809
	} else {
6810
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6811 6812 6813 6814 6815 6816 6817 6818
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6819 6820 6821 6822 6823 6824 6825
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6826
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6827
{
6828
#ifdef HPSA_DEBUG
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6849
	dev_info(dev, "   Max outstanding commands = %d\n",
6850 6851 6852 6853 6854 6855 6856 6857 6858
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6859
}
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

6896 6897 6898 6899 6900
static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
{
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
R
Robert Elliott 已提交
6901
		h->msix_vector = 0;
6902 6903 6904
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
R
Robert Elliott 已提交
6905
		h->msi_vector = 0;
6906 6907 6908
	}
}

6909
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6910
 * controllers that are capable. If not, we use legacy INTx mode.
6911
 */
6912
static void hpsa_interrupt_mode(struct ctlr_info *h)
6913 6914
{
#ifdef CONFIG_PCI_MSI
6915 6916 6917 6918 6919 6920 6921
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6922 6923

	/* Some boards advertise MSI but don't really support it */
6924 6925
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6926
		goto default_int_mode;
6927
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6928
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6929
		h->msix_vector = MAX_REPLY_QUEUES;
6930 6931
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6932 6933 6934 6935 6936 6937 6938
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6939
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6940 6941
			       "available\n", err);
		}
6942 6943 6944 6945
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6946
	}
6947
single_msi_mode:
6948
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6949
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6950
		if (!pci_enable_msi(h->pdev))
6951 6952
			h->msi_vector = 1;
		else
6953
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6954 6955 6956 6957
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6958
	h->intr[h->intr_mode] = h->pdev->irq;
6959 6960
}

6961
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6975 6976 6977
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6978 6979 6980 6981 6982 6983 6984
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6985 6986
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6987 6988 6989 6990
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6991
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6992
			/* addressing mode bits already removed */
6993 6994
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6995 6996 6997
				*memory_bar);
			return 0;
		}
6998
	dev_warn(&pdev->dev, "no memory BAR found\n");
6999 7000 7001
	return -ENODEV;
}

7002 7003
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
7004
{
7005
	int i, iterations;
7006
	u32 scratchpad;
7007 7008 7009 7010
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7011

7012 7013 7014 7015 7016 7017 7018 7019 7020
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
7021 7022
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
7023
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7024 7025 7026
	return -ENODEV;
}

7027 7028 7029
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

R
Robert Elliott 已提交
7042 7043
static void hpsa_free_cfgtables(struct ctlr_info *h)
{
R
Robert Elliott 已提交
7044
	if (h->transtable) {
R
Robert Elliott 已提交
7045
		iounmap(h->transtable);
R
Robert Elliott 已提交
7046 7047 7048
		h->transtable = NULL;
	}
	if (h->cfgtable) {
R
Robert Elliott 已提交
7049
		iounmap(h->cfgtable);
R
Robert Elliott 已提交
7050 7051
		h->cfgtable = NULL;
	}
R
Robert Elliott 已提交
7052 7053 7054 7055 7056
}

/* Find and map CISS config table and transfer table
+ * several items must be unmapped (freed) later
+ * */
7057
static int hpsa_find_cfgtables(struct ctlr_info *h)
7058
{
7059 7060 7061
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
7062
	u32 trans_offset;
7063
	int rc;
7064

7065 7066 7067 7068
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
7069
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7070
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7071 7072
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7073
		return -ENOMEM;
7074
	}
7075 7076 7077
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
7078
	/* Find performant mode table. */
7079
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7080 7081 7082
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
R
Robert Elliott 已提交
7083 7084 7085
	if (!h->transtable) {
		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
		hpsa_free_cfgtables(h);
7086
		return -ENOMEM;
R
Robert Elliott 已提交
7087
	}
7088 7089 7090
	return 0;
}

7091
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7092
{
7093 7094 7095 7096
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7097 7098 7099 7100 7101

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

7102 7103 7104 7105 7106 7107
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
7108 7109 7110
	}
}

7111 7112 7113 7114 7115 7116 7117 7118 7119
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

7120 7121 7122 7123
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
7124
static void hpsa_find_board_params(struct ctlr_info *h)
7125
{
7126
	hpsa_get_max_perf_mode_cmds(h);
7127
	h->nr_cmds = h->max_commands;
7128
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7129
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7130 7131
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
7132
		h->max_cmd_sg_entries = 32;
7133
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7134 7135
		h->maxsgentries--; /* save one for chain pointer */
	} else {
7136 7137 7138 7139 7140 7141
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
7142
		h->maxsgentries = 31; /* default to traditional values */
7143
		h->chainsize = 0;
7144
	}
7145 7146 7147

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7148 7149 7150 7151
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7152 7153
	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7154 7155
}

7156 7157
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
7158
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7159
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7160 7161 7162 7163 7164
		return false;
	}
	return true;
}

7165
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7166
{
7167
	u32 driver_support;
7168

7169
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
7170 7171
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
7172
	driver_support |= ENABLE_SCSI_PREFETCH;
7173
#endif
7174 7175
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
7176 7177
}

7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

7192
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7193 7194 7195 7196 7197
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7198
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7199 7200 7201 7202
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7203
			goto done;
7204
		/* delay and try again */
7205
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7206
	}
7207 7208 7209
	return -ENODEV;
done:
	return 0;
7210 7211
}

7212
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7213 7214
{
	int i;
7215 7216
	u32 doorbell_value;
	unsigned long flags;
7217 7218 7219 7220 7221

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
7222
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7223 7224
		if (h->remove_in_progress)
			goto done;
7225 7226 7227
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
7228
		if (!(doorbell_value & CFGTBL_ChangeReq))
7229
			goto done;
7230
		/* delay and try again */
7231
		msleep(MODE_CHANGE_WAIT_INTERVAL);
7232
	}
7233 7234 7235
	return -ENODEV;
done:
	return 0;
7236 7237
}

7238
/* return -ENODEV or other reason on error, 0 on success */
7239
static int hpsa_enter_simple_mode(struct ctlr_info *h)
7240 7241 7242 7243 7244 7245 7246 7247
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7248

7249 7250
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7251
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7252
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7253 7254
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
7255
	print_cfg_table(&h->pdev->dev, h->cfgtable);
7256 7257
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
7258
	h->transMethod = CFGTBL_Trans_Simple;
7259
	return 0;
7260
error:
7261
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7262
	return -ENODEV;
7263 7264
}

R
Robert Elliott 已提交
7265 7266 7267 7268 7269
/* free items allocated or mapped by hpsa_pci_init */
static void hpsa_free_pci_init(struct ctlr_info *h)
{
	hpsa_free_cfgtables(h);			/* pci_init 4 */
	iounmap(h->vaddr);			/* pci_init 3 */
R
Robert Elliott 已提交
7270
	h->vaddr = NULL;
R
Robert Elliott 已提交
7271
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7272 7273 7274 7275
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7276
	pci_disable_device(h->pdev);		/* pci_init 1 */
7277
	pci_release_regions(h->pdev);		/* pci_init 2 */
R
Robert Elliott 已提交
7278 7279 7280
}

/* several items must be freed later */
7281
static int hpsa_pci_init(struct ctlr_info *h)
7282
{
7283
	int prod_index, err;
7284

7285 7286
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
7287
		return prod_index;
7288 7289
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
7290

S
Stephen Cameron 已提交
7291 7292 7293
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
7294 7295 7296
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

7297
	err = pci_enable_device(h->pdev);
7298
	if (err) {
R
Robert Elliott 已提交
7299
		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7300
		pci_disable_device(h->pdev);
7301 7302 7303
		return err;
	}

7304
	err = pci_request_regions(h->pdev, HPSA);
7305
	if (err) {
7306
		dev_err(&h->pdev->dev,
R
Robert Elliott 已提交
7307
			"failed to obtain PCI resources\n");
7308 7309
		pci_disable_device(h->pdev);
		return err;
7310
	}
7311 7312 7313

	pci_set_master(h->pdev);

7314
	hpsa_interrupt_mode(h);
7315
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7316
	if (err)
R
Robert Elliott 已提交
7317
		goto clean2;	/* intmode+region, pci */
7318
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7319
	if (!h->vaddr) {
R
Robert Elliott 已提交
7320
		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7321
		err = -ENOMEM;
R
Robert Elliott 已提交
7322
		goto clean2;	/* intmode+region, pci */
7323
	}
7324
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7325
	if (err)
R
Robert Elliott 已提交
7326
		goto clean3;	/* vaddr, intmode+region, pci */
7327 7328
	err = hpsa_find_cfgtables(h);
	if (err)
R
Robert Elliott 已提交
7329
		goto clean3;	/* vaddr, intmode+region, pci */
7330
	hpsa_find_board_params(h);
7331

7332
	if (!hpsa_CISS_signature_present(h)) {
7333
		err = -ENODEV;
R
Robert Elliott 已提交
7334
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7335
	}
7336
	hpsa_set_driver_support_bits(h);
7337
	hpsa_p600_dma_prefetch_quirk(h);
7338 7339
	err = hpsa_enter_simple_mode(h);
	if (err)
R
Robert Elliott 已提交
7340
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7341 7342
	return 0;

R
Robert Elliott 已提交
7343 7344 7345 7346
clean4:	/* cfgtables, vaddr, intmode+region, pci */
	hpsa_free_cfgtables(h);
clean3:	/* vaddr, intmode+region, pci */
	iounmap(h->vaddr);
R
Robert Elliott 已提交
7347
	h->vaddr = NULL;
R
Robert Elliott 已提交
7348 7349
clean2:	/* intmode+region, pci */
	hpsa_disable_interrupt_mode(h);
7350 7351 7352 7353
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7354
	pci_disable_device(h->pdev);
7355
	pci_release_regions(h->pdev);
7356 7357 7358
	return err;
}

7359
static void hpsa_hba_inquiry(struct ctlr_info *h)
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

7375
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7376
{
7377
	int rc, i;
7378
	void __iomem *vaddr;
7379 7380 7381 7382

	if (!reset_devices)
		return 0;

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
7399

7400
	pci_set_master(pdev);
7401

7402 7403 7404 7405 7406 7407 7408 7409
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

7410
	/* Reset the controller with a PCI power-cycle or via doorbell */
7411
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7412

7413 7414
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
7415 7416
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
7417
	 */
7418
	if (rc)
7419
		goto out_disable;
7420 7421

	/* Now try to get the controller to respond to a no-op */
7422
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7423 7424 7425 7426 7427 7428 7429
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
7430 7431 7432 7433 7434

out_disable:

	pci_disable_device(pdev);
	return rc;
7435 7436
}

7437 7438 7439
static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
R
Robert Elliott 已提交
7440 7441
	h->cmd_pool_bits = NULL;
	if (h->cmd_pool) {
7442 7443 7444 7445
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct CommandList),
				h->cmd_pool,
				h->cmd_pool_dhandle);
R
Robert Elliott 已提交
7446 7447 7448 7449
		h->cmd_pool = NULL;
		h->cmd_pool_dhandle = 0;
	}
	if (h->errinfo_pool) {
7450 7451 7452 7453
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct ErrorInfo),
				h->errinfo_pool,
				h->errinfo_pool_dhandle);
R
Robert Elliott 已提交
7454 7455 7456
		h->errinfo_pool = NULL;
		h->errinfo_pool_dhandle = 0;
	}
7457 7458
}

7459
static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7474
		goto clean_up;
7475
	}
7476
	hpsa_preinitialize_commands(h);
7477
	return 0;
7478 7479 7480
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
7481 7482
}

7483 7484
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
7485
	int i, cpu;
7486 7487 7488

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
7489
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7490 7491 7492 7493
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7504
		h->q[i] = 0;
7505 7506 7507 7508 7509 7510
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7511
		h->q[i] = 0;
7512
	}
7513 7514
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
7515 7516
}

7517 7518
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
7519 7520 7521
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
7522
	int rc, i;
7523

7524 7525 7526 7527 7528 7529 7530
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

7531
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7532
		/* If performant mode and MSI-X, use multiple reply queues */
7533
		for (i = 0; i < h->msix_vector; i++) {
7534
			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7535
			rc = request_irq(h->intr[i], msixhandler,
7536
					0, h->intrname[i],
7537
					&h->q[i]);
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
7553
		hpsa_irq_affinity_hints(h);
7554 7555
	} else {
		/* Use single reply pool */
7556
		if (h->msix_vector > 0 || h->msi_vector) {
7557 7558 7559 7560 7561 7562
			if (h->msix_vector)
				sprintf(h->intrname[h->intr_mode],
					"%s-msix", h->devname);
			else
				sprintf(h->intrname[h->intr_mode],
					"%s-msi", h->devname);
7563
			rc = request_irq(h->intr[h->intr_mode],
7564 7565
				msixhandler, 0,
				h->intrname[h->intr_mode],
7566 7567
				&h->q[h->intr_mode]);
		} else {
7568 7569
			sprintf(h->intrname[h->intr_mode],
				"%s-intx", h->devname);
7570
			rc = request_irq(h->intr[h->intr_mode],
7571 7572
				intxhandler, IRQF_SHARED,
				h->intrname[h->intr_mode],
7573 7574
				&h->q[h->intr_mode]);
		}
R
Robert Elliott 已提交
7575
		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7576
	}
7577
	if (rc) {
R
Robert Elliott 已提交
7578
		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7579
		       h->intr[h->intr_mode], h->devname);
R
Robert Elliott 已提交
7580
		hpsa_free_irqs(h);
7581 7582 7583 7584 7585
		return -ENODEV;
	}
	return 0;
}

7586
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7587
{
7588
	int rc;
7589
	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7590 7591

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7592 7593
	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
	if (rc) {
7594
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7595
		return rc;
7596 7597 7598
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7599 7600
	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
	if (rc) {
7601 7602
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
7603
		return rc;
7604 7605 7606 7607 7608
	}

	return 0;
}

7609 7610 7611 7612 7613 7614 7615
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
7616 7617 7618 7619
		pci_free_consistent(h->pdev,
					h->reply_queue_size,
					h->reply_queue[i].head,
					h->reply_queue[i].busaddr);
7620 7621 7622
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
R
Robert Elliott 已提交
7623
	h->reply_queue_size = 0;
7624 7625
}

7626 7627
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
R
Robert Elliott 已提交
7628 7629 7630 7631
	hpsa_free_performant_mode(h);		/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
	hpsa_free_cmd_pool(h);			/* init_one 5 */
	hpsa_free_irqs(h);			/* init_one 4 */
7632 7633 7634
	scsi_host_put(h->scsi_host);		/* init_one 3 */
	h->scsi_host = NULL;			/* init_one 3 */
	hpsa_free_pci_init(h);			/* init_one 2_5 */
7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
	free_percpu(h->lockup_detected);	/* init_one 2 */
	h->lockup_detected = NULL;		/* init_one 2 */
	if (h->resubmit_wq) {
		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
		destroy_workqueue(h->rescan_ctlr_wq);
		h->rescan_ctlr_wq = NULL;
	}
R
Robert Elliott 已提交
7645
	kfree(h);				/* init_one 1 */
7646 7647
}

7648
/* Called when controller lockup detected. */
7649
static void fail_all_outstanding_cmds(struct ctlr_info *h)
7650
{
7651 7652
	int i, refcount;
	struct CommandList *c;
7653
	int failcount = 0;
7654

7655
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7656 7657
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
7658 7659
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
7660
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7661
			finish_cmd(c);
7662
			atomic_dec(&h->commands_outstanding);
7663
			failcount++;
7664 7665
		}
		cmd_free(h, c);
7666
	}
7667 7668
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
7669 7670
}

7671 7672
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
7673
	int cpu;
7674

7675
	for_each_online_cpu(cpu) {
7676 7677 7678 7679 7680 7681 7682
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

7683 7684 7685
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
7686
	u32 lockup_detected;
7687 7688 7689

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
7690 7691 7692 7693
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
7694 7695
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
7696 7697 7698
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
7699
	spin_unlock_irqrestore(&h->lock, flags);
7700 7701
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
7702
	pci_disable_device(h->pdev);
7703
	fail_all_outstanding_cmds(h);
7704 7705
}

7706
static int detect_controller_lockup(struct ctlr_info *h)
7707 7708 7709 7710 7711 7712 7713 7714
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
7715
				(h->heartbeat_sample_interval), now))
7716
		return false;
7717 7718 7719 7720 7721 7722 7723

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
7724
				(h->heartbeat_sample_interval), now))
7725
		return false;
7726 7727 7728 7729 7730 7731 7732

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
7733
		return true;
7734 7735 7736 7737 7738
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
7739
	return false;
7740 7741
}

7742
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7743 7744 7745 7746
{
	int i;
	char *event_type;

7747 7748 7749
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

7750
	/* Ask the controller to clear the events we're handling. */
7751 7752
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
7764
		hpsa_drain_accel_commands(h);
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7785
	return;
7786 7787 7788 7789
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7790 7791
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7792
 */
7793
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7794 7795
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7796
		return 0;
7797 7798

	h->events = readl(&(h->cfgtable->event_notify));
7799 7800
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7801

7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7816 7817 7818 7819
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7820
			return 1;
7821
		}
7822 7823 7824 7825
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7826 7827
}

7828
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7829 7830
{
	unsigned long flags;
7831
	struct ctlr_info *h = container_of(to_delayed_work(work),
7832 7833 7834 7835
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7836
		return;
7837 7838 7839 7840 7841 7842 7843

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7844
	spin_lock_irqsave(&h->lock, flags);
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7859
		return;
7860 7861 7862 7863

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7864 7865
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7866 7867
}

7868 7869 7870 7871 7872
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7873
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7874 7875 7876 7877 7878 7879
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7880
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7881
{
7882
	int dac, rc;
7883
	struct ctlr_info *h;
7884 7885
	int try_soft_reset = 0;
	unsigned long flags;
7886
	u32 board_id;
7887 7888 7889 7890

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7891 7892 7893 7894 7895 7896 7897
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7911

7912 7913 7914 7915 7916
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7917
	h = kzalloc(sizeof(*h), GFP_KERNEL);
R
Robert Elliott 已提交
7918 7919
	if (!h) {
		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7920
		return -ENOMEM;
R
Robert Elliott 已提交
7921
	}
7922

7923
	h->pdev = pdev;
R
Robert Elliott 已提交
7924

7925
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7926
	INIT_LIST_HEAD(&h->offline_device_list);
7927
	spin_lock_init(&h->lock);
7928
	spin_lock_init(&h->offline_device_lock);
7929
	spin_lock_init(&h->scan_lock);
7930
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7931
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7932 7933 7934

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7935
	if (!h->lockup_detected) {
R
Robert Elliott 已提交
7936
		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7937
		rc = -ENOMEM;
7938
		goto clean1;	/* aer/h */
7939
	}
7940 7941
	set_lockup_detected_for_all_cpus(h, 0);

7942
	rc = hpsa_pci_init(h);
R
Robert Elliott 已提交
7943
	if (rc)
7944 7945 7946 7947 7948 7949 7950
		goto clean2;	/* lu, aer/h */

	/* relies on h-> settings made by hpsa_pci_init, including
	 * interrupt_mode h->intr */
	rc = hpsa_scsi_host_alloc(h);
	if (rc)
		goto clean2_5;	/* pci, lu, aer/h */
7951

7952
	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
7953 7954 7955 7956
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7957 7958
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7959
		dac = 1;
7960 7961 7962 7963 7964 7965
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
7966
			goto clean3;	/* shost, pci, lu, aer/h */
7967
		}
7968 7969 7970 7971
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7972

R
Robert Elliott 已提交
7973 7974
	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
	if (rc)
7975
		goto clean3;	/* shost, pci, lu, aer/h */
7976
	rc = hpsa_alloc_cmd_pool(h);
7977
	if (rc)
7978
		goto clean4;	/* irq, shost, pci, lu, aer/h */
R
Robert Elliott 已提交
7979 7980
	rc = hpsa_alloc_sg_chain_blocks(h);
	if (rc)
7981
		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
7982
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7983
	init_waitqueue_head(&h->abort_cmd_wait_queue);
W
Webb Scales 已提交
7984 7985
	init_waitqueue_head(&h->event_sync_wait_queue);
	mutex_init(&h->reset_mutex);
7986
	h->scan_finished = 1; /* no scan currently in progress */
7987 7988

	pci_set_drvdata(pdev, h);
7989
	h->ndevices = 0;
7990
	h->hba_mode_enabled = 0;
7991

7992
	spin_lock_init(&h->devlock);
R
Robert Elliott 已提交
7993 7994
	rc = hpsa_put_ctlr_into_performant_mode(h);
	if (rc)
7995 7996 7997 7998 7999 8000
		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */

	/* hook into SCSI subsystem */
	rc = hpsa_scsi_add_host(h);
	if (rc)
		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013

	/* create the resubmit workqueue */
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean7;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean7;	/* aer/h */
	}
8014

R
Robert Elliott 已提交
8015 8016
	/*
	 * At this point, the controller is ready to take commands.
8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
8032
		hpsa_free_irqs(h);
8033
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8034 8035
					hpsa_intx_discard_completions);
		if (rc) {
8036 8037
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
8038
			/*
8039 8040 8041 8042 8043 8044 8045 8046 8047
			 * cannot goto clean7 or free_irqs will be called
			 * again. Instead, do its work
			 */
			hpsa_free_performant_mode(h);	/* clean7 */
			hpsa_free_sg_chain_blocks(h);	/* clean6 */
			hpsa_free_cmd_pool(h);		/* clean5 */
			/*
			 * skip hpsa_free_irqs(h) clean4 since that
			 * was just called before request_irqs failed
8048 8049
			 */
			goto clean3;
8050 8051 8052 8053 8054
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
8055
			goto clean9;
8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
8076
			/* don't goto clean, we already unallocated */
8077 8078 8079 8080
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
8081

R
Robert Elliott 已提交
8082 8083
	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;
8084

8085

8086 8087 8088
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

8089
	hpsa_hba_inquiry(h);
8090 8091 8092 8093 8094 8095

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
8096 8097 8098
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
8099
	return 0;
8100

8101
clean9: /* wq, sh, perf, sg, cmd, irq, shost, pci, lu, aer/h */
R
Robert Elliott 已提交
8102
	kfree(h->hba_inquiry_data);
8103
clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
R
Robert Elliott 已提交
8104 8105 8106
	hpsa_free_performant_mode(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8107
	hpsa_free_sg_chain_blocks(h);
8108
clean5: /* cmd, irq, shost, pci, lu, aer/h */
8109
	hpsa_free_cmd_pool(h);
8110
clean4: /* irq, shost, pci, lu, aer/h */
8111
	hpsa_free_irqs(h);
8112 8113 8114 8115
clean3: /* shost, pci, lu, aer/h */
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
clean2_5: /* pci, lu, aer/h */
R
Robert Elliott 已提交
8116
	hpsa_free_pci_init(h);
8117
clean2: /* lu, aer/h */
R
Robert Elliott 已提交
8118 8119 8120 8121 8122 8123
	if (h->lockup_detected) {
		free_percpu(h->lockup_detected);
		h->lockup_detected = NULL;
	}
clean1:	/* wq/aer/h */
	if (h->resubmit_wq) {
8124
		destroy_workqueue(h->resubmit_wq);
R
Robert Elliott 已提交
8125 8126 8127
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
8128
		destroy_workqueue(h->rescan_ctlr_wq);
R
Robert Elliott 已提交
8129 8130
		h->rescan_ctlr_wq = NULL;
	}
8131
	kfree(h);
8132
	return rc;
8133 8134 8135 8136 8137 8138
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
8139
	int rc;
8140

8141
	if (unlikely(lockup_detected(h)))
8142
		return;
8143 8144 8145 8146
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

8147
	c = cmd_alloc(h);
8148

8149 8150 8151 8152
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
8153 8154 8155 8156
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
8157
	if (c->err_info->CommandStatus != 0)
8158
out:
8159 8160
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
8161
	cmd_free(h, c);
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
R
Robert Elliott 已提交
8176
	hpsa_free_irqs(h);			/* init_one 4 */
8177
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8178 8179
}

8180
static void hpsa_free_device_info(struct ctlr_info *h)
8181 8182 8183
{
	int i;

R
Robert Elliott 已提交
8184
	for (i = 0; i < h->ndevices; i++) {
8185
		kfree(h->dev[i]);
R
Robert Elliott 已提交
8186 8187
		h->dev[i] = NULL;
	}
8188 8189
}

8190
static void hpsa_remove_one(struct pci_dev *pdev)
8191 8192
{
	struct ctlr_info *h;
8193
	unsigned long flags;
8194 8195

	if (pci_get_drvdata(pdev) == NULL) {
8196
		dev_err(&pdev->dev, "unable to remove device\n");
8197 8198 8199
		return;
	}
	h = pci_get_drvdata(pdev);
8200 8201 8202 8203 8204

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
8205 8206 8207 8208
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
8209

R
Robert Elliott 已提交
8210
	/* includes hpsa_free_irqs - init_one 4 */
R
Robert Elliott 已提交
8211
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8212
	hpsa_shutdown(pdev);
8213

R
Robert Elliott 已提交
8214 8215
	hpsa_free_device_info(h);		/* scan */

8216 8217 8218 8219 8220
	kfree(h->hba_inquiry_data);			/* init_one 10 */
	h->hba_inquiry_data = NULL;			/* init_one 10 */
	if (h->scsi_host)
		scsi_remove_host(h->scsi_host);		/* init_one 8 */
	hpsa_free_ioaccel2_sg_chain_blocks(h);
R
Robert Elliott 已提交
8221 8222 8223 8224 8225
	hpsa_free_performant_mode(h);			/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
	hpsa_free_cmd_pool(h);				/* init_one 5 */

	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
R
Robert Elliott 已提交
8226

8227 8228 8229
	scsi_host_put(h->scsi_host);			/* init_one 3 */
	h->scsi_host = NULL;				/* init_one 3 */

R
Robert Elliott 已提交
8230
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8231
	hpsa_free_pci_init(h);				/* init_one 2.5 */
R
Robert Elliott 已提交
8232

R
Robert Elliott 已提交
8233 8234 8235 8236
	free_percpu(h->lockup_detected);		/* init_one 2 */
	h->lockup_detected = NULL;			/* init_one 2 */
	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
	kfree(h);					/* init_one 1 */
8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
8251
	.name = HPSA,
8252
	.probe = hpsa_init_one,
8253
	.remove = hpsa_remove_one,
8254 8255 8256 8257 8258 8259
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
8273
	int nsgs, int min_blocks, u32 *bucket_map)
8274 8275 8276 8277 8278 8279
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
8280
		size = i + min_blocks;
8281 8282
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
8283
		for (j = 0; j < num_buckets; j++) {
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

R
Robert Elliott 已提交
8294 8295 8296 8297
/*
 * return -ENODEV on err, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
8298
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8299
{
8300 8301
	int i;
	unsigned long register_value;
8302 8303
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
8304 8305 8306
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
8307
	struct access_method access = SA5_performant_access;
8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
8319
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8320 8321 8322 8323 8324 8325
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
8326
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8337
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8338 8339 8340 8341 8342 8343
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

8344 8345 8346 8347 8348 8349 8350
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

8351
	/* Controller spec: zero out this buffer. */
8352 8353
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8354

8355 8356
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
8357
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8358 8359 8360 8361 8362
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
8363
	writel(h->nreply_queues, &h->transtable->RepQCount);
8364 8365
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
8366 8367 8368

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
8369
		writel(h->reply_queue[i].busaddr,
8370 8371 8372
			&h->transtable->RepQAddr[i].lower);
	}

8373
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8374 8375 8376 8377 8378 8379 8380 8381
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8382 8383 8384 8385 8386 8387
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
8388
	}
8389
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8390 8391 8392 8393 8394
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
8395 8396
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
8397 8398
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
8399
		return -ENODEV;
8400
	}
8401
	/* Change the access methods to the performant access methods */
8402 8403 8404
	h->access = access;
	h->transMethod = transMethod;

8405 8406
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
8407
		return 0;
8408

8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
8419

8420
		/* initialize all reply queue entries to unused */
8421 8422 8423 8424
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
8425

8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
8437 8438
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8439 8440
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
8441
			cp->tag =
8442
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8443 8444
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8469
	}
8470
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8471 8472 8473 8474 8475 8476
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
8477 8478
}

8479 8480 8481
/* Free ioaccel1 mode command blocks and block fetch table */
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
R
Robert Elliott 已提交
8482
	if (h->ioaccel_cmd_pool) {
8483 8484 8485 8486
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool,
			h->ioaccel_cmd_pool_dhandle);
R
Robert Elliott 已提交
8487 8488 8489
		h->ioaccel_cmd_pool = NULL;
		h->ioaccel_cmd_pool_dhandle = 0;
	}
8490
	kfree(h->ioaccel1_blockFetchTable);
R
Robert Elliott 已提交
8491
	h->ioaccel1_blockFetchTable = NULL;
8492 8493
}

8494 8495
/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8496
{
8497 8498 8499 8500 8501
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
8514
		kmalloc(((h->ioaccel_maxsg + 1) *
8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
8526
	hpsa_free_ioaccel1_cmd_and_bft(h);
8527
	return -ENOMEM;
8528 8529
}

8530 8531 8532
/* Free ioaccel2 mode command blocks and block fetch table */
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
8533 8534
	hpsa_free_ioaccel2_sg_chain_blocks(h);

R
Robert Elliott 已提交
8535
	if (h->ioaccel2_cmd_pool) {
8536 8537 8538 8539
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool,
			h->ioaccel2_cmd_pool_dhandle);
R
Robert Elliott 已提交
8540 8541 8542
		h->ioaccel2_cmd_pool = NULL;
		h->ioaccel2_cmd_pool_dhandle = 0;
	}
8543
	kfree(h->ioaccel2_blockFetchTable);
R
Robert Elliott 已提交
8544
	h->ioaccel2_blockFetchTable = NULL;
8545 8546
}

8547 8548
/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8549
{
8550 8551
	int rc;

8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
8571 8572 8573 8574 8575 8576 8577
		(h->ioaccel2_blockFetchTable == NULL)) {
		rc = -ENOMEM;
		goto clean_up;
	}

	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
	if (rc)
8578 8579 8580 8581 8582 8583 8584
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
8585
	hpsa_free_ioaccel2_cmd_and_bft(h);
8586
	return rc;
8587 8588
}

R
Robert Elliott 已提交
8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
static void hpsa_free_performant_mode(struct ctlr_info *h)
{
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
}

/* return -ENODEV on error, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8603 8604
{
	u32 trans_support;
8605 8606
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
R
Robert Elliott 已提交
8607
	int i, rc;
8608

8609
	if (hpsa_simple_mode)
R
Robert Elliott 已提交
8610
		return 0;
8611

8612 8613
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
R
Robert Elliott 已提交
8614
		return 0;
8615

8616 8617 8618 8619
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8620 8621 8622 8623 8624
		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
		if (rc)
			return rc;
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		transMethod |= CFGTBL_Trans_io_accel2 |
8625
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8626 8627 8628
		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
		if (rc)
			return rc;
8629 8630
	}

8631
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8632
	hpsa_get_max_perf_mode_cmds(h);
8633
	/* Performant mode ring buffer and supporting data structures */
8634
	h->reply_queue_size = h->max_commands * sizeof(u64);
8635

8636
	for (i = 0; i < h->nreply_queues; i++) {
8637 8638 8639
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
R
Robert Elliott 已提交
8640 8641 8642 8643
		if (!h->reply_queue[i].head) {
			rc = -ENOMEM;
			goto clean1;	/* rq, ioaccel */
		}
8644 8645 8646 8647 8648
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

8649
	/* Need a block fetch table for performant mode */
8650
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8651
				sizeof(u32)), GFP_KERNEL);
R
Robert Elliott 已提交
8652 8653 8654 8655
	if (!h->blockFetchTable) {
		rc = -ENOMEM;
		goto clean1;	/* rq, ioaccel */
	}
8656

R
Robert Elliott 已提交
8657 8658 8659 8660
	rc = hpsa_enter_performant_mode(h, trans_support);
	if (rc)
		goto clean2;	/* bft, rq, ioaccel */
	return 0;
8661

R
Robert Elliott 已提交
8662
clean2:	/* bft, rq, ioaccel */
8663
	kfree(h->blockFetchTable);
R
Robert Elliott 已提交
8664 8665 8666 8667 8668 8669
	h->blockFetchTable = NULL;
clean1:	/* rq, ioaccel */
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
8670 8671
}

8672
static int is_accelerated_cmd(struct CommandList *c)
8673
{
8674 8675 8676 8677 8678 8679
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
8680
	int i, accel_cmds_out;
8681
	int refcount;
8682

8683
	do { /* wait for all outstanding ioaccel commands to drain out */
8684
		accel_cmds_out = 0;
8685 8686
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
8687 8688 8689 8690
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
8691
		}
8692
		if (accel_cmds_out <= 0)
8693
			break;
8694 8695 8696 8697
		msleep(100);
	} while (1);
}

8698 8699 8700 8701 8702 8703
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
8704
	return pci_register_driver(&hpsa_pci_driver);
8705 8706 8707 8708 8709 8710 8711
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

8712 8713
static void __attribute__((unused)) verify_offsets(void)
{
8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
8783
	VERIFY_OFFSET(tag, 0x68);
8784 8785 8786 8787 8788 8789
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

8790 8791
module_init(hpsa_init);
module_exit(hpsa_cleanup);