hpsa.c 192.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *    Disk Array driver for HP Smart Array SAS controllers
 *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/kthread.h>
51
#include <linux/jiffies.h>
52
#include <asm/div64.h>
53 54 55 56
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57
#define HPSA_DRIVER_VERSION "3.4.0-1"
58
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
#define HPSA "hpsa"
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 81 82 83
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
84 85 86 87 88 89 90 91

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 93
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 96 97 98 99 100 101
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 103 104 105 106 107 108
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109 110 111 112 113 114 115 116 117 118 119 120 121
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
122
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
123
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
139 140
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
141 142 143 144 145 146 147
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
148 149 150 151 152 153 154
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
155 156 157 158 159 160 161 162 163 164 165 166
	{0x21BD103C, "Smart Array", &SA5_access},
	{0x21BE103C, "Smart Array", &SA5_access},
	{0x21BF103C, "Smart Array", &SA5_access},
	{0x21C0103C, "Smart Array", &SA5_access},
	{0x21C1103C, "Smart Array", &SA5_access},
	{0x21C2103C, "Smart Array", &SA5_access},
	{0x21C3103C, "Smart Array", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array", &SA5_access},
	{0x21C7103C, "Smart Array", &SA5_access},
	{0x21C8103C, "Smart Array", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
167 168 169 170 171
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

172 173
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
174 175 176 177 178 179 180 181 182 183 184
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
static void start_io(struct ctlr_info *h);

#ifdef CONFIG_COMPAT
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
185
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
186
	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
187 188
	int cmd_type);

J
Jeff Garzik 已提交
189
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
190 191 192
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
193 194
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason);
195 196

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
197
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
198 199 200 201 202 203 204 205
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
206 207
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
208
	int nsgs, int min_blocks, int *bucket_map);
209
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
210
static inline u32 next_command(struct ctlr_info *h, u8 q);
211 212 213 214 215 216 217 218
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
219
static inline void finish_cmd(struct CommandList *c);
220
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
221 222
#define BOARD_NOT_READY 0
#define BOARD_READY 1
223 224
static void hpsa_drain_commands(struct ctlr_info *h);
static void hpsa_flush_cache(struct ctlr_info *h);
225 226 227
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr);
228 229 230 231 232 233 234

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

235 236 237 238 239 240
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

241 242 243 244 245 246 247 248
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
249
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
250 251 252
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
253
		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
254 255 256
			"detected, action required\n", h->ctlr);
		break;
	case REPORT_LUNS_CHANGED:
257
		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
M
Mike Miller 已提交
258
			"changed, action required\n", h->ctlr);
259
	/*
260 261
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
262 263 264
	 */
		break;
	case POWER_OR_RESET:
265
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
266 267 268
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
269
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
270 271 272
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
273
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
274 275 276 277 278 279
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

280 281 282 283 284 285 286 287 288 289
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

290 291 292 293 294 295
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
296
	h = shost_to_hba(shost);
M
Mike Miller 已提交
297
	hpsa_scan_start(h->scsi_host);
298 299 300
	return count;
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

316 317 318 319 320 321 322 323 324
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
}

325 326 327 328 329 330 331 332
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
333
		h->transMethod & CFGTBL_Trans_Performant ?
334 335 336
			"performant" : "simple");
}

337
/* List of controllers which cannot be hard reset on kexec with reset_devices */
338 339 340 341 342 343 344 345 346 347 348 349 350
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
351
	0x40800E11, /* Smart Array 5i */
352 353
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
354 355 356 357 358 359
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
360 361
};

362 363
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
364
	0x40800E11, /* Smart Array 5i */
365 366 367 368 369 370
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
371 372 373 374 375 376 377 378 379 380 381 382
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
383 384 385 386
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
387 388 389 390 391 392 393 394 395 396 397
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
398 399 400 401
			return 0;
	return 1;
}

402 403 404 405 406 407
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

408 409 410 411 412 413 414
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
415
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
416 417
}

418 419 420 421 422 423
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
424
	"1(ADM)", "UNKNOWN"
425 426 427 428 429 430 431
};
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
432
	unsigned char rlevel;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
456
	if (rlevel > RAID_UNKNOWN)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

536 537 538 539
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
540 541
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
542 543 544 545 546 547
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
548 549
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
550 551 552 553 554

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
555
	&dev_attr_hp_ssd_smart_path_enabled,
556 557 558 559 560 561 562 563
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
564
	&dev_attr_resettable,
565 566 567 568 569
	NULL,
};

static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
570 571
	.name			= HPSA,
	.proc_name		= HPSA,
572 573 574 575 576 577
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
	.change_queue_depth	= hpsa_change_queue_depth,
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
578
	.eh_abort_handler	= hpsa_eh_abort_handler,
579 580 581 582 583 584 585 586 587
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
588
	.max_sectors = 8192,
589
	.no_write_same = 1,
590 591 592 593 594 595 596 597 598
};


/* Enqueuing and dequeuing functions for cmdlists. */
static inline void addQ(struct list_head *list, struct CommandList *c)
{
	list_add_tail(&c->list, list);
}

599
static inline u32 next_command(struct ctlr_info *h, u8 q)
600 601
{
	u32 a;
602
	struct reply_pool *rq = &h->reply_queue[q];
603
	unsigned long flags;
604

605 606 607
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

608
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
609
		return h->access.command_completed(h, q);
610

611 612 613
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
614
		spin_lock_irqsave(&h->lock, flags);
615
		h->commands_outstanding--;
616
		spin_unlock_irqrestore(&h->lock, flags);
617 618 619 620
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
621 622 623
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
624 625 626 627
	}
	return a;
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

654 655 656 657 658 659
/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
660
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
661
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
662
		if (likely(h->msix_vector > 0))
663
			c->Header.ReplyQueue =
664
				raw_smp_processor_id() % h->nreply_queues;
665
	}
666 667
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

732 733 734 735 736
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

737 738 739 740 741 742 743 744 745 746
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
		set_ioaccel1_performant_mode(h, c);
		break;
	case CMD_IOACCEL2:
		set_ioaccel2_performant_mode(h, c);
		break;
	default:
		set_performant_mode(h, c);
	}
747
	dial_down_lockup_detection_during_fw_flash(h, c);
748 749 750 751
	spin_lock_irqsave(&h->lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
	spin_unlock_irqrestore(&h->lock, flags);
752
	start_io(h);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
}

static inline void removeQ(struct CommandList *c)
{
	if (WARN_ON(list_empty(&c->list)))
		return;
	list_del_init(&c->list);
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

776 777 778 779 780 781 782
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
783
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
784

785
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
786 787 788

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
789
			__set_bit(h->dev[i]->target, lun_taken);
790 791
	}

792 793 794 795 796 797
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

813
	if (n >= HPSA_MAX_DEVICES) {
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
	 * unit no, zero otherise.
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

881 882 883 884 885 886 887 888 889
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
890 891 892 893

	/* Raid offload parameters changed. */
	h->dev[entry]->offload_config = new_entry->offload_config;
	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
894 895 896
	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
	h->dev[entry]->raid_map = new_entry->raid_map;
897

898 899 900 901 902
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
		new_entry->target, new_entry->lun);
}

903 904 905 906 907 908 909
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
910
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
911 912
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
913 914 915 916 917 918 919 920 921 922

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

923 924 925 926 927 928 929 930
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

931 932 933 934 935 936 937 938
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

939
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1018 1019 1020 1021
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1022 1023 1024
	return 0;
}

1025 1026 1027
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1028 1029 1030 1031
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1032 1033 1034 1035 1036 1037 1038 1039 1040
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1041
#define DEVICE_UPDATED 3
1042
	for (i = 0; i < haystack_size; i++) {
1043 1044
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1045 1046
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1047 1048 1049
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1050
				return DEVICE_SAME;
1051
			} else {
1052
				return DEVICE_CHANGED;
1053
			}
1054 1055 1056 1057 1058 1059
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1060
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1074 1075
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1089 1090
	 * If minor device attributes change, just update
	 * the existing device structure.
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1105 1106
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1107 1108 1109 1110
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1111 1112
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	spin_unlock_irqrestore(&h->devlock, flags);

	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		struct scsi_device *sdev =
			scsi_device_lookup(sh, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		if (sdev != NULL) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/* We don't expect to get here.
			 * future cmds to this device will get selection
			 * timeout as if the device was gone.
			 */
			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
				" for removal.", hostno, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1191
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
	if (sd != NULL)
		sdev->hostdata = sd;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1227
	/* nothing to do. */
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
	if (!h->cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
		if (!h->cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1268
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
	chain_sg->Ext = HPSA_SG_CHAIN;
	chain_sg->Len = sizeof(*chain_sg) *
		(c->Header.SGTotal - h->max_cmd_sg_entries);
	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
				PCI_DMA_TODEVICE);
1281 1282 1283 1284 1285 1286
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		chain_sg->Addr.lower = 0;
		chain_sg->Addr.upper = 0;
		return -1;
	}
1287 1288
	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1289
	return 0;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;
	union u64bit temp64;

	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	temp64.val32.lower = chain_sg->Addr.lower;
	temp64.val32.upper = chain_sg->Addr.upper;
	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void handle_ioaccel_mode2_error(struct ctlr_info *h,
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
			if (c2->error_data.data_present !=
					IOACCEL2_SENSE_DATA_PRESENT)
				break;
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
			cmd->result |= SAM_STAT_CHECK_CONDITION;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
			"HP SSD Smart Path", c2->error_data.serv_response);
		break;
	}
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
		if (c2->error_data.status !=
				IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev_warn(&h->pdev->dev,
				"%s: Error 0x%02x, Retrying on standard path.\n",
				"HP SSD Smart Path", c2->error_data.status);
		dev->offload_enabled = 0;
		cmd->result = DID_SOFT_ERROR << 16;
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}
	handle_ioaccel_mode2_error(h, c, cmd, c2);
	cmd_free(h, c);
	cmd->scsi_done(cmd);
}

1424
static void complete_scsi_command(struct CommandList *cp)
1425 1426 1427 1428
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1429
	struct hpsa_scsi_dev_t *dev;
1430 1431 1432 1433

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1434
	unsigned long sense_data_size;
1435 1436 1437 1438

	ei = cp->err_info;
	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
	h = cp->h;
1439
	dev = cmd->device->hostdata;
1440 1441

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1442 1443
	if ((cp->cmd_type == CMD_SCSI) &&
		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1444
		hpsa_unmap_sg_chain_block(h, cp);
1445 1446 1447

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1448 1449 1450 1451

	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1452
	cmd->result |= ei->ScsiStatus;
1453 1454

	/* copy the sense data whether we need to or not. */
1455 1456 1457 1458 1459 1460 1461 1462
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1463 1464 1465 1466
	scsi_set_resid(cmd, ei->ResidualCnt);

	if (ei->CommandStatus == 0) {
		cmd_free(h, cp);
1467
		cmd->scsi_done(cmd);
1468 1469 1470
		return;
	}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
		cp->Header.Tag.lower = c->Tag.lower;
		cp->Header.Tag.upper = c->Tag.upper;
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
			cmd->result = DID_SOFT_ERROR << 16;
			cmd_free(h, cp);
			cmd->scsi_done(cmd);
			return;
		}
1495 1496
	}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}

		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1511
			if (check_for_unit_attention(h, cp))
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
				break;
			if (sense_key == ILLEGAL_REQUEST) {
				/*
				 * SCSI REPORT_LUNS is commonly unsupported on
				 * Smart Array.  Suppress noisy complaint.
				 */
				if (cp->Request.CDB[0] == REPORT_LUNS)
					break;

				/* If ASC/ASCQ indicate Logical Unit
				 * Not Supported condition,
				 */
				if ((asc == 0x25) && (ascq == 0x0)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition\n", cp);
					break;
				}
			}

			if (sense_key == NOT_READY) {
				/* If Sense is Not Ready, Logical Unit
				 * Not ready, Manual Intervention
				 * required
				 */
				if ((asc == 0x04) && (ascq == 0x03)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition: unit "
						"not ready, manual "
						"intervention required\n", cp);
					break;
				}
			}
1544 1545 1546 1547 1548 1549
			if (sense_key == ABORTED_COMMAND) {
				/* Aborted command is retryable */
				dev_warn(&h->pdev->dev, "cp %p "
					"has check condition: aborted command: "
					"ASC: 0x%x, ASCQ: 0x%x\n",
					cp, asc, ascq);
1550
				cmd->result |= DID_SOFT_ERROR << 16;
1551 1552
				break;
			}
1553
			/* Must be some other type of check condition */
1554
			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1555 1556 1557 1558
					"unknown type: "
					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
					"Returning result: 0x%x, "
					"cmd=[%02x %02x %02x %02x %02x "
1559
					"%02x %02x %02x %02x %02x %02x "
1560 1561 1562 1563 1564 1565 1566
					"%02x %02x %02x %02x %02x]\n",
					cp, sense_key, asc, ascq,
					cmd->result,
					cmd->cmnd[0], cmd->cmnd[1],
					cmd->cmnd[2], cmd->cmnd[3],
					cmd->cmnd[4], cmd->cmnd[5],
					cmd->cmnd[6], cmd->cmnd[7],
1567 1568 1569 1570
					cmd->cmnd[8], cmd->cmnd[9],
					cmd->cmnd[10], cmd->cmnd[11],
					cmd->cmnd[12], cmd->cmnd[13],
					cmd->cmnd[14], cmd->cmnd[15]);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
			break;
		}


		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev, "cp %p has"
			" completed with data overrun "
			"reported\n", cp);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1625
		cmd->result = DID_ERROR << 16;
1626
		dev_warn(&h->pdev->dev, "cp %p has "
1627
			"protocol error\n", cp);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
				cp, ei->ScsiStatus);
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
1647 1648
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1649 1650 1651 1652 1653 1654
			"abort\n", cp);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
		break;
1655 1656 1657 1658
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
1659 1660 1661 1662 1663 1664 1665 1666
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
1667 1668 1669 1670 1671 1672
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
1673
	cmd->scsi_done(cmd);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;
	union u64bit addr64;

	for (i = 0; i < sg_used; i++) {
		addr64.val32.lower = c->SG[i].Addr.lower;
		addr64.val32.upper = c->SG[i].Addr.upper;
		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
			data_direction);
	}
}

1690
static int hpsa_map_one(struct pci_dev *pdev,
1691 1692 1693 1694 1695
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
1696
	u64 addr64;
1697 1698 1699 1700

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1701
		return 0;
1702 1703
	}

1704
	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1705
	if (dma_mapping_error(&pdev->dev, addr64)) {
1706
		/* Prevent subsequent unmap of something never mapped */
1707 1708
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1709
		return -1;
1710
	}
1711
	cp->SG[0].Addr.lower =
1712
	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1713
	cp->SG[0].Addr.upper =
1714
	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1715
	cp->SG[0].Len = buflen;
1716
	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1717 1718
	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1719
	return 0;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

	/* If controller lockup detected, fake a hardware error. */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
	} else {
		spin_unlock_irqrestore(&h->lock, flags);
		hpsa_scsi_do_simple_cmd_core(h, c);
	}
}

1748
#define MAX_DRIVER_CMD_RETRIES 25
1749 1750 1751
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
1752
	int backoff_time = 10, retry_count = 0;
1753 1754

	do {
1755
		memset(c->err_info, 0, sizeof(*c->err_info));
1756 1757
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
1758 1759 1760 1761 1762
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
1763
	} while ((check_for_unit_attention(h, c) ||
1764 1765
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

static void hpsa_scsi_interpret_error(struct CommandList *cp)
{
	struct ErrorInfo *ei;
	struct device *d = &cp->h->pdev->dev;

	ei = cp->err_info;
	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
		dev_warn(d, "cmd %p has completed with errors\n", cp);
		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
				ei->ScsiStatus);
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
			dev_info(d, "UNDERRUN\n");
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(d, "cp %p has completed with data overrun\n", cp);
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
		dev_warn(d, "cp %p is reported invalid (probably means "
			"target device no longer present)\n", cp);
		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
		print_cmd(cp);  */
		}
		break;
	case CMD_PROTOCOL_ERR:
		dev_warn(d, "cp %p has protocol error \n", cp);
		break;
	case CMD_HARDWARE_ERR:
		/* cmd->result = DID_ERROR << 16; */
		dev_warn(d, "cp %p had hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		dev_warn(d, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		dev_warn(d, "cp %p was aborted\n", cp);
		break;
	case CMD_ABORT_FAILED:
		dev_warn(d, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
		break;
	case CMD_TIMEOUT:
		dev_warn(d, "cp %p timed out\n", cp);
		break;
1824 1825 1826
	case CMD_UNABORTABLE:
		dev_warn(d, "Command unabortable\n");
		break;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	default:
		dev_warn(d, "cp %p returned unknown status %x\n", cp,
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
			unsigned char page, unsigned char *buf,
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1845
		return -ENOMEM;
1846 1847
	}

1848 1849 1850 1851 1852
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
1853 1854 1855 1856 1857 1858
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
1859
out:
1860 1861 1862 1863
	cmd_special_free(h, c);
	return rc;
}

1864 1865
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
	u8 reset_type)
1866 1867 1868 1869 1870 1871 1872 1873 1874
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1875
		return -ENOMEM;
1876 1877
	}

1878
	/* fill_cmd can't fail here, no data buffer to map. */
1879 1880 1881
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
	cmd_special_free(h, c);
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));

	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
		cmd_special_free(h, c);
		return -ENOMEM;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		cmd_special_free(h, c);
		return -1;
	}
	cmd_special_free(h, c);

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
}

static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
			HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
out:
	kfree(buf);
	return;
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return -1;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		struct ReportLUNdata *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -1;
	}
2087 2088
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2089 2090 2091 2092 2093
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2094 2095 2096 2097 2098 2099 2100 2101
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
2102 2103 2104 2105 2106 2107 2108 2109
	} else {
		if (buf->extended_response_flag != extended_response) {
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
				buf->extended_response_flag);
			rc = -1;
		}
2110
	}
2111
out:
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	cmd_special_free(h, c);
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf,
		int bufsize, int extended_response)
{
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

static int hpsa_update_device_info(struct ctlr_info *h,
2138 2139
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2140
{
2141 2142 2143 2144 2145 2146

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2147
	unsigned char *inq_buff;
2148
	unsigned char *obdr_sig;
2149

2150
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2175
		is_logical_dev_addr_mode(scsi3addr)) {
2176
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2177 2178 2179
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
	} else {
2180
		this_device->raid_level = RAID_UNKNOWN;
2181 2182 2183
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
	}
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

2195 2196 2197 2198 2199 2200 2201 2202
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

2203
static unsigned char *ext_target_model[] = {
2204 2205 2206 2207
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
2208
	"P2000 G3 SAS",
2209
	"MSA 2040 SAS",
2210 2211 2212
	NULL,
};

2213
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2214 2215 2216
{
	int i;

2217 2218 2219
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
2220 2221 2222 2223 2224
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
2225
 * Puts non-external target logical volumes on bus 0, external target logical
2226 2227 2228 2229 2230 2231
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
2232
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2233
{
2234 2235 2236 2237
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
2238
		if (is_hba_lunid(lunaddrbytes))
2239
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2240
		else
2241 2242 2243 2244 2245
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
2246 2247
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
2248 2249 2250 2251 2252 2253
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
2254
	}
2255
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2256 2257 2258 2259
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
2260
 * For the external targets (arrays), we have to manually detect the enclosure
2261 2262 2263 2264 2265 2266 2267 2268
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
2269
static int add_ext_target_dev(struct ctlr_info *h,
2270
	struct hpsa_scsi_dev_t *tmpdevice,
2271
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2272
	unsigned long lunzerobits[], int *n_ext_target_devs)
2273 2274 2275
{
	unsigned char scsi3addr[8];

2276
	if (test_bit(tmpdevice->target, lunzerobits))
2277 2278 2279 2280 2281
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

2282 2283
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
2284

2285
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2286 2287
		return 0;

2288
	memset(scsi3addr, 0, 8);
2289
	scsi3addr[3] = tmpdevice->target;
2290 2291 2292
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

2293 2294 2295
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

2296
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2297 2298
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
2299 2300 2301 2302
			"configuration.");
		return 0;
	}

2303
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2304
		return 0;
2305
	(*n_ext_target_devs)++;
2306 2307 2308
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
2309 2310 2311
	return 1;
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
	struct ReportExtendedLUNdata *physicals = NULL;
	int responsesize = 24;	/* size of physical extended response */
	int extended = 2;	/* flag forces reporting 'other dev info'. */
	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
	u32 nphysicals = 0;	/* number of reported physical devs */
	int found = 0;		/* found match (1) or not (0) */
	u32 find;		/* handle we need to match */
	int i;
	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */

	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
		return 0; /* no match */

	/* point to the ioaccel2 device handle */
	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	if (c2a == NULL)
		return 0; /* no match */

	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
	if (scmd == NULL)
		return 0; /* no match */

	d = scmd->device->hostdata;
	if (d == NULL)
		return 0; /* no match */

	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
	find = c2a->scsi_nexus;

	/* Get the list of physical devices */
	physicals = kzalloc(reportsize, GFP_KERNEL);
	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
		reportsize, extended)) {
		dev_err(&h->pdev->dev,
			"Can't lookup %s device handle: report physical LUNs failed.\n",
			"HP SSD Smart Path");
		kfree(physicals);
		return 0;
	}
	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
							responsesize;


	/* find ioaccel2 handle in list of physicals: */
	for (i = 0; i < nphysicals; i++) {
		/* handle is in bytes 28-31 of each lun */
		if (memcmp(&((struct ReportExtendedLUNdata *)
				physicals)->LUN[i][20], &find, 4) != 0) {
			continue; /* didn't match */
		}
		found = 1;
		memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
					physicals)->LUN[i][0], 8);
		break; /* found it */
	}

	kfree(physicals);
	if (found)
		return 1;
	else
		return 0;

}
2391 2392 2393 2394 2395 2396 2397 2398
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
	int reportlunsize,
2399
	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2400
	struct ReportLUNdata *logdev, u32 *nlogicals)
2401
{
2402 2403 2404 2405 2406
	int physical_entry_size = 8;

	*physical_mode = 0;

	/* For I/O accelerator mode we need to read physical device handles */
2407 2408
	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
		h->transMethod & CFGTBL_Trans_io_accel2) {
2409 2410 2411
		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
		physical_entry_size = 24;
	}
2412
	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2413
							*physical_mode)) {
2414 2415 2416
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
2417 2418
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
							physical_entry_size;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
2429
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

2448
u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2449 2450
	int nphysicals, int nlogicals,
	struct ReportExtendedLUNdata *physdev_list,
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
2486
	struct ReportExtendedLUNdata *physdev_list = NULL;
2487
	struct ReportLUNdata *logdev_list = NULL;
2488 2489
	u32 nphysicals = 0;
	u32 nlogicals = 0;
2490
	int physical_mode = 0;
2491
	u32 ndev_allocated = 0;
2492 2493
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
2494
	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
2495
	int i, n_ext_target_devs, ndevs_to_allocate;
2496
	int raid_ctlr_position;
2497
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2498

2499
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2500 2501 2502 2503
	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);

2504
	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2505 2506 2507 2508 2509
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

2510 2511
	if (hpsa_gather_lun_info(h, reportlunsize,
			(struct ReportLUNdata *) physdev_list, &nphysicals,
2512
			&physical_mode, logdev_list, &nlogicals))
2513 2514
		goto out;

2515 2516 2517
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
2518
	 */
2519
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2520 2521 2522

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
2523 2524 2525 2526 2527 2528 2529
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

2530 2531 2532 2533 2534 2535 2536 2537 2538
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

2539 2540 2541 2542 2543
	if (unlikely(is_scsi_rev_5(h)))
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

2544
	/* adjust our table of devices */
2545
	n_ext_target_devs = 0;
2546
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2547
		u8 *lunaddrbytes, is_OBDR = 0;
2548 2549

		/* Figure out where the LUN ID info is coming from */
2550 2551
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
2552
		/* skip masked physical devices. */
2553 2554
		if (lunaddrbytes[3] & 0xC0 &&
			i < nphysicals + (raid_ctlr_position == 0))
2555 2556 2557
			continue;

		/* Get device type, vendor, model, device id */
2558 2559
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
2560
			continue; /* skip it if we can't talk to it. */
2561
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2562 2563 2564
		this_device = currentsd[ncurrent];

		/*
2565
		 * For external target devices, we have to insert a LUN 0 which
2566 2567 2568 2569 2570
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
2571
		if (add_ext_target_dev(h, tmpdevice, this_device,
2572
				lunaddrbytes, lunzerobits,
2573
				&n_ext_target_devs)) {
2574 2575 2576 2577 2578 2579 2580
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

		switch (this_device->devtype) {
2581
		case TYPE_ROM:
2582 2583 2584 2585 2586 2587 2588
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
2589 2590
			if (is_OBDR)
				ncurrent++;
2591 2592
			break;
		case TYPE_DISK:
2593 2594
			if (i >= nphysicals) {
				ncurrent++;
2595
				break;
2596 2597 2598 2599 2600 2601 2602
			}
			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
				memcpy(&this_device->ioaccel_handle,
					&lunaddrbytes[20],
					sizeof(this_device->ioaccel_handle));
				ncurrent++;
			}
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
2621
		if (ncurrent >= HPSA_MAX_DEVICES)
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
}

/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
2638
static int hpsa_scatter_gather(struct ctlr_info *h,
2639 2640 2641 2642 2643
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	unsigned int len;
	struct scatterlist *sg;
2644
	u64 addr64;
2645 2646
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
2647

2648
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2649 2650 2651 2652 2653 2654 2655 2656

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

2657 2658 2659
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
2660
	scsi_for_each_sg(cmd, sg, use_sg, i) {
2661 2662 2663 2664 2665 2666
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
2667
		addr64 = (u64) sg_dma_address(sg);
2668
		len  = sg_dma_len(sg);
2669 2670 2671
		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
		curr_sg->Len = len;
2672
		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
2673 2674 2675 2676 2677 2678 2679 2680 2681
		curr_sg++;
	}

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
		cp->Header.SGTotal = (u16) (use_sg + 1);
2682 2683 2684 2685
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
2686
		return 0;
2687 2688 2689 2690
	}

sglist_finished:

2691 2692
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2693 2694 2695
	return 0;
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

2744
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
2745 2746
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

2758 2759 2760 2761
	/* TODO: implement chaining support */
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

2762 2763
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

2764 2765 2766
	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
			curr_sg->Addr.upper =
				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
			curr_sg->Len = len;

			if (i == (scsi_sg_count(cmd) - 1))
				curr_sg->Ext = HPSA_SG_LAST;
			else
				curr_sg->Ext = 0;  /* we are not chaining */
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

2816
	c->Header.SGList = use_sg;
2817
	/* Fill out the command structure to submit */
2818
	cp->dev_handle = ioaccel_handle & 0xFFFF;
2819 2820
	cp->transfer_len = total_len;
	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
2821
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
2822
	cp->control = control;
2823 2824
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
2825
	/* Tag was already set at init time. */
2826
	enqueue_cmd_and_start_io(h, c);
2827 2828
	return 0;
}
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			cp->direction = IOACCEL2_DIR_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			cp->direction = IOACCEL2_DIR_DATA_IN;
			break;
		case DMA_NONE:
			cp->direction = IOACCEL2_DIR_NO_DATA;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		cp->direction = IOACCEL2_DIR_NO_DATA;
	}
	cp->scsi_nexus = ioaccel_handle;
	cp->Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
				DIRECT_LOOKUP_BIT;
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
	memset(cp->cciss_lun, 0, sizeof(cp->cciss_lun));
	cp->cmd_priority_task_attr = 0;

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	BUG_ON(block_cnt == 0);
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
	if (last_block >= map->volume_blk_cnt || last_block < first_block)
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
	blocks_per_row = map->data_disks_per_row * map->strip_size;
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
	(void) do_div(tmpdiv,  map->strip_size);
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
	(void) do_div(tmpdiv, map->strip_size);
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	first_column = first_row_offset / map->strip_size;
	last_column = last_row_offset / map->strip_size;
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
				map->row_cnt;
	map_index = (map_row * (map->data_disks_per_row +
				map->metadata_disks_per_row)) + first_column;
	if (dev->raid_level == 2) {
		/* simple round-robin balancing of RAID 1+0 reads across
		 * primary and mirror members.  this is appropriate for SSD
		 * but not optimal for HDD.
		 */
		if (dev->offload_to_mirror)
			map_index += map->data_disks_per_row;
		dev->offload_to_mirror = !dev->offload_to_mirror;
	}
	disk_handle = dd[map_index].ioaccel_handle;
	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
			(first_row_offset - (first_column * map->strip_size));
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
						dev->scsi3addr);
}

J
Jeff Garzik 已提交
3134
static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3135 3136 3137 3138 3139 3140 3141
	void (*done)(struct scsi_cmnd *))
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	unsigned long flags;
3142
	int rc = 0;
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	spin_lock_irqsave(&h->lock, flags);
3155 3156 3157 3158 3159 3160
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	}
3161
	spin_unlock_irqrestore(&h->lock, flags);
3162
	c = cmd_alloc(h);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* Fill in the command list header */

	cmd->scsi_done = done;    /* save this for use by completion code */

	/* save c in case we have to abort it  */
	cmd->host_scribble = (unsigned char *) c;

	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	/* Call alternate submit routine for I/O accelerated commands.
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS)) {
		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
3201

3202 3203
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3204 3205
	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	c->Request.Type.Type = TYPE_CMD;
	c->Request.Type.Attribute = ATTR_SIMPLE;
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
		c->Request.Type.Direction = XFER_WRITE;
		break;
	case DMA_FROM_DEVICE:
		c->Request.Type.Direction = XFER_READ;
		break;
	case DMA_NONE:
		c->Request.Type.Direction = XFER_NONE;
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

		c->Request.Type.Direction = XFER_RSVD;
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

3250
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3251 3252 3253 3254 3255 3256 3257 3258
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

J
Jeff Garzik 已提交
3259 3260
static DEF_SCSI_QCMD(hpsa_scsi_queue_command)

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
{
	unsigned long flags;

	/*
	 * Don't let rescans be initiated on a controller known
	 * to be locked up.  If the controller locks up *during*
	 * a rescan, that thread is probably hosed, but at least
	 * we can prevent new rescan threads from piling up on a
	 * locked up controller.
	 */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		spin_lock_irqsave(&h->scan_lock, flags);
		h->scan_finished = 1;
		wake_up_all(&h->scan_wait_queue);
		spin_unlock_irqrestore(&h->scan_lock, flags);
		return 1;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return 0;
}

3285 3286 3287 3288 3289
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

3290 3291 3292
	if (do_not_scan_if_controller_locked_up(h))
		return;

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

3309 3310 3311
	if (do_not_scan_if_controller_locked_up(h))
		return;

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1; /* mark scan as finished. */
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason)
{
	struct ctlr_info *h = sdev_to_hba(sdev);

	if (reason != SCSI_QDEPTH_DEFAULT)
		return -ENOTSUPP;

	if (qdepth < 1)
		qdepth = 1;
	else
		if (qdepth > h->nr_cmds)
			qdepth = h->nr_cmds;
	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
	return sdev->queue_depth;
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
3360 3361
	struct Scsi_Host *sh;
	int error;
3362

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
	sh->can_queue = h->nr_cmds;
	sh->cmd_per_lun = h->nr_cmds;
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
	int rc = 0;
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

3426 3427 3428
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

	cmd_special_free(h, c);
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
3474 3475
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
3476
	/* send a reset to the SCSI LUN which the command was sent to */
3477
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
3478 3479 3480 3481 3482 3483 3484
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

3500 3501 3502 3503 3504 3505 3506 3507
static void hpsa_get_tag(struct ctlr_info *h,
	struct CommandList *c, u32 *taglower, u32 *tagupper)
{
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
		*tagupper = cm1->Tag.upper;
		*taglower = cm1->Tag.lower;
3508 3509 3510 3511 3512 3513 3514 3515
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
		*tagupper = cm2->Tag.upper;
		*taglower = cm2->Tag.lower;
		return;
3516
	}
3517 3518
	*tagupper = c->Header.Tag.upper;
	*taglower = c->Header.Tag.lower;
3519 3520
}

3521

3522
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
3523
	struct CommandList *abort, int swizzle)
3524 3525 3526 3527
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
3528
	u32 tagupper, taglower;
3529 3530 3531 3532 3533 3534 3535

	c = cmd_special_alloc(h);
	if (c == NULL) {	/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}

3536 3537 3538
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
3539 3540
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
3541
	hpsa_scsi_do_simple_cmd_core(h, c);
3542
	hpsa_get_tag(h, abort, &taglower, &tagupper);
3543
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
3544
		__func__, tagupper, taglower);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
3556
			__func__, tagupper, taglower);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		hpsa_scsi_interpret_error(c);
		rc = -1;
		break;
	}
	cmd_special_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		abort->Header.Tag.upper, abort->Header.Tag.lower);
	return rc;
}

/*
 * hpsa_find_cmd_in_queue
 *
 * Used to determine whether a command (find) is still present
 * in queue_head.   Optionally excludes the last element of queue_head.
 *
 * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
 * not yet been submitted, and so can be aborted by the driver without
 * sending an abort to the hardware.
 *
 * Returns pointer to command if found in queue, NULL otherwise.
 */
static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
			struct scsi_cmnd *find, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c = NULL;	/* ptr into cmpQ */

	if (!find)
		return 0;
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
			continue;
		if (c->scsi_cmd == find) {
			spin_unlock_irqrestore(&h->lock, flags);
			return c;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
					u8 *tag, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (memcmp(&c->Header.Tag, tag, 8) != 0)
			continue;
		spin_unlock_irqrestore(&h->lock, flags);
		return c;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	u8 swizzled_tag[8];
	struct CommandList *c;
	int rc = 0, rc2 = 0;

3695 3696 3697 3698 3699 3700 3701 3702
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	/* we do not expect to find the swizzled tag in our queue, but
	 * check anyway just to be sure the assumptions which make this
	 * the case haven't become wrong.
	 */
	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
	swizzle_abort_tag(swizzled_tag);
	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
	if (c != NULL) {
		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
		return hpsa_send_abort(h, scsi3addr, abort, 0);
	}
	rc = hpsa_send_abort(h, scsi3addr, abort, 0);

	/* if the command is still in our queue, we can't conclude that it was
	 * aborted (it might have just completed normally) but in any case
	 * we don't need to try to abort it another way.
	 */
	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
	if (c)
		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
	return rc && rc2;
}

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct CommandList *found;
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
3741
	u32 tagupper, taglower;
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
				msg);
		return FAILED;
	}
3774 3775
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	as  = (struct scsi_cmnd *) abort->scsi_cmd;
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);

	/* Search reqQ to See if command is queued but not submitted,
	 * if so, complete the command with aborted status and remove
	 * it from the reqQ.
	 */
	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
	if (found) {
		found->err_info->CommandStatus = CMD_ABORTED;
		finish_cmd(found);
		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
				msg);
		return SUCCESS;
	}

	/* not in reqQ, if also not in cmpQ, must have already completed */
	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
	if (!found)  {
3800
		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
3801 3802 3803 3804 3805 3806 3807 3808 3809
				msg);
		return SUCCESS;
	}

	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
3810
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
		if (!found)
			return SUCCESS;
		msleep(100);
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
	return FAILED;
}


3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
3850
	unsigned long flags;
3851

3852
	spin_lock_irqsave(&h->lock, flags);
3853 3854
	do {
		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
3855 3856
		if (i == h->nr_cmds) {
			spin_unlock_irqrestore(&h->lock, flags);
3857
			return NULL;
3858
		}
3859 3860 3861
	} while (test_and_set_bit
		 (i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
3862 3863
	spin_unlock_irqrestore(&h->lock, flags);

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	c = h->cmd_pool + i;
	memset(c, 0, sizeof(*c));
	cmd_dma_handle = h->cmd_pool_dhandle
	    + i * sizeof(*c);
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

3875
	INIT_LIST_HEAD(&c->list);
3876 3877
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

/* For operations that can wait for kmalloc to possibly sleep,
 * this routine can be called. Lock need not be held to call
 * cmd_special_alloc. cmd_special_free() is the complement.
 */
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;

	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
	if (c == NULL)
		return NULL;
	memset(c, 0, sizeof(*c));

3901
	c->cmd_type = CMD_SCSI;
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	c->cmdindex = -1;

	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
		    &err_dma_handle);

	if (c->err_info == NULL) {
		pci_free_consistent(h->pdev,
			sizeof(*c), c, cmd_dma_handle);
		return NULL;
	}
	memset(c->err_info, 0, sizeof(*c->err_info));

3914
	INIT_LIST_HEAD(&c->list);
3915 3916
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	int i;
3928
	unsigned long flags;
3929 3930

	i = c - h->cmd_pool;
3931
	spin_lock_irqsave(&h->lock, flags);
3932 3933
	clear_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG));
3934
	spin_unlock_irqrestore(&h->lock, flags);
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
}

static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
{
	union u64bit temp64;

	temp64.val32.lower = c->ErrDesc.Addr.lower;
	temp64.val32.upper = c->ErrDesc.Addr.upper;
	pci_free_consistent(h->pdev, sizeof(*c->err_info),
			    c->err_info, (dma_addr_t) temp64.val);
	pci_free_consistent(h->pdev, sizeof(*c),
3946
			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
}

#ifdef CONFIG_COMPAT

static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

3960
	memset(&arg64, 0, sizeof(arg64));
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

3976
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
	int cmd, void *arg)
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

3997
	memset(&arg64, 0, sizeof(arg64));
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

4014
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4015 4016 4017 4018 4019 4020 4021 4022
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052

static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
	union u64bit temp64;
4099
	int rc = 0;
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
4115 4116 4117 4118
		if (iocommand.Request.Type.Direction == XFER_WRITE) {
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
4119 4120
				rc = -EFAULT;
				goto out_kfree;
4121 4122 4123
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
4124
		}
4125
	}
4126 4127
	c = cmd_special_alloc(h);
	if (c == NULL) {
4128 4129
		rc = -ENOMEM;
		goto out_kfree;
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
	/* use the kernel address the cmd block for tag */
	c->Header.Tag.lower = c->busaddr;

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
		temp64.val = pci_map_single(h->pdev, buff,
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4154 4155 4156 4157 4158 4159 4160
		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
			c->SG[0].Addr.lower = 0;
			c->SG[0].Addr.upper = 0;
			c->SG[0].Len = 0;
			rc = -ENOMEM;
			goto out;
		}
4161 4162 4163
		c->SG[0].Addr.lower = temp64.val32.lower;
		c->SG[0].Addr.upper = temp64.val32.upper;
		c->SG[0].Len = iocommand.buf_size;
4164
		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
4165
	}
4166
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4167 4168
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4169 4170 4171 4172 4173 4174
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4175 4176
		rc = -EFAULT;
		goto out;
4177
	}
4178 4179
	if (iocommand.Request.Type.Direction == XFER_READ &&
		iocommand.buf_size > 0) {
4180 4181
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4182 4183
			rc = -EFAULT;
			goto out;
4184 4185
		}
	}
4186
out:
4187
	cmd_special_free(h, c);
4188 4189 4190
out_kfree:
	kfree(buff);
	return rc;
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
	union u64bit temp64;
	BYTE sg_used = 0;
	int status = 0;
	int i;
4203 4204
	u32 left;
	u32 sz;
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
4231
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4232 4233 4234
		status = -EINVAL;
		goto cleanup1;
	}
4235
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4236 4237 4238 4239
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
4240
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
		if (ioc->Request.Type.Direction == XFER_WRITE) {
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
				status = -ENOMEM;
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
	c = cmd_special_alloc(h);
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
4273
	c->Header.SGList = c->Header.SGTotal = sg_used;
4274 4275 4276 4277 4278 4279 4280 4281
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	c->Header.Tag.lower = c->busaddr;
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
			temp64.val = pci_map_single(h->pdev, buff[i],
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
4282 4283 4284 4285 4286 4287 4288
			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
				c->SG[i].Addr.lower = 0;
				c->SG[i].Addr.upper = 0;
				c->SG[i].Len = 0;
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
4289
				goto cleanup0;
4290
			}
4291 4292 4293
			c->SG[i].Addr.lower = temp64.val32.lower;
			c->SG[i].Addr.upper = temp64.val32.upper;
			c->SG[i].Len = buff_size[i];
4294
			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
4295 4296
		}
	}
4297
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4298 4299
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
4300 4301 4302 4303 4304
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
4305
		goto cleanup0;
4306
	}
4307
	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
4308 4309 4310 4311 4312
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
4313
				goto cleanup0;
4314 4315 4316 4317 4318
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
4319 4320
cleanup0:
	cmd_special_free(h, c);
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
cleanup1:
	if (buff) {
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

static int increment_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		return -1;
	}
	h->passthru_count++;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
	return 0;
}

static void decrement_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count <= 0) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		/* not expecting to get here. */
		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
		return;
	}
	h->passthru_count--;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
}

4369 4370 4371 4372 4373 4374 4375
/*
 * ioctl
 */
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
4376
	int rc;
4377 4378 4379 4380 4381 4382 4383

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
4384
		hpsa_scan_start(h->scsi_host);
4385 4386 4387 4388 4389 4390
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
4391 4392 4393 4394 4395
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
4396
	case CCISS_BIG_PASSTHRU:
4397 4398 4399 4400 4401
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
4402 4403 4404 4405 4406
	default:
		return -ENOTTY;
	}
}

4407 4408
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
4409 4410 4411 4412 4413 4414
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
4415 4416
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

4428
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
4429
	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
4430 4431 4432
	int cmd_type)
{
	int pci_dir = XFER_NONE;
4433
	struct CommandList *a; /* for commands to be aborted */
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else {
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	c->Header.Tag.lower = c->busaddr;
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	c->Request.Type.Type = cmd_type;
	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
			if (page_code != 0) {
				c->Request.CDB[1] = 0x01;
				c->Request.CDB[2] = page_code;
			}
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
4485 4486
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
4487 4488 4489 4490 4491 4492 4493
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0;
			break;
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
4506 4507 4508
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
4509
			return -1;
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0; /* Don't time out */
4520 4521
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
4522
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
4523 4524 4525 4526 4527 4528
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
				a->Header.Tag.upper, a->Header.Tag.lower,
				c->Header.Tag.upper, c->Header.Tag.lower);
			c->Request.CDBLen = 16;
			c->Request.Type.Type = TYPE_MSG;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

	switch (c->Request.Type.Direction) {
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
4581 4582 4583
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
4584 4585 4586 4587 4588 4589 4590 4591 4592
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
4593 4594
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

/* Takes cmds off the submission queue and sends them to the hardware,
 * then puts them on the queue of cmds waiting for completion.
 */
static void start_io(struct ctlr_info *h)
{
	struct CommandList *c;
4605
	unsigned long flags;
4606

4607
	spin_lock_irqsave(&h->lock, flags);
4608 4609
	while (!list_empty(&h->reqQ)) {
		c = list_entry(h->reqQ.next, struct CommandList, list);
4610 4611
		/* can't do anything if fifo is full */
		if ((h->access.fifo_full(h))) {
4612
			h->fifo_recently_full = 1;
4613 4614 4615
			dev_warn(&h->pdev->dev, "fifo full\n");
			break;
		}
4616
		h->fifo_recently_full = 0;
4617 4618 4619 4620 4621 4622 4623

		/* Get the first entry from the Request Q */
		removeQ(c);
		h->Qdepth--;

		/* Put job onto the completed Q */
		addQ(&h->cmpQ, c);
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

		/* Must increment commands_outstanding before unlocking
		 * and submitting to avoid race checking for fifo full
		 * condition.
		 */
		h->commands_outstanding++;
		if (h->commands_outstanding > h->max_outstanding)
			h->max_outstanding = h->commands_outstanding;

		/* Tell the controller execute command */
		spin_unlock_irqrestore(&h->lock, flags);
		h->access.submit_command(h, c);
		spin_lock_irqsave(&h->lock, flags);
4637
	}
4638
	spin_unlock_irqrestore(&h->lock, flags);
4639 4640
}

4641
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
4642
{
4643
	return h->access.command_completed(h, q);
4644 4645
}

4646
static inline bool interrupt_pending(struct ctlr_info *h)
4647 4648 4649 4650 4651 4652
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
4653 4654
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
4655 4656
}

4657 4658
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
4659 4660 4661 4662 4663 4664 4665 4666
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

4667
static inline void finish_cmd(struct CommandList *c)
4668
{
4669
	unsigned long flags;
4670 4671
	int io_may_be_stalled = 0;
	struct ctlr_info *h = c->h;
4672

4673
	spin_lock_irqsave(&h->lock, flags);
4674
	removeQ(c);
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

	/*
	 * Check for possibly stalled i/o.
	 *
	 * If a fifo_full condition is encountered, requests will back up
	 * in h->reqQ.  This queue is only emptied out by start_io which is
	 * only called when a new i/o request comes in.  If no i/o's are
	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
	 * start_io from here if we detect such a danger.
	 *
	 * Normally, we shouldn't hit this case, but pounding on the
	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
	 * commands_outstanding is low.  We want to avoid calling
	 * start_io from in here as much as possible, and esp. don't
	 * want to get in a cycle where we call start_io every time
	 * through here.
	 */
	if (unlikely(h->fifo_recently_full) &&
		h->commands_outstanding < 5)
		io_may_be_stalled = 1;

	spin_unlock_irqrestore(&h->lock, flags);

4698
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
4699 4700
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
4701
		complete_scsi_command(c);
4702 4703
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
4704 4705
	if (unlikely(io_may_be_stalled))
		start_io(h);
4706 4707
}

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
static inline u32 hpsa_tag_contains_index(u32 tag)
{
	return tag & DIRECT_LOOKUP_BIT;
}

static inline u32 hpsa_tag_to_index(u32 tag)
{
	return tag >> DIRECT_LOOKUP_SHIFT;
}

4718 4719

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
4720
{
4721 4722
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
4723
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
4724 4725
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
4726 4727
}

4728
/* process completion of an indexed ("direct lookup") command */
4729
static inline void process_indexed_cmd(struct ctlr_info *h,
4730 4731 4732 4733 4734 4735
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

	tag_index = hpsa_tag_to_index(raw_tag);
4736 4737 4738 4739
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
4740 4741 4742
}

/* process completion of a non-indexed command */
4743
static inline void process_nonindexed_cmd(struct ctlr_info *h,
4744 4745 4746 4747
	u32 raw_tag)
{
	u32 tag;
	struct CommandList *c = NULL;
4748
	unsigned long flags;
4749

4750
	tag = hpsa_tag_discard_error_bits(h, raw_tag);
4751
	spin_lock_irqsave(&h->lock, flags);
4752
	list_for_each_entry(c, &h->cmpQ, list) {
4753
		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
4754
			spin_unlock_irqrestore(&h->lock, flags);
4755
			finish_cmd(c);
4756
			return;
4757 4758
		}
	}
4759
	spin_unlock_irqrestore(&h->lock, flags);
4760 4761 4762
	bad_tag(h, h->nr_cmds + 1, raw_tag);
}

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

4782 4783 4784 4785 4786 4787
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
4788
{
4789 4790 4791 4792 4793 4794 4795
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
4796 4797 4798 4799 4800 4801 4802
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
4803
	h->last_intr_timestamp = get_jiffies_64();
4804
	while (interrupt_pending(h)) {
4805
		raw_tag = get_next_completion(h, q);
4806
		while (raw_tag != FIFO_EMPTY)
4807
			raw_tag = next_command(h, q);
4808 4809 4810 4811
	}
	return IRQ_HANDLED;
}

4812
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
4813
{
4814
	struct ctlr_info *h = queue_to_hba(queue);
4815
	u32 raw_tag;
4816
	u8 q = *(u8 *) queue;
4817 4818 4819 4820

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

4821
	h->last_intr_timestamp = get_jiffies_64();
4822
	raw_tag = get_next_completion(h, q);
4823
	while (raw_tag != FIFO_EMPTY)
4824
		raw_tag = next_command(h, q);
4825 4826 4827
	return IRQ_HANDLED;
}

4828
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
4829
{
4830
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
4831
	u32 raw_tag;
4832
	u8 q = *(u8 *) queue;
4833 4834 4835

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
4836
	h->last_intr_timestamp = get_jiffies_64();
4837
	while (interrupt_pending(h)) {
4838
		raw_tag = get_next_completion(h, q);
4839
		while (raw_tag != FIFO_EMPTY) {
4840 4841
			if (likely(hpsa_tag_contains_index(raw_tag)))
				process_indexed_cmd(h, raw_tag);
4842
			else
4843
				process_nonindexed_cmd(h, raw_tag);
4844
			raw_tag = next_command(h, q);
4845 4846 4847 4848 4849
		}
	}
	return IRQ_HANDLED;
}

4850
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
4851
{
4852
	struct ctlr_info *h = queue_to_hba(queue);
4853
	u32 raw_tag;
4854
	u8 q = *(u8 *) queue;
4855

4856
	h->last_intr_timestamp = get_jiffies_64();
4857
	raw_tag = get_next_completion(h, q);
4858
	while (raw_tag != FIFO_EMPTY) {
4859 4860
		if (likely(hpsa_tag_contains_index(raw_tag)))
			process_indexed_cmd(h, raw_tag);
4861
		else
4862
			process_nonindexed_cmd(h, raw_tag);
4863
		raw_tag = next_command(h, q);
4864 4865 4866 4867
	}
	return IRQ_HANDLED;
}

4868 4869 4870 4871
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
4872 4873
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
	uint32_t paddr32, tag;
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
	paddr32 = paddr64;

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
	cmd->CommandHeader.SGTotal = 0;
	cmd->CommandHeader.Tag.lower = paddr32;
	cmd->CommandHeader.Tag.upper = 0;
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
	cmd->Request.Type.Type = TYPE_MSG;
	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
	cmd->Request.Type.Direction = XFER_NONE;
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
	cmd->ErrorDescriptor.Addr.upper = 0;
	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);

	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4937
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

4968
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
4969
	void * __iomem vaddr, u32 use_doorbell)
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
{
	u16 pmcsr;
	int pos;

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4980
		writel(use_doorbell, vaddr + SA5_DOORBELL);
4981 4982 4983 4984 4985 4986 4987

		/* PMC hardware guys tell us we need a 5 second delay after
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
		msleep(5000);
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */

		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
		if (pos == 0) {
			dev_err(&pdev->dev,
				"hpsa_reset_controller: "
				"PCI PM not supported\n");
			return -ENODEV;
		}
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
		/* enter the D3hot power management state */
		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D3hot;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

		msleep(500);

		/* enter the D0 power management state */
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D0;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5018 5019 5020 5021 5022 5023 5024

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
5025 5026 5027 5028
	}
	return 0;
}

5029
static void init_driver_version(char *driver_version, int len)
5030 5031
{
	memset(driver_version, 0, len);
5032
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5033 5034
}

5035
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

5051 5052
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
5053 5054 5055 5056 5057 5058 5059
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

5060
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
5080
/* This does a hard reset of the controller using PCI power management
5081
 * states or the using the doorbell register.
5082
 */
5083
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5084
{
5085 5086 5087 5088 5089
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
5090
	u32 misc_fw_support;
5091
	int rc;
5092
	struct CfgTable __iomem *cfgtable;
5093
	u32 use_doorbell;
5094
	u32 board_id;
5095
	u16 command_register;
5096

5097 5098
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
5099 5100 5101 5102 5103 5104
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
5105 5106 5107
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
5108
	 */
5109

5110
	rc = hpsa_lookup_board_id(pdev, &board_id);
5111
	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5112 5113 5114
		dev_warn(&pdev->dev, "Not resetting device.\n");
		return -ENODEV;
	}
5115 5116 5117 5118

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
5119

5120 5121 5122 5123 5124 5125 5126
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	/* Turn the board off.  This is so that later pci_restore_state()
	 * won't turn the board on before the rest of config space is ready.
	 */
	pci_disable_device(pdev);
	pci_save_state(pdev);
5127

5128 5129 5130 5131 5132 5133 5134
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
5135

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
5147 5148 5149
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
		goto unmap_vaddr;
5150

5151 5152 5153
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
5154
	misc_fw_support = readl(&cfgtable->misc_fw_support);
5155 5156 5157 5158 5159 5160
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
5161 5162
			dev_warn(&pdev->dev, "Soft reset not supported. "
				"Firmware update is required.\n");
5163
			rc = -ENOTSUPP; /* try soft reset */
5164 5165 5166
			goto unmap_cfgtable;
		}
	}
5167

5168 5169 5170
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
5171

5172 5173 5174 5175 5176
	pci_restore_state(pdev);
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		goto unmap_cfgtable;
5177
	}
5178
	pci_write_config_word(pdev, 4, command_register);
5179

5180 5181 5182 5183
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

5184 5185 5186
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
5187 5188
			"failed waiting for board to become ready "
			"after hard reset\n");
5189 5190 5191
		goto unmap_cfgtable;
	}

5192 5193 5194 5195
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
5196 5197 5198
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
5199
	} else {
5200
		dev_info(&pdev->dev, "board ready after hard reset.\n");
5201 5202 5203 5204 5205 5206 5207 5208
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
5209 5210 5211 5212 5213 5214 5215 5216 5217
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
static void print_cfg_table(struct device *dev, struct CfgTable *tb)
{
5218
#ifdef HPSA_DEBUG
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
	dev_info(dev, "   Max outstanding commands = 0x%d\n",
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
5249
}
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use IO-APIC mode.
 */

5290
static void hpsa_interrupt_mode(struct ctlr_info *h)
5291 5292
{
#ifdef CONFIG_PCI_MSI
5293 5294 5295 5296 5297 5298 5299
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
5300 5301

	/* Some boards advertise MSI but don't really support it */
5302 5303
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5304
		goto default_int_mode;
5305 5306
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
		dev_info(&h->pdev->dev, "MSIX\n");
5307
		h->msix_vector = MAX_REPLY_QUEUES;
5308
		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
5309
				      h->msix_vector);
5310
		if (err > 0) {
5311
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5312
			       "available\n", err);
5313 5314 5315 5316 5317 5318 5319 5320
			h->msix_vector = err;
			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
					      h->msix_vector);
		}
		if (!err) {
			for (i = 0; i < h->msix_vector; i++)
				h->intr[i] = hpsa_msix_entries[i].vector;
			return;
5321
		} else {
5322
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
5323
			       err);
5324
			h->msix_vector = 0;
5325 5326 5327
			goto default_int_mode;
		}
	}
5328 5329 5330
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
		dev_info(&h->pdev->dev, "MSI\n");
		if (!pci_enable_msi(h->pdev))
5331 5332
			h->msi_vector = 1;
		else
5333
			dev_warn(&h->pdev->dev, "MSI init failed\n");
5334 5335 5336 5337
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
5338
	h->intr[h->intr_mode] = h->pdev->irq;
5339 5340
}

5341
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

5355 5356 5357
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
5358 5359 5360 5361 5362 5363 5364
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

5365 5366
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
5367 5368 5369 5370
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
5371
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
5372
			/* addressing mode bits already removed */
5373 5374
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
5375 5376 5377
				*memory_bar);
			return 0;
		}
5378
	dev_warn(&pdev->dev, "no memory BAR found\n");
5379 5380 5381
	return -ENODEV;
}

5382 5383
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
5384
{
5385
	int i, iterations;
5386
	u32 scratchpad;
5387 5388 5389 5390
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
5391

5392 5393 5394 5395 5396 5397 5398 5399 5400
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
5401 5402
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
5403
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
5404 5405 5406
	return -ENODEV;
}

5407 5408 5409
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

5422
static int hpsa_find_cfgtables(struct ctlr_info *h)
5423
{
5424 5425 5426
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
5427
	u32 trans_offset;
5428
	int rc;
5429

5430 5431 5432 5433
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
5434
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
5435
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
5436 5437
	if (!h->cfgtable)
		return -ENOMEM;
5438 5439 5440
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
5441
	/* Find performant mode table. */
5442
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
5443 5444 5445 5446 5447 5448 5449 5450
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

5451
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
5452 5453
{
	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
5454 5455 5456 5457 5458

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

5459 5460 5461 5462 5463 5464 5465 5466 5467
	if (h->max_commands < 16) {
		dev_warn(&h->pdev->dev, "Controller reports "
			"max supported commands of %d, an obvious lie. "
			"Using 16.  Ensure that firmware is up to date.\n",
			h->max_commands);
		h->max_commands = 16;
	}
}

5468 5469 5470 5471
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
5472
static void hpsa_find_board_params(struct ctlr_info *h)
5473
{
5474
	hpsa_get_max_perf_mode_cmds(h);
5475 5476
	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
5477
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	/*
	 * Limit in-command s/g elements to 32 save dma'able memory.
	 * Howvever spec says if 0, use 31
	 */
	h->max_cmd_sg_entries = 31;
	if (h->maxsgentries > 512) {
		h->max_cmd_sg_entries = 32;
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
		h->maxsgentries--; /* save one for chain pointer */
	} else {
		h->maxsgentries = 31; /* default to traditional values */
		h->chainsize = 0;
	}
5491 5492 5493

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
5494 5495 5496 5497
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
5498 5499
}

5500 5501
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
5502
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
5503 5504 5505 5506 5507 5508
		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
		return false;
	}
	return true;
}

5509
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
5510
{
5511
	u32 driver_support;
5512

5513 5514
#ifdef CONFIG_X86
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
5515 5516
	driver_support = readl(&(h->cfgtable->driver_support));
	driver_support |= ENABLE_SCSI_PREFETCH;
5517
#endif
5518 5519
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
5520 5521
}

5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
			break;
		/* delay and try again */
		msleep(20);
	}
}

5553
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
5554 5555
{
	int i;
5556 5557
	u32 doorbell_value;
	unsigned long flags;
5558 5559 5560 5561 5562 5563

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
5564 5565 5566
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
5567
		if (!(doorbell_value & CFGTBL_ChangeReq))
5568 5569
			break;
		/* delay and try again */
5570
		usleep_range(10000, 20000);
5571
	}
5572 5573
}

5574
static int hpsa_enter_simple_mode(struct ctlr_info *h)
5575 5576 5577 5578 5579 5580 5581 5582
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5583

5584 5585
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5586
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
5587 5588
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
5589
	print_cfg_table(&h->pdev->dev, h->cfgtable);
5590 5591
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
5592
	h->transMethod = CFGTBL_Trans_Simple;
5593
	return 0;
5594 5595 5596
error:
	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
	return -ENODEV;
5597 5598
}

5599
static int hpsa_pci_init(struct ctlr_info *h)
5600
{
5601
	int prod_index, err;
5602

5603 5604 5605 5606 5607
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
		return -ENODEV;
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
5608

M
Matthew Garrett 已提交
5609 5610 5611
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

5612
	err = pci_enable_device(h->pdev);
5613
	if (err) {
5614
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
5615 5616 5617
		return err;
	}

5618 5619 5620
	/* Enable bus mastering (pci_disable_device may disable this) */
	pci_set_master(h->pdev);

5621
	err = pci_request_regions(h->pdev, HPSA);
5622
	if (err) {
5623 5624
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
5625 5626
		return err;
	}
5627
	hpsa_interrupt_mode(h);
5628
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
5629
	if (err)
5630 5631
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
5632 5633 5634 5635
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
5636
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
5637
	if (err)
5638
		goto err_out_free_res;
5639 5640
	err = hpsa_find_cfgtables(h);
	if (err)
5641
		goto err_out_free_res;
5642
	hpsa_find_board_params(h);
5643

5644
	if (!hpsa_CISS_signature_present(h)) {
5645 5646 5647
		err = -ENODEV;
		goto err_out_free_res;
	}
5648
	hpsa_set_driver_support_bits(h);
5649
	hpsa_p600_dma_prefetch_quirk(h);
5650 5651
	err = hpsa_enter_simple_mode(h);
	if (err)
5652 5653 5654 5655
		goto err_out_free_res;
	return 0;

err_out_free_res:
5656 5657 5658 5659 5660 5661
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
5662
	pci_disable_device(h->pdev);
5663
	pci_release_regions(h->pdev);
5664 5665 5666
	return err;
}

5667
static void hpsa_hba_inquiry(struct ctlr_info *h)
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

5683
static int hpsa_init_reset_devices(struct pci_dev *pdev)
5684
{
5685
	int rc, i;
5686 5687 5688 5689

	if (!reset_devices)
		return 0;

5690 5691
	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev);
5692

5693 5694
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
5695 5696
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
5697 5698
	 */
	if (rc == -ENOTSUPP)
5699
		return rc; /* just try to do the kdump anyhow. */
5700 5701
	if (rc)
		return -ENODEV;
5702 5703

	/* Now try to get the controller to respond to a no-op */
5704
	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
	return 0;
}

5715
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
		return -ENOMEM;
	}
	return 0;
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
5742 5743 5744 5745
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
5746 5747 5748 5749 5750
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
5751 5752 5753 5754
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
5755 5756
}

5757 5758 5759 5760
static int hpsa_request_irq(struct ctlr_info *h,
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
5761
	int rc, i;
5762

5763 5764 5765 5766 5767 5768 5769
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

5770
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
5771
		/* If performant mode and MSI-X, use multiple reply queues */
5772
		for (i = 0; i < h->msix_vector; i++)
5773 5774 5775 5776 5777
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
	} else {
		/* Use single reply pool */
5778
		if (h->msix_vector > 0 || h->msi_vector) {
5779 5780 5781 5782 5783 5784 5785 5786 5787
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
5788 5789 5790 5791 5792 5793 5794 5795
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

5796
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
static void free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

5831
	for (i = 0; i < h->msix_vector; i++)
5832 5833 5834
		free_irq(h->intr[i], &h->q[i]);
}

5835
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
5836
{
5837
	free_irqs(h);
5838
#ifdef CONFIG_PCI_MSI
5839 5840 5841 5842 5843 5844 5845
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
5846
#endif /* CONFIG_PCI_MSI */
5847 5848 5849 5850 5851
}

static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
5852 5853
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
5854
	kfree(h->ioaccel1_blockFetchTable);
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	kfree(h->blockFetchTable);
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	pci_release_regions(h->pdev);
	kfree(h);
}

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
/* Called when controller lockup detected. */
static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
{
	struct CommandList *c = NULL;

	assert_spin_locked(&h->lock);
	/* Mark all outstanding commands as failed and complete them. */
	while (!list_empty(list)) {
		c = list_entry(list->next, struct CommandList, list);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
5878
		finish_cmd(c);
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	}
}

static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
			h->lockup_detected);
	pci_disable_device(h->pdev);
	spin_lock_irqsave(&h->lock, flags);
	fail_all_cmds_on_list(h, &h->cmpQ);
	fail_all_cmds_on_list(h, &h->reqQ);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
5908
				(h->heartbeat_sample_interval), now))
5909 5910 5911 5912 5913 5914 5915 5916
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
5917
				(h->heartbeat_sample_interval), now))
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

5934 5935 5936 5937 5938 5939
static int hpsa_kickoff_rescan(struct ctlr_info *h)
{
	int i;
	char *event_type;

	/* Ask the controller to clear the events we're handling. */
5940 5941
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
		hpsa_drain_commands(h);
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}

	/* Something in the device list may have changed to trigger
	 * the event, so do a rescan.
	 */
	hpsa_scan_start(h->scsi_host);
	/* release reference taken on scsi host in check_controller_events */
	scsi_host_put(h->scsi_host);
	return 0;
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
 * we should rescan the controller for devices.  If so, add the controller
 * to the list of controllers needing to be rescanned, and gets a
 * reference to the associated scsi_host.
 */
static void hpsa_ctlr_needs_rescan(struct ctlr_info *h)
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

	h->events = readl(&(h->cfgtable->event_notify));
	if (!h->events)
		return;

	/*
	 * Take a reference on scsi host for the duration of the scan
	 * Release in hpsa_kickoff_rescan().  No lock needed for scan_list
	 * as only a single thread accesses this list.
	 */
	scsi_host_get(h->scsi_host);
	hpsa_kickoff_rescan(h);
}

6008
static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6009 6010
{
	unsigned long flags;
6011 6012 6013 6014 6015
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);
	detect_controller_lockup(h);
	if (h->lockup_detected)
		return;
6016
	hpsa_ctlr_needs_rescan(h);
6017 6018 6019
	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
6020 6021
		return;
	}
6022 6023 6024
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
6025 6026
}

6027
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6028
{
6029
	int dac, rc;
6030
	struct ctlr_info *h;
6031 6032
	int try_soft_reset = 0;
	unsigned long flags;
6033 6034 6035 6036

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

6037
	rc = hpsa_init_reset_devices(pdev);
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
6051

6052 6053 6054 6055
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
6056
#define COMMANDLIST_ALIGNMENT 128
6057
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6058 6059
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
6060
		return -ENOMEM;
6061

6062
	h->pdev = pdev;
6063
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6064 6065
	INIT_LIST_HEAD(&h->cmpQ);
	INIT_LIST_HEAD(&h->reqQ);
6066 6067
	spin_lock_init(&h->lock);
	spin_lock_init(&h->scan_lock);
6068
	spin_lock_init(&h->passthru_count_lock);
6069
	rc = hpsa_pci_init(h);
6070
	if (rc != 0)
6071 6072
		goto clean1;

6073
	sprintf(h->devname, HPSA "%d", number_of_controllers);
6074 6075 6076 6077
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
6078 6079
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
6080
		dac = 1;
6081 6082 6083 6084 6085 6086 6087 6088
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
6089 6090 6091 6092
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6093

6094
	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6095
		goto clean2;
6096 6097
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
6098
	       h->intr[h->intr_mode], dac ? "" : " not");
6099
	if (hpsa_allocate_cmd_pool(h))
6100
		goto clean4;
6101 6102
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
6103 6104
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
6105 6106

	pci_set_drvdata(pdev, h);
6107 6108 6109
	h->ndevices = 0;
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
6128
		free_irqs(h);
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
					hpsa_intx_discard_completions);
		if (rc) {
			dev_warn(&h->pdev->dev, "Failed to request_irq after "
				"soft reset.\n");
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
6166 6167 6168 6169

	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

6170
	hpsa_hba_inquiry(h);
6171
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
6172 6173 6174 6175 6176 6177

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
6178
	return 0;
6179 6180

clean4:
6181
	hpsa_free_sg_chain_blocks(h);
6182
	hpsa_free_cmd_pool(h);
6183
	free_irqs(h);
6184 6185 6186
clean2:
clean1:
	kfree(h);
6187
	return rc;
6188 6189 6190 6191 6192 6193
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
6194 6195 6196 6197 6198 6199 6200 6201 6202
	unsigned long flags;

	/* Don't bother trying to flush the cache if locked up */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->lock, flags);
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212

	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		goto out_of_memory;
	}
6213 6214 6215 6216
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
6217 6218
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
6219
out:
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
	cmd_special_free(h, c);
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6238
	hpsa_free_irqs_and_disable_msix(h);
6239 6240
}

6241
static void hpsa_free_device_info(struct ctlr_info *h)
6242 6243 6244 6245 6246 6247 6248
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

6249
static void hpsa_remove_one(struct pci_dev *pdev)
6250 6251
{
	struct ctlr_info *h;
6252
	unsigned long flags;
6253 6254

	if (pci_get_drvdata(pdev) == NULL) {
6255
		dev_err(&pdev->dev, "unable to remove device\n");
6256 6257 6258
		return;
	}
	h = pci_get_drvdata(pdev);
6259 6260 6261 6262 6263 6264 6265

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	cancel_delayed_work(&h->monitor_ctlr_work);
	spin_unlock_irqrestore(&h->lock, flags);

6266 6267 6268
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
6269 6270
	iounmap(h->transtable);
	iounmap(h->cfgtable);
6271
	hpsa_free_device_info(h);
6272
	hpsa_free_sg_chain_blocks(h);
6273 6274 6275 6276 6277 6278
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
6279 6280
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
6281
	kfree(h->cmd_pool_bits);
6282
	kfree(h->blockFetchTable);
6283
	kfree(h->ioaccel1_blockFetchTable);
6284
	kfree(h->ioaccel2_blockFetchTable);
6285
	kfree(h->hba_inquiry_data);
6286
	pci_disable_device(pdev);
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	pci_release_regions(pdev);
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
6303
	.name = HPSA,
6304
	.probe = hpsa_init_one,
6305
	.remove = hpsa_remove_one,
6306 6307 6308 6309 6310 6311
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
6325
	int nsgs, int min_blocks, int *bucket_map)
6326 6327 6328 6329 6330 6331
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
6332
		size = i + min_blocks;
6333 6334
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
6335
		for (j = 0; j < num_buckets; j++) {
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

6346
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
6347
{
6348 6349
	int i;
	unsigned long register_value;
6350 6351
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
6352 6353 6354
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
6355
	struct access_method access = SA5_performant_access;
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
6367
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
6368 6369 6370 6371 6372 6373
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
6374
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
6385
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
6386 6387 6388 6389 6390 6391 6392 6393 6394
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

	/* Controller spec: zero out this buffer. */
	memset(h->reply_pool, 0, h->reply_pool_size);

6395 6396
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
6397
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
6398 6399 6400 6401 6402
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
6403
	writel(h->nreply_queues, &h->transtable->RepQCount);
6404 6405
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
6406 6407 6408 6409 6410 6411 6412 6413

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
		writel(h->reply_pool_dhandle +
			(h->max_commands * sizeof(u64) * i),
			&h->transtable->RepQAddr[i].lower);
	}

6414
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6415 6416 6417 6418 6419 6420 6421 6422
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
6423 6424 6425 6426 6427 6428
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
6429
	}
6430
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6431
	hpsa_wait_for_mode_change_ack(h);
6432 6433 6434 6435 6436 6437
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
		dev_warn(&h->pdev->dev, "unable to get board into"
					" performant mode\n");
		return;
	}
6438
	/* Change the access methods to the performant access methods */
6439 6440 6441
	h->access = access;
	h->transMethod = transMethod;

6442 6443
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
6444 6445
		return;

6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
6456

6457 6458 6459
		/* initialize all reply queue entries to unused */
		memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_pool_size);
6460

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
						DIRECT_LOOKUP_BIT;
			cp->Tag.upper = 0;
			cp->host_addr.lower =
				(u32) (h->ioaccel_cmd_pool_dhandle +
					(i * sizeof(struct io_accel1_cmd)));
			cp->host_addr.upper = 0;
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
6505
	}
6506 6507
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
6508 6509 6510 6511
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
6512 6513 6514 6515 6516
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
#define IOACCEL1_COMMANDLIST_ALIGNMENT 128
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
6530
		kmalloc(((h->ioaccel_maxsg + 1) *
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
6548 6549
}

6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

#define IOACCEL2_COMMANDLIST_ALIGNMENT 128
	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

6588
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6589 6590
{
	u32 trans_support;
6591 6592
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
6593
	int i;
6594

6595 6596 6597
	if (hpsa_simple_mode)
		return;

6598 6599 6600 6601 6602 6603
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
6604 6605 6606 6607 6608 6609 6610
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
		if (ioaccel2_alloc_cmds_and_bft(h))
			goto clean_up;
		}
6611 6612 6613
	}

	/* TODO, check that this next line h->nreply_queues is correct */
6614 6615 6616 6617
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

6618
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
6619
	hpsa_get_max_perf_mode_cmds(h);
6620
	/* Performant mode ring buffer and supporting data structures */
6621
	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
6622 6623 6624
	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
				&(h->reply_pool_dhandle));

6625 6626 6627 6628 6629 6630 6631
	for (i = 0; i < h->nreply_queues; i++) {
		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

6632
	/* Need a block fetch table for performant mode */
6633
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6634 6635 6636 6637 6638 6639
				sizeof(u32)), GFP_KERNEL);

	if ((h->reply_pool == NULL)
		|| (h->blockFetchTable == NULL))
		goto clean_up;

6640
	hpsa_enter_performant_mode(h, trans_support);
6641 6642 6643 6644 6645 6646 6647 6648 6649
	return;

clean_up:
	if (h->reply_pool)
		pci_free_consistent(h->pdev, h->reply_pool_size,
			h->reply_pool, h->reply_pool_dhandle);
	kfree(h->blockFetchTable);
}

6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
static void hpsa_drain_commands(struct ctlr_info *h)
{
	int cmds_out;
	unsigned long flags;

	do { /* wait for all outstanding commands to drain out */
		spin_lock_irqsave(&h->lock, flags);
		cmds_out = h->commands_outstanding;
		spin_unlock_irqrestore(&h->lock, flags);
		if (cmds_out <= 0)
			break;
		msleep(100);
	} while (1);
}

6665 6666 6667 6668 6669 6670
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
6671
	return pci_register_driver(&hpsa_pci_driver);
6672 6673 6674 6675 6676 6677 6678
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

6679 6680
static void __attribute__((unused)) verify_offsets(void)
{
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
	VERIFY_OFFSET(Tag, 0x68);
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

6735 6736
module_init(hpsa_init);
module_exit(hpsa_cleanup);