hpsa.c 246.6 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46
#include <scsi/scsi_eh.h>
47
#include <scsi/scsi_dbg.h>
48 49 50
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
51
#include <linux/atomic.h>
52
#include <linux/jiffies.h>
D
Don Brace 已提交
53
#include <linux/percpu-defs.h>
54
#include <linux/percpu.h>
D
Don Brace 已提交
55
#include <asm/unaligned.h>
56
#include <asm/div64.h>
57 58 59 60
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61
#define HPSA_DRIVER_VERSION "3.4.4-1"
62
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63
#define HPSA "hpsa"
64

65 66 67 68 69
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
87 88 89 90
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
91 92 93 94 95 96 97 98

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 103 104 105 106 107 108
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 110 111 112 113 114
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
115 116 117 118 119 120 121 122 123 124
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
125
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
126 127 128
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
129 130 131 132 133
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
134 135 136 137 138
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
139
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
140
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
156 157
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
158
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
159 160 161 162 163 164 165
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
166 167 168 169 170 171 172
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
173 174 175 176
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
177
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
178 179
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
180
	{0x21C4103C, "Smart Array", &SA5_access},
181 182 183 184
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
185
	{0x21C9103C, "Smart Array", &SA5_access},
186 187
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
188 189
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
190
	{0x21CE103C, "Smart HBA", &SA5_access},
191 192 193 194 195
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
196 197 198
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

199 200 201 202
#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
static const struct scsi_cmnd hpsa_cmd_busy;
#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
static const struct scsi_cmnd hpsa_cmd_idle;
203 204
static int number_of_controllers;

205 206
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
207
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
208 209

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
210 211
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
212 213 214 215
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
216 217 218
static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd);
219
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
220
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
221
	int cmd_type);
222
static void hpsa_free_cmd_pool(struct ctlr_info *h);
223
#define VPD_PAGE (1 << 8)
224

J
Jeff Garzik 已提交
225
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
226 227 228
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
229
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
230 231

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
232
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
233
static int hpsa_slave_alloc(struct scsi_device *sdev);
234
static int hpsa_slave_configure(struct scsi_device *sdev);
235 236 237 238 239 240 241
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
242 243
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
244
	int nsgs, int min_blocks, u32 *bucket_map);
R
Robert Elliott 已提交
245 246
static void hpsa_free_performant_mode(struct ctlr_info *h);
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
247
static inline u32 next_command(struct ctlr_info *h, u8 q);
248 249 250 251 252 253 254 255
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
256
static inline void finish_cmd(struct CommandList *c);
257
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
258 259
#define BOARD_NOT_READY 0
#define BOARD_READY 1
260
static void hpsa_drain_accel_commands(struct ctlr_info *h);
261
static void hpsa_flush_cache(struct ctlr_info *h);
262 263
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
264
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
265
static void hpsa_command_resubmit_worker(struct work_struct *work);
266 267
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
268 269 270 271 272 273 274

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

275 276 277 278 279 280
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

281 282 283 284 285
static inline bool hpsa_is_cmd_idle(struct CommandList *c)
{
	return c->scsi_cmd == SCSI_CMD_IDLE;
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

308 309 310
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
311 312 313 314 315 316 317 318 319 320 321
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == -1)
322 323
		return 0;

324
	switch (asc) {
325
	case STATE_CHANGED:
326 327 328
		dev_warn(&h->pdev->dev,
			HPSA "%d: a state change detected, command retried\n",
			h->ctlr);
329 330
		break;
	case LUN_FAILED:
331 332
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
333 334
		break;
	case REPORT_LUNS_CHANGED:
335 336
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
337
	/*
338 339
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
340 341 342
	 */
		break;
	case POWER_OR_RESET:
343
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
344 345 346
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
347
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
348 349 350
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
351
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
352 353 354 355 356 357
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

358 359 360 361 362 363 364 365 366 367
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381
static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

431 432 433 434 435 436
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
437
	h = shost_to_hba(shost);
M
Mike Miller 已提交
438
	hpsa_scan_start(h->scsi_host);
439 440 441
	return count;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

457 458 459 460 461 462
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

463 464
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
465 466
}

467 468 469 470 471 472 473 474
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
475
		h->transMethod & CFGTBL_Trans_Performant ?
476 477 478
			"performant" : "simple");
}

479 480 481 482 483 484 485 486 487 488 489
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

490
/* List of controllers which cannot be hard reset on kexec with reset_devices */
491 492
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
493
	0x324b103C, /* Smart Array P711m */
494 495 496 497 498 499 500 501 502 503
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
504
	0x40800E11, /* Smart Array 5i */
505 506
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
507 508 509 510 511 512
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
513 514
};

515 516
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
517
	0x40800E11, /* Smart Array 5i */
518 519 520 521 522 523
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
524 525 526 527 528 529 530 531 532 533 534
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
535 536 537 538 539 540 541
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
542 543 544
{
	int i;

S
Stephen Cameron 已提交
545 546 547 548
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
549 550
}

S
Stephen Cameron 已提交
551
static int ctlr_is_hard_resettable(u32 board_id)
552
{
S
Stephen Cameron 已提交
553 554 555
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
556

S
Stephen Cameron 已提交
557 558 559 560
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
561 562
}

563 564 565 566 567 568
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
569 570 571 572 573 574
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

575 576 577 578 579 580 581
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
582
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
583 584
}

585 586 587 588 589
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

590 591
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
592
};
593 594 595 596 597 598 599
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
600 601 602 603 604 605
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
606
	unsigned char rlevel;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
630
	if (rlevel > RAID_UNKNOWN)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

710 711 712 713
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
714 715
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
716 717 718
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
719 720
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
721 722 723 724 725 726
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
727 728
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
729 730
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
731 732 733 734 735

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
736
	&dev_attr_hp_ssd_smart_path_enabled,
737
	&dev_attr_lockup_detected,
738 739 740 741 742 743 744 745
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
746
	&dev_attr_resettable,
747
	&dev_attr_hp_ssd_smart_path_status,
748
	&dev_attr_raid_offload_debug,
749 750 751
	NULL,
};

752 753 754
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

755 756
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
757 758
	.name			= HPSA,
	.proc_name		= HPSA,
759 760 761
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
762
	.change_queue_depth	= hpsa_change_queue_depth,
763 764
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
765
	.eh_abort_handler	= hpsa_eh_abort_handler,
766 767 768
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
769
	.slave_configure	= hpsa_slave_configure,
770 771 772 773 774 775
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
776
	.max_sectors = 8192,
777
	.no_write_same = 1,
778 779
};

780
static inline u32 next_command(struct ctlr_info *h, u8 q)
781 782
{
	u32 a;
783
	struct reply_queue_buffer *rq = &h->reply_queue[q];
784

785 786 787
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

788
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
789
		return h->access.command_completed(h, q);
790

791 792 793
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
794
		atomic_dec(&h->commands_outstanding);
795 796 797 798
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
799 800 801
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
802 803 804 805
	}
	return a;
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

832 833
/*
 * set_performant_mode: Modify the tag for cciss performant
834 835 836
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
837 838 839
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
840
{
841
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
842
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
843 844 845
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
846
			c->Header.ReplyQueue =
847
				raw_smp_processor_id() % h->nreply_queues;
848 849
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
850
	}
851 852
}

853
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
854 855
						struct CommandList *c,
						int reply_queue)
856 857 858
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

859 860
	/*
	 * Tell the controller to post the reply to the queue for this
861 862
	 * processor.  This seems to give the best I/O throughput.
	 */
863 864 865 866 867 868
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
869 870 871 872 873 874 875 876
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
		&h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= h->ioaccel2_blockFetchTable[0];
}

899
static void set_ioaccel2_performant_mode(struct ctlr_info *h,
900 901
						struct CommandList *c,
						int reply_queue)
902 903 904
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

905 906
	/*
	 * Tell the controller to post the reply to the queue for this
907 908
	 * processor.  This seems to give the best I/O throughput.
	 */
909 910 911 912 913 914
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
915 916 917 918 919 920 921
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

951 952
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
953
{
954 955
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
956 957
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
958
		set_ioaccel1_performant_mode(h, c, reply_queue);
959
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
960 961
		break;
	case CMD_IOACCEL2:
962
		set_ioaccel2_performant_mode(h, c, reply_queue);
963
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
964
		break;
965 966 967 968
	case IOACCEL2_TMF:
		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
969
	default:
970
		set_performant_mode(h, c, reply_queue);
971
		h->access.submit_command(h, c);
972
	}
973 974
}

975
static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
976
{
977 978 979
	if (unlikely(c->abort_pending))
		return finish_cmd(c);

980 981 982
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

997 998 999 1000 1001 1002 1003
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
1004
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1005

1006
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1007 1008 1009

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1010
			__set_bit(h->dev[i]->target, lun_taken);
1011 1012
	}

1013 1014 1015 1016 1017 1018
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
1019 1020 1021 1022
	}
	return !found;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

1051
	if (n >= HPSA_MAX_DEVICES) {
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
1064
	 * unit no, zero otherwise.
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;
1107 1108
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1109 1110
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1111 1112 1113
	return 0;
}

1114 1115 1116 1117
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
1118
	int offload_enabled;
1119 1120 1121 1122 1123
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1138 1139 1140 1141 1142
	if (new_entry->hba_ioaccel_enabled) {
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
	}
	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1143
	h->dev[entry]->offload_config = new_entry->offload_config;
1144
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1145
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1156 1157
	offload_enabled = h->dev[entry]->offload_enabled;
	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1158
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1159
	h->dev[entry]->offload_enabled = offload_enabled;
1160 1161
}

1162 1163 1164 1165 1166 1167 1168
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1169
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1170 1171
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1182 1183 1184
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1185
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1186 1187
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1198
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1199 1200 1201 1202 1203 1204 1205 1206

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1207
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1275 1276 1277 1278
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1279 1280
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1281 1282 1283
	return 0;
}

1284 1285 1286
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1287 1288 1289 1290
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1291 1292 1293 1294 1295 1296 1297 1298 1299
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1300
#define DEVICE_UPDATED 3
1301
	for (i = 0; i < haystack_size; i++) {
1302 1303
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1304 1305
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1306 1307 1308
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1309
				return DEVICE_SAME;
1310
			} else {
1311 1312 1313
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1314
				return DEVICE_CHANGED;
1315
			}
1316 1317 1318 1319 1320 1321
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1478 1479
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1512 1513 1514 1515
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1516
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1530 1531
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1545 1546
	 * If minor device attributes change, just update
	 * the existing device structure.
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1561 1562
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1563 1564 1565 1566
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1567 1568
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1580 1581 1582 1583 1584 1585 1586 1587

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1588
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1589 1590 1591
			continue;
		}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1608 1609 1610 1611 1612 1613 1614 1615
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1616 1617
	spin_unlock_irqrestore(&h->devlock, flags);

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1652 1653
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1654
			}
1655 1656 1657 1658 1659 1660 1661
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1662 1663
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1664 1665 1666
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1667 1668
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1669 1670 1671 1672
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
R
Robert Elliott 已提交
1673
		added[i] = NULL;
1674 1675 1676 1677 1678 1679 1680 1681
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1682
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1709
	if (likely(sd)) {
1710
		atomic_set(&sd->ioaccel_cmds_out, 0);
1711 1712 1713
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1714 1715 1716 1717
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1738 1739
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1740
	/* nothing to do. */
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->ioaccel2_cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->ioaccel2_cmd_sg_list[i]);
		h->ioaccel2_cmd_sg_list[i] = NULL;
	}
	kfree(h->ioaccel2_cmd_sg_list);
	h->ioaccel2_cmd_sg_list = NULL;
}

static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->ioaccel2_cmd_sg_list =
		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
					GFP_KERNEL);
	if (!h->ioaccel2_cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->ioaccel2_cmd_sg_list[i] =
			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
					h->maxsgentries, GFP_KERNEL);
		if (!h->ioaccel2_cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	return -ENOMEM;
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

R
Robert Elliott 已提交
1797
static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1798 1799 1800 1801 1802 1803 1804 1805
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1806 1807
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1808
		return -ENOMEM;
1809
	}
1810 1811 1812
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1813 1814
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1815
			goto clean;
1816
		}
1817 1818 1819 1820 1821 1822 1823 1824
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp, struct CommandList *c)
{
	struct ioaccel2_sg_element *chain_block;
	u64 temp64;
	u32 chain_size;

	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
	chain_size = le32_to_cpu(cp->data_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
				PCI_DMA_TODEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		cp->sg->address = 0;
		return -1;
	}
	cp->sg->address = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp)
{
	struct ioaccel2_sg_element *chain_sg;
	u64 temp64;
	u32 chain_size;

	chain_sg = cp->sg;
	temp64 = le64_to_cpu(chain_sg->address);
	chain_size = le32_to_cpu(cp->data_len);
	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
}

1858
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1859 1860 1861 1862
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1863
	u32 chain_len;
1864 1865 1866

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1867 1868
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1869
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1870 1871
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1872
				PCI_DMA_TODEVICE);
1873 1874
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1875
		chain_sg->Addr = cpu_to_le64(0);
1876 1877
		return -1;
	}
1878
	chain_sg->Addr = cpu_to_le64(temp64);
1879
	return 0;
1880 1881 1882 1883 1884 1885 1886
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1887
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1888 1889 1890
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1891 1892
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1893 1894
}

1895 1896 1897 1898 1899 1900

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1901 1902 1903 1904 1905
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1906
	int retry = 0;
1907
	u32 ioaccel2_resid = 0;
1908 1909 1910 1911 1912 1913 1914

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1915
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1916
			if (c2->error_data.data_present !=
1917 1918 1919
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1920
				break;
1921
			}
1922 1923 1924 1925 1926 1927 1928 1929 1930
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1931
			retry = 1;
1932 1933
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1934
			retry = 1;
1935 1936
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1937
			retry = 1;
1938 1939
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1940
			retry = 1;
1941 1942
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1943
			retry = 1;
1944 1945
			break;
		default:
1946
			retry = 1;
1947 1948 1949 1950
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_IO_ERROR:
		case IOACCEL2_STATUS_SR_IO_ABORTED:
		case IOACCEL2_STATUS_SR_OVERRUN:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_UNDERRUN:
			cmd->result = (DID_OK << 16);		/* host byte */
			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
			ioaccel2_resid = get_unaligned_le32(
						&c2->error_data.resid_cnt[0]);
			scsi_set_resid(cmd, ioaccel2_resid);
			break;
		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
			/* We will get an event from ctlr to trigger rescan */
			retry = 1;
			break;
		default:
			retry = 1;
		}
1973 1974 1975 1976 1977 1978
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1979
		retry = 1;
1980 1981 1982 1983
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		break;
	default:
1984
		retry = 1;
1985 1986
		break;
	}
1987 1988

	return retry;	/* retry on raid path? */
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
static void hpsa_cmd_resolve_events(struct ctlr_info *h,
		struct CommandList *c)
{
	/*
	 * Prevent the following race in the abort handler:
	 *
	 * 1. LLD is requested to abort a SCSI command
	 * 2. The SCSI command completes
	 * 3. The struct CommandList associated with step 2 is made available
	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
	 * 5. Abort handler follows scsi_cmnd->host_scribble and
	 *    finds struct CommandList and tries to aborts it
	 * Now we have aborted the wrong command.
	 *
	 * Clear c->scsi_cmd here so that the abort handler will know this
	 * command has completed.  Then, check to see if the abort handler is
	 * waiting for this command, and, if so, wake it.
	 */
	c->scsi_cmd = SCSI_CMD_IDLE;
	mb(); /* Ensure c->scsi_cmd is set to SCSI_CMD_IDLE */
	if (c->abort_pending) {
		c->abort_pending = false;
		wake_up_all(&h->abort_sync_wait_queue);
	}
}

2017 2018 2019 2020 2021 2022 2023
static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
				      struct CommandList *c)
{
	hpsa_cmd_resolve_events(h, c);
	cmd_tagged_free(h, c);
}

2024 2025 2026
static void hpsa_cmd_free_and_done(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd)
{
2027
	hpsa_cmd_resolve_and_free(h, c);
2028 2029 2030 2031 2032 2033 2034 2035 2036
	cmd->scsi_done(cmd);
}

static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
{
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
{
	cmd->result = DID_ABORT << 16;
}

static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
				    struct scsi_cmnd *cmd)
{
	hpsa_set_scsi_cmd_aborted(cmd);
	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
			 c->Request.CDB, c->err_info->ScsiStatus);
2048
	hpsa_cmd_resolve_and_free(h, c);
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058
static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
2059 2060
			c2->error_data.status == 0))
		return hpsa_cmd_free_and_done(h, c, cmd);
2061

2062 2063 2064 2065
	/* don't requeue a command which is being aborted */
	if (unlikely(c->abort_pending))
		return hpsa_cmd_abort_and_free(h, c, cmd);

2066 2067
	/*
	 * Any RAID offload error results in retry which will use
2068 2069 2070 2071 2072 2073
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
2074 2075 2076
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
2077 2078

		return hpsa_retry_cmd(h, c);
2079
	}
2080 2081

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2082
		return hpsa_retry_cmd(h, c);
2083

2084
	return hpsa_cmd_free_and_done(h, c, cmd);
2085 2086
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

2115
static void complete_scsi_command(struct CommandList *cp)
2116 2117 2118 2119
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
2120
	struct hpsa_scsi_dev_t *dev;
2121
	struct io_accel2_cmd *c2;
2122

2123 2124 2125
	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
2126
	unsigned long sense_data_size;
2127 2128

	ei = cp->err_info;
2129
	cmd = cp->scsi_cmd;
2130
	h = cp->h;
2131
	dev = cmd->device->hostdata;
2132
	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2133 2134

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2135
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
2136
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2137
		hpsa_unmap_sg_chain_block(h, cp);
2138

2139 2140 2141 2142
	if ((cp->cmd_type == CMD_IOACCEL2) &&
		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);

2143 2144
	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2145

2146 2147 2148
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

2149 2150 2151 2152 2153 2154 2155 2156
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
2157
		return hpsa_cmd_free_and_done(h, cp, cmd);
2158 2159
	}

2160 2161 2162
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

2163
	scsi_set_resid(cmd, ei->ResidualCnt);
2164 2165
	if (ei->CommandStatus == 0)
		return hpsa_cmd_free_and_done(h, cp, cmd);
2166

2167 2168 2169 2170 2171
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
2172 2173 2174 2175
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2176
		cp->Header.tag = c->tag;
2177 2178
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2179 2180 2181 2182 2183 2184 2185 2186

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
2187 2188
			if (!cp->abort_pending)
				return hpsa_retry_cmd(h, cp);
2189
		}
2190 2191
	}

2192 2193 2194
	if (cp->abort_pending)
		ei->CommandStatus = CMD_ABORTED;

2195 2196 2197 2198
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
2211
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2212
			if (sense_key == ABORTED_COMMAND) {
2213
				cmd->result |= DID_SOFT_ERROR << 16;
2214 2215
				break;
			}
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2251 2252
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2267
		cmd->result = DID_ERROR << 16;
2268 2269
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2270 2271 2272
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2273 2274
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2275 2276 2277
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2278 2279
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2280 2281
		break;
	case CMD_ABORTED:
2282 2283
		/* Return now to avoid calling scsi_done(). */
		return hpsa_cmd_abort_and_free(h, cp, cmd);
2284 2285
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2286 2287
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2288 2289
		break;
	case CMD_UNSOLICITED_ABORT:
2290
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2291 2292
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2293 2294 2295
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2296 2297
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2298
		break;
2299 2300 2301 2302
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2303 2304 2305 2306
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
2307 2308 2309 2310 2311 2312 2313 2314
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2315 2316 2317 2318 2319
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
2320 2321

	return hpsa_cmd_free_and_done(h, cp, cmd);
2322 2323 2324 2325 2326 2327 2328
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2329 2330 2331 2332
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2333 2334
}

2335
static int hpsa_map_one(struct pci_dev *pdev,
2336 2337 2338 2339 2340
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2341
	u64 addr64;
2342 2343 2344

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2345
		cp->Header.SGTotal = cpu_to_le16(0);
2346
		return 0;
2347 2348
	}

2349
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2350
	if (dma_mapping_error(&pdev->dev, addr64)) {
2351
		/* Prevent subsequent unmap of something never mapped */
2352
		cp->Header.SGList = 0;
2353
		cp->Header.SGTotal = cpu_to_le16(0);
2354
		return -1;
2355
	}
2356 2357 2358 2359 2360
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2361
	return 0;
2362 2363
}

2364 2365 2366 2367
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2368 2369 2370 2371
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2394 2395
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2408
#define MAX_DRIVER_CMD_RETRIES 25
2409 2410
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2411
{
2412
	int backoff_time = 10, retry_count = 0;
2413
	int rc;
2414 2415

	do {
2416
		memset(c->err_info, 0, sizeof(*c->err_info));
2417 2418 2419 2420
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2421
		retry_count++;
2422 2423 2424 2425 2426
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2427
	} while ((check_for_unit_attention(h, c) ||
2428 2429
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2430
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2431 2432 2433
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2434 2435
}

2436 2437
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2438
{
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2456
	struct device *d = &cp->h->pdev->dev;
2457 2458
	u8 sense_key, asc, ascq;
	int sense_len;
2459 2460 2461

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2462 2463 2464 2465 2466 2467
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
2468 2469
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2470 2471
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
2472
		else
2473
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2474 2475 2476 2477 2478 2479 2480 2481 2482
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2483
		hpsa_print_cmd(h, "overrun condition", cp);
2484 2485 2486 2487 2488
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2489 2490
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2491 2492 2493
		}
		break;
	case CMD_PROTOCOL_ERR:
2494
		hpsa_print_cmd(h, "protocol error", cp);
2495 2496
		break;
	case CMD_HARDWARE_ERR:
2497
		hpsa_print_cmd(h, "hardware error", cp);
2498 2499
		break;
	case CMD_CONNECTION_LOST:
2500
		hpsa_print_cmd(h, "connection lost", cp);
2501 2502
		break;
	case CMD_ABORTED:
2503
		hpsa_print_cmd(h, "aborted", cp);
2504 2505
		break;
	case CMD_ABORT_FAILED:
2506
		hpsa_print_cmd(h, "abort failed", cp);
2507 2508
		break;
	case CMD_UNSOLICITED_ABORT:
2509
		hpsa_print_cmd(h, "unsolicited abort", cp);
2510 2511
		break;
	case CMD_TIMEOUT:
2512
		hpsa_print_cmd(h, "timed out", cp);
2513
		break;
2514
	case CMD_UNABORTABLE:
2515
		hpsa_print_cmd(h, "unabortable", cp);
2516
		break;
2517 2518 2519
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2520
	default:
2521 2522
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2523 2524 2525 2526 2527
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2528
			u16 page, unsigned char *buf,
2529 2530 2531 2532 2533 2534
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2535
	c = cmd_alloc(h);
2536

2537 2538 2539 2540 2541
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2542 2543 2544 2545
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2546 2547
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2548
		hpsa_scsi_interpret_error(h, c);
2549 2550
		rc = -1;
	}
2551
out:
2552
	cmd_free(h, c);
2553 2554 2555
	return rc;
}

2556 2557 2558 2559 2560 2561 2562 2563
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2564
	c = cmd_alloc(h);
2565 2566 2567 2568 2569
	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2570 2571 2572 2573
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2574 2575 2576 2577 2578 2579
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2580
	cmd_free(h, c);
2581
	return rc;
2582
}
2583

2584
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2585
	u8 reset_type, int reply_queue)
2586 2587 2588 2589 2590
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2591
	c = cmd_alloc(h);
2592 2593


2594
	/* fill_cmd can't fail here, no data buffer to map. */
2595 2596 2597
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2598 2599 2600 2601 2602
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2603 2604 2605 2606
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2607
		hpsa_scsi_interpret_error(h, c);
2608 2609
		rc = -1;
	}
2610
out:
2611
	cmd_free(h, c);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2625
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2626 2627 2628 2629 2630 2631 2632 2633
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2646 2647 2648 2649
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2674
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2675
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2676 2677 2678
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2679 2680
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2719
	c = cmd_alloc(h);
2720

2721 2722 2723
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
2724 2725 2726
		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
		cmd_free(h, c);
		return -1;
2727
	}
2728 2729 2730 2731
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2732 2733
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2734
		hpsa_scsi_interpret_error(h, c);
2735 2736
		rc = -1;
		goto out;
2737
	}
2738
	cmd_free(h, c);
2739 2740 2741 2742 2743 2744 2745 2746 2747

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2748 2749 2750
out:
	cmd_free(h, c);
	return rc;
2751 2752
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2770 2771
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2825 2826 2827 2828 2829 2830 2831 2832 2833
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2834
	this_device->offload_to_be_enabled = 0;
2835 2836 2837 2838

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2839 2840
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2841
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2842
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2858
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2859 2860 2861 2862 2863
out:
	kfree(buf);
	return;
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2875
		return -ENOMEM;
2876
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2877 2878 2879 2880 2881 2882 2883
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2884
		void *buf, int bufsize,
2885 2886 2887 2888 2889 2890 2891
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2892
	c = cmd_alloc(h);
2893

2894 2895
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2896 2897 2898 2899 2900
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2901 2902
	if (extended_response)
		c->Request.CDB[1] = extended_response;
2903 2904 2905 2906
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2907 2908 2909
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2910
		hpsa_scsi_interpret_error(h, c);
2911
		rc = -1;
2912
	} else {
2913 2914 2915
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2916 2917 2918
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2919
				rld->extended_response_flag);
2920 2921
			rc = -1;
		}
2922
	}
2923
out:
2924
	cmd_free(h, c);
2925 2926 2927 2928
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2929
		struct ReportExtendedLUNdata *buf, int bufsize)
2930
{
2931 2932
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2963
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2964 2965 2966 2967 2968
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2969
	if (rc != 0)
2970 2971 2972 2973 2974 2975
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2976
	if (rc != 0)
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2990
 *  0xff (offline for unknown reasons)
2991 2992 2993
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2994
static int hpsa_volume_offline(struct ctlr_info *h,
2995 2996 2997
					unsigned char scsi3addr[])
{
	struct CommandList *c;
2998 2999 3000
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
3001
	int rc, ldstat = 0;
3002 3003 3004 3005 3006 3007 3008
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
3009

3010
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3011 3012 3013 3014 3015
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
3016
	sense = c->err_info->SenseInfo;
3017 3018 3019 3020 3021
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
3083

S
Stephen Cameron 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
3096 3097 3098
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
S
Stephen Cameron 已提交
3099 3100 3101 3102 3103 3104 3105 3106
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

3107
static int hpsa_update_device_info(struct ctlr_info *h,
3108 3109
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
3110
{
3111 3112 3113 3114 3115 3116

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

3117
	unsigned char *inq_buff;
3118
	unsigned char *obdr_sig;
3119

3120
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
3145
		is_logical_dev_addr_mode(scsi3addr)) {
3146 3147
		int volume_offline;

3148
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3149 3150
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3151 3152 3153 3154
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
3155
	} else {
3156
		this_device->raid_level = RAID_UNKNOWN;
3157 3158
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
3159
		this_device->offload_to_be_enabled = 0;
3160
		this_device->hba_ioaccel_enabled = 0;
3161
		this_device->volume_offline = 0;
3162
		this_device->queue_depth = h->nr_cmds;
3163
	}
3164

3165 3166 3167 3168 3169 3170 3171 3172 3173
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
3174 3175 3176 3177 3178 3179 3180 3181
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

3207
static unsigned char *ext_target_model[] = {
3208 3209 3210 3211
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
3212
	"P2000 G3 SAS",
3213
	"MSA 2040 SAS",
3214 3215 3216
	NULL,
};

3217
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3218 3219 3220
{
	int i;

3221 3222 3223
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
3224 3225 3226 3227 3228
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
3229
 * Puts non-external target logical volumes on bus 0, external target logical
3230 3231 3232 3233 3234 3235
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
3236
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3237
{
3238 3239 3240 3241
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
3242
		if (is_hba_lunid(lunaddrbytes))
3243
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3244
		else
3245 3246 3247 3248 3249
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3250 3251
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3252 3253 3254 3255 3256 3257
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3258
	}
3259
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3260 3261 3262 3263
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3264
 * For the external targets (arrays), we have to manually detect the enclosure
3265 3266 3267 3268 3269 3270 3271 3272
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3273
static int add_ext_target_dev(struct ctlr_info *h,
3274
	struct hpsa_scsi_dev_t *tmpdevice,
3275
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3276
	unsigned long lunzerobits[], int *n_ext_target_devs)
3277 3278 3279
{
	unsigned char scsi3addr[8];

3280
	if (test_bit(tmpdevice->target, lunzerobits))
3281 3282 3283 3284 3285
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3286 3287
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3288

3289
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3290 3291
		return 0;

3292
	memset(scsi3addr, 0, 8);
3293
	scsi3addr[3] = tmpdevice->target;
3294 3295 3296
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3297 3298 3299
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3300
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3301 3302
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3303 3304 3305 3306
			"configuration.");
		return 0;
	}

3307
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3308
		return 0;
3309
	(*n_ext_target_devs)++;
3310 3311
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3312
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3313
	set_bit(tmpdevice->target, lunzerobits);
3314 3315 3316
	return 1;
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3328 3329 3330
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3331 3332
	int i;

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3343
}
3344

3345 3346 3347 3348 3349 3350 3351
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3352
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3353
	struct ReportLUNdata *logdev, u32 *nlogicals)
3354
{
3355
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3356 3357 3358
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3359
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3360
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3361 3362
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3363 3364
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3365
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3366 3367 3368
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3369
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3388 3389
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3390
	struct ReportExtendedLUNdata *physdev_list,
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3405 3406
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3407 3408 3409 3410 3411 3412 3413 3414

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3415 3416 3417
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3418
	int hba_mode_enabled;
3419 3420 3421 3422 3423
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3424
		return -ENOMEM;
3425 3426
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3427
	if (rc) {
3428
		kfree(ctlr_params);
3429
		return rc;
3430
	}
3431 3432 3433 3434 3435

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3436 3437
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
3449 3450
	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
		dev->hba_ioaccel_enabled = 1;
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3479
	struct ReportExtendedLUNdata *physdev_list = NULL;
3480
	struct ReportLUNdata *logdev_list = NULL;
3481
	struct bmic_identify_physical_device *id_phys = NULL;
3482 3483 3484
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3485 3486
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3487
	int i, n_ext_target_devs, ndevs_to_allocate;
3488
	int raid_ctlr_position;
3489
	int rescan_hba_mode;
3490
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3491

3492
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3493 3494
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3495
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3496
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3497

3498 3499
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3500 3501 3502 3503 3504
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3505
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3506 3507
	if (rescan_hba_mode < 0)
		goto out;
3508 3509 3510 3511 3512 3513 3514 3515

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3516 3517
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3518 3519
		goto out;

3520 3521 3522
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3523
	 */
3524
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3525 3526 3527

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3528 3529 3530 3531 3532 3533 3534
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3535 3536 3537 3538 3539 3540 3541 3542 3543
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3544
	if (is_scsi_rev_5(h))
3545 3546 3547 3548
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3549
	/* adjust our table of devices */
3550
	n_ext_target_devs = 0;
3551
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3552
		u8 *lunaddrbytes, is_OBDR = 0;
3553 3554

		/* Figure out where the LUN ID info is coming from */
3555 3556
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3557 3558 3559 3560 3561 3562

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3563 3564

		/* Get device type, vendor, model, device id */
3565 3566
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3567
			continue; /* skip it if we can't talk to it. */
3568
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3569
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3570 3571 3572
		this_device = currentsd[ncurrent];

		/*
3573
		 * For external target devices, we have to insert a LUN 0 which
3574 3575 3576 3577 3578
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3579
		if (add_ext_target_dev(h, tmpdevice, this_device,
3580
				lunaddrbytes, lunzerobits,
3581
				&n_ext_target_devs)) {
3582 3583 3584 3585 3586 3587
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3600
		switch (this_device->devtype) {
3601
		case TYPE_ROM:
3602 3603 3604 3605 3606 3607 3608
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3609 3610
			if (is_OBDR)
				ncurrent++;
3611 3612
			break;
		case TYPE_DISK:
3613
			if (i >= nphysicals) {
3614 3615
				ncurrent++;
				break;
3616
			}
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

			if (h->hba_mode_enabled)
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
			else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2))
				break;

			hpsa_get_ioaccel_drive_info(h, this_device,
						lunaddrbytes, id_phys);
			atomic_set(&this_device->ioaccel_cmds_out, 0);
			ncurrent++;
3629 3630 3631 3632 3633
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3634 3635 3636 3637
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3651
		if (ncurrent >= HPSA_MAX_DEVICES)
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3662
	kfree(id_phys);
3663 3664
}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3676 3677
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3678 3679 3680
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3681
static int hpsa_scatter_gather(struct ctlr_info *h,
3682 3683 3684 3685
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3686
	int use_sg, i, sg_limit, chained, last_sg;
3687
	struct SGDescriptor *curr_sg;
3688

3689
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3690 3691 3692 3693 3694 3695 3696 3697

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3698 3699 3700 3701 3702 3703 3704
	/*
	 * If the number of entries is greater than the max for a single list,
	 * then we have a chained list; we will set up all but one entry in the
	 * first list (the last entry is saved for link information);
	 * otherwise, we don't have a chained list and we'll set up at each of
	 * the entries in the one list.
	 */
3705
	curr_sg = cp->SG;
3706 3707 3708 3709
	chained = use_sg > h->max_cmd_sg_entries;
	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
	last_sg = scsi_sg_count(cmd) - 1;
	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3710
		hpsa_set_sg_descriptor(curr_sg, sg);
3711 3712
		curr_sg++;
	}
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	if (chained) {
		/*
		 * Continue with the chained list.  Set curr_sg to the chained
		 * list.  Modify the limit to the total count less the entries
		 * we've already set up.  Resume the scan at the list entry
		 * where the previous loop left off.
		 */
		curr_sg = h->cmd_sg_list[cp->cmdindex];
		sg_limit = use_sg - sg_limit;
		for_each_sg(sg, sg, sg_limit, i) {
			hpsa_set_sg_descriptor(curr_sg, sg);
			curr_sg++;
		}
	}

3729
	/* Back the pointer up to the last entry and mark it as "last". */
3730
	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3731 3732 3733 3734 3735 3736

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3737
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3738 3739 3740 3741
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3742
		return 0;
3743 3744 3745 3746
	}

sglist_finished:

3747
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3748
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3749 3750 3751
	return 0;
}

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3800
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3801
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3802
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3814
	/* TODO: implement chaining support */
3815 3816
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3817
		return IO_ACCEL_INELIGIBLE;
3818
	}
3819

3820 3821
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3822 3823
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3824
		return IO_ACCEL_INELIGIBLE;
3825
	}
3826

3827 3828 3829 3830 3831 3832 3833 3834
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3835 3836
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3837
		return use_sg;
3838
	}
3839 3840 3841 3842 3843 3844 3845

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3846 3847 3848
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3849 3850
			curr_sg++;
		}
3851
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3873
	c->Header.SGList = use_sg;
3874
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3875 3876 3877 3878 3879
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3880 3881
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3882
	/* Tag was already set at init time. */
3883
	enqueue_cmd_and_start_io(h, c);
3884 3885
	return 0;
}
3886

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3897 3898
	c->phys_disk = dev;

3899
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3900
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3901 3902
}

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3915
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3931
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3932 3933 3934 3935 3936 3937
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3938
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3939 3940 3941
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3942
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3943 3944 3945
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3946 3947
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3948 3949 3950
		BUG();
		break;
	}
D
Don Brace 已提交
3951 3952 3953 3954 3955 3956 3957

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3958 3959
}

3960 3961
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3962
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3973
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3974

3975 3976
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3977
		return IO_ACCEL_INELIGIBLE;
3978 3979
	}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3990 3991
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3992
		return use_sg;
3993
	}
3994 3995 3996

	if (use_sg) {
		curr_sg = cp->sg;
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
		if (use_sg > h->ioaccel_maxsg) {
			addr64 = le64_to_cpu(
				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = 0;
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0x80;

			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
		}
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
4024 4025
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4026 4027
			break;
		case DMA_FROM_DEVICE:
4028 4029
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
4030 4031
			break;
		case DMA_NONE:
4032 4033
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
4034 4035 4036 4037 4038 4039 4040 4041
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
4042 4043
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
4044
	}
4045 4046 4047 4048

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
4049
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4050
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4051 4052 4053 4054 4055
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
4056
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4057

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	/* fill in sg elements */
	if (use_sg > h->ioaccel_maxsg) {
		cp->sg_count = 1;
		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
			atomic_dec(&phys_disk->ioaccel_cmds_out);
			scsi_dma_unmap(cmd);
			return -1;
		}
	} else
		cp->sg_count = (u8) use_sg;

4069 4070 4071 4072 4073 4074 4075 4076 4077
	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4078
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4079
{
4080 4081 4082 4083 4084 4085
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
4086 4087
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4088 4089
						cdb, cdb_len, scsi3addr,
						phys_disk);
4090 4091
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4092 4093
						cdb, cdb_len, scsi3addr,
						phys_disk);
4094 4095
}

4096 4097 4098 4099 4100
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
4101
		*map_index %= le16_to_cpu(map->data_disks_per_row);
4102 4103 4104 4105
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
4106 4107
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
4108 4109
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
4110
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4111
			/* select map index from next group */
D
Don Brace 已提交
4112
			*map_index += le16_to_cpu(map->data_disks_per_row);
4113 4114 4115
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
4116
			*map_index %= le16_to_cpu(map->data_disks_per_row);
4117 4118 4119 4120 4121
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
4140 4141 4142 4143 4144 4145 4146 4147
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
4148 4149 4150 4151 4152 4153
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
4154
	u16 strip_size;
4155 4156 4157
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
4158
	int offload_to_mirror;
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
4169 4170
		if (block_cnt == 0)
			block_cnt = 256;
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
4226 4227
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
4228 4229 4230
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
4231 4232 4233
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
4244
	(void) do_div(tmpdiv, strip_size);
4245 4246
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
4247
	(void) do_div(tmpdiv, strip_size);
4248 4249 4250 4251 4252 4253
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
4254 4255
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
4256 4257 4258 4259 4260 4261 4262
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
4263 4264
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
4265
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4266
				le16_to_cpu(map->row_cnt);
4267 4268 4269 4270 4271 4272 4273 4274 4275
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4276
		 */
D
Don Brace 已提交
4277
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4278
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4279
			map_index += le16_to_cpu(map->data_disks_per_row);
4280
		dev->offload_to_mirror = !dev->offload_to_mirror;
4281 4282 4283 4284 4285
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4286
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4287 4288 4289 4290 4291 4292

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4293 4294
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4295 4296 4297 4298 4299 4300 4301 4302 4303
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4304
		if (le16_to_cpu(map->layout_map_count) <= 1)
4305 4306 4307 4308
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4309 4310
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4311
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4312 4313
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4329
		if (first_group != last_group)
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4376
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4377
		r5or6_last_column =
D
Don Brace 已提交
4378
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4379 4380 4381 4382 4383 4384
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4385
			le16_to_cpu(map->row_cnt);
4386 4387

		map_index = (first_group *
D
Don Brace 已提交
4388
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4389 4390 4391 4392
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4393
	}
4394

4395 4396 4397
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4398 4399
	c->phys_disk = dev->phys_disk[map_index];

4400
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4401 4402 4403 4404
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4447 4448
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4449 4450
}

4451 4452 4453 4454 4455
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4456 4457 4458
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4459 4460 4461 4462 4463 4464
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4465
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4466 4467 4468 4469 4470 4471 4472 4473 4474

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4475 4476
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4477 4478
		break;
	case DMA_FROM_DEVICE:
4479 4480
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4481 4482
		break;
	case DMA_NONE:
4483 4484
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4485 4486 4487 4488 4489 4490 4491
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4492 4493
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4511
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4512
		hpsa_cmd_resolve_and_free(h, c);
4513 4514 4515 4516 4517 4518 4519
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
static void hpsa_cmd_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle, err_dma_handle;

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
	c->err_info = h->errinfo_pool + index;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + index * sizeof(*c->err_info);
	c->cmdindex = index;
	c->busaddr = (u32) cmd_dma_handle;
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
	c->h = h;
4538
	c->scsi_cmd = SCSI_CMD_IDLE;
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
}

static void hpsa_preinitialize_commands(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;

		hpsa_cmd_init(h, i, c);
		atomic_set(&c->refcount, 0);
	}
}

static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);

4558 4559
	BUG_ON(c->cmdindex != index);

4560 4561 4562 4563 4564
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	memset(c->err_info, 0, sizeof(*c->err_info));
	c->busaddr = (u32) cmd_dma_handle;
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
static int hpsa_ioaccel_submit(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		unsigned char *scsi3addr)
{
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	int rc = IO_ACCEL_INELIGIBLE;

	cmd->host_scribble = (unsigned char *) c;

	if (dev->offload_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_raid_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
4581
	} else if (dev->hba_ioaccel_enabled) {
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_direct_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	}
	return rc;
}

4592 4593 4594 4595
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
4596
	struct CommandList *c = container_of(work, struct CommandList, work);
4597 4598 4599 4600 4601

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
4602
		return hpsa_cmd_free_and_done(c->h, c, cmd);
4603
	}
4604 4605
	if (c->abort_pending)
		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	if (c->cmd_type == CMD_IOACCEL2) {
		struct ctlr_info *h = c->h;
		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
		int rc;

		if (c2->error_data.serv_response ==
				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
			if (rc == 0)
				return;
			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
				/*
				 * If we get here, it means dma mapping failed.
				 * Try again via scsi mid layer, which will
				 * then get SCSI_MLQUEUE_HOST_BUSY.
				 */
				cmd->result = DID_IMM_RETRY << 16;
4623
				return hpsa_cmd_free_and_done(h, c, cmd);
4624 4625 4626 4627
			}
			/* else, fall thru and resubmit down CISS path */
		}
	}
4628
	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4629 4630 4631 4632 4633
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
4634 4635 4636
		 *
		 * hpsa_ciss_submit will have already freed c
		 * if it encountered a dma mapping failure.
4637 4638 4639 4640 4641 4642
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
4654 4655 4656

	BUG_ON(cmd->request->tag < 0);

4657 4658 4659 4660 4661 4662 4663
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}

4664
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4665

4666
	if (unlikely(lockup_detected(h))) {
4667
		cmd->result = DID_NO_CONNECT << 16;
4668 4669 4670
		cmd->scsi_done(cmd);
		return 0;
	}
4671
	c = cmd_tagged_alloc(h, cmd);
4672

4673 4674
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4675 4676 4677 4678 4679
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
4680 4681 4682 4683
		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
		if (rc == 0)
			return 0;
		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4684
			hpsa_cmd_resolve_and_free(h, c);
4685
			return SCSI_MLQUEUE_HOST_BUSY;
4686 4687 4688 4689 4690
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4691
static void hpsa_scan_complete(struct ctlr_info *h)
4692 4693 4694
{
	unsigned long flags;

4695 4696 4697 4698
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4699 4700
}

4701 4702 4703 4704 4705
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4706 4707 4708 4709 4710 4711 4712 4713
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4714

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4731 4732
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4733

4734 4735
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4736
	hpsa_scan_complete(h);
4737 4738
}

D
Don Brace 已提交
4739 4740
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4741 4742 4743 4744
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4745 4746 4747

	if (qdepth < 1)
		qdepth = 1;
4748 4749 4750 4751
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4752 4753
}

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4777 4778
	struct Scsi_Host *sh;
	int error;
4779

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4791
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4792
	sh->cmd_per_lun = sh->can_queue;
4793 4794 4795 4796 4797
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
4798 4799 4800 4801 4802 4803 4804
	error = scsi_init_shared_tag_map(sh, sh->can_queue);
	if (error) {
		dev_err(&h->pdev->dev,
			"%s: scsi_init_shared_tag_map failed for controller %d\n",
			__func__, h->ctlr);
		goto fail_host_put;
	}
4805
	error = scsi_add_host(sh, &h->pdev->dev);
4806 4807 4808
	if (error) {
		dev_err(&h->pdev->dev, "%s: scsi_add_host failed for controller %d\n",
			__func__, h->ctlr);
4809
		goto fail_host_put;
4810
	}
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4821 4822
}

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
/*
 * The block layer has already gone to the trouble of picking out a unique,
 * small-integer tag for this request.  We use an offset from that value as
 * an index to select our command block.  (The offset allows us to reserve the
 * low-numbered entries for our own uses.)
 */
static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
{
	int idx = scmd->request->tag;

	if (idx < 0)
		return idx;

	/* Offset to leave space for internal cmds. */
	return idx += HPSA_NRESERVED_CMDS;
}

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
/*
 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 */
static int hpsa_send_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c, unsigned char lunaddr[],
				int reply_queue)
{
	int rc;

	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
	(void) fill_cmd(c, TEST_UNIT_READY, h,
			NULL, 0, 0, lunaddr, TYPE_CMD);
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc)
		return rc;
	/* no unmap needed here because no data xfer. */

	/* Check if the unit is already ready. */
	if (c->err_info->CommandStatus == CMD_SUCCESS)
		return 0;

	/*
	 * The first command sent after reset will receive "unit attention" to
	 * indicate that the LUN has been reset...this is actually what we're
	 * looking for (but, success is good too).
	 */
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
		return 0;

	return 1;
}

/*
 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 * returns zero when the unit is ready, and non-zero when giving up.
 */
static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c,
				unsigned char lunaddr[], int reply_queue)
4883
{
4884
	int rc;
4885 4886 4887 4888
	int count = 0;
	int waittime = 1; /* seconds */

	/* Send test unit ready until device ready, or give up. */
4889
	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
4890

4891 4892
		/*
		 * Wait for a bit.  do this first, because if we send
4893 4894 4895
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
4896 4897 4898 4899

		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
		if (!rc)
			break;
4900 4901 4902

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4903
			waittime *= 2;
4904

4905 4906 4907 4908
		dev_warn(&h->pdev->dev,
			 "waiting %d secs for device to become ready.\n",
			 waittime);
	}
4909

4910 4911
	return rc;
}
4912

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
static int wait_for_device_to_become_ready(struct ctlr_info *h,
					   unsigned char lunaddr[],
					   int reply_queue)
{
	int first_queue;
	int last_queue;
	int rq;
	int rc = 0;
	struct CommandList *c;

	c = cmd_alloc(h);

	/*
	 * If no specific reply queue was requested, then send the TUR
	 * repeatedly, requesting a reply on each reply queue; otherwise execute
	 * the loop exactly once using only the specified queue.
	 */
	if (reply_queue == DEFAULT_REPLY_QUEUE) {
		first_queue = 0;
		last_queue = h->nreply_queues - 1;
	} else {
		first_queue = reply_queue;
		last_queue = reply_queue;
	}

	for (rq = first_queue; rq <= last_queue; rq++) {
		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
		if (rc)
4941 4942 4943 4944 4945 4946 4947 4948
			break;
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4949
	cmd_free(h, c);
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
4961
	char msg[40];
4962 4963 4964 4965 4966

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4967 4968 4969 4970

	if (lockup_detected(h))
		return FAILED;

4971 4972 4973 4974 4975 4976
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4977 4978 4979

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
4980 4981 4982
		sprintf(msg, "cmd %d RESET FAILED, lockup detected",
				hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
4983 4984 4985 4986 4987
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
4988 4989 4990
		sprintf(msg, "cmd %d RESET FAILED, new lockup detected",
				hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
4991 4992 4993 4994 4995
		return FAILED;
	}

	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

4996
	/* send a reset to the SCSI LUN which the command was sent to */
4997 4998
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			     DEFAULT_REPLY_QUEUE);
4999
	if (rc == 0)
5000 5001
		return SUCCESS;

5002 5003 5004
	dev_warn(&h->pdev->dev,
		"scsi %d:%d:%d:%d reset failed\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
5005 5006 5007
	return FAILED;
}

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

5023
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
5024
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5025
{
D
Don Brace 已提交
5026
	u64 tag;
5027 5028 5029
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
5030 5031 5032
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
5033 5034 5035 5036 5037
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
5038 5039 5040
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
5041
		return;
5042
	}
D
Don Brace 已提交
5043 5044 5045
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
5046 5047
}

5048
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
5049
	struct CommandList *abort, int reply_queue)
5050 5051 5052 5053
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
5054
	__le32 tagupper, taglower;
5055

5056
	c = cmd_alloc(h);
5057

5058
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
5059
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5060
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
5061
	if (h->needs_abort_tags_swizzled)
5062
		swizzle_abort_tag(&c->Request.CDB[4]);
5063
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5064
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5065
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5066
		__func__, tagupper, taglower);
5067 5068 5069 5070 5071 5072
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
5073 5074 5075
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
5076 5077 5078 5079 5080
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5081
			__func__, tagupper, taglower);
5082
		hpsa_scsi_interpret_error(h, c);
5083 5084 5085
		rc = -1;
		break;
	}
5086
	cmd_free(h, c);
5087 5088
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
5089 5090 5091
	return rc;
}

5092 5093 5094 5095 5096 5097 5098
static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
	struct CommandList *command_to_abort, int reply_queue)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
	struct io_accel2_cmd *c2a =
		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5099
	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;

	/*
	 * We're overlaying struct hpsa_tmf_struct on top of something which
	 * was allocated as a struct io_accel2_cmd, so we better be sure it
	 * actually fits, and doesn't overrun the error info space.
	 */
	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
			sizeof(struct io_accel2_cmd));
	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
			offsetof(struct hpsa_tmf_struct, error_len) +
				sizeof(ac->error_len));

	c->cmd_type = IOACCEL2_TMF;
5114 5115
	c->scsi_cmd = SCSI_CMD_BUSY;

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(struct io_accel2_cmd));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
	ac->reply_queue = reply_queue;
	ac->tmf = IOACCEL2_TMF_ABORT;
	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
	memset(ac->lun_id, 0, sizeof(ac->lun_id));
	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
	ac->error_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
}

5134 5135 5136 5137 5138 5139 5140 5141
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5142
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5143 5144 5145 5146 5147 5148 5149 5150
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
5151
	scmd = abort->scsi_cmd;
5152 5153 5154 5155 5156 5157 5158
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

5159 5160
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
5161
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5162
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5163
			"Reset as abort",
5164 5165 5166
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
5180 5181 5182 5183 5184
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
5185
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5186 5187 5188 5189 5190 5191 5192 5193 5194
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
5195
	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
	struct CommandList *abort, int reply_queue)
{
	int rc = IO_OK;
	struct CommandList *c;
	__le32 taglower, tagupper;
	struct hpsa_scsi_dev_t *dev;
	struct io_accel2_cmd *c2;

	dev = abort->scsi_cmd->device->hostdata;
	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
		return -1;

	c = cmd_alloc(h);
	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
		__func__, tagupper, taglower);
	/* no unmap needed here because no data xfer. */

	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
		__func__, tagupper, taglower, c2->error_data.serv_response);
	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		rc = 0;
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
	case IOACCEL2_SERV_RESPONSE_FAILURE:
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		rc = -1;
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
			__func__, tagupper, taglower,
			c2->error_data.serv_response);
		rc = -1;
	}
	cmd_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		tagupper, taglower);
	return rc;
}

5261
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5262
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5263
{
5264 5265
	/*
	 * ioccelerator mode 2 commands should be aborted via the
5266
	 * accelerated path, since RAID path is unaware of these commands,
5267 5268
	 * but not all underlying firmware can handle abort TMF.
	 * Change abort to physical device reset when abort TMF is unsupported.
5269
	 */
5270 5271 5272 5273 5274 5275
	if (abort->cmd_type == CMD_IOACCEL2) {
		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
			return hpsa_send_abort_ioaccel2(h, abort,
						reply_queue);
		else
			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5276
							abort, reply_queue);
5277
	}
S
Stephen Cameron 已提交
5278
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5279
}
5280

5281 5282 5283 5284 5285 5286 5287
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
5288 5289
}

S
Stephen Cameron 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

5302 5303 5304 5305 5306 5307 5308
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

5309
	int rc;
5310 5311 5312 5313 5314 5315
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
5316
	__le32 tagupper, taglower;
5317 5318 5319 5320
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
5321

S
Stephen Cameron 已提交
5322 5323 5324
	if (sc->device == NULL)
		return FAILED;

5325 5326
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
5327
	if (h == NULL)
5328 5329
		return FAILED;

5330 5331 5332 5333 5334
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
5335
		return FAILED;
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
5351

5352 5353 5354 5355 5356 5357
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
5358
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5359
		h->scsi_host->host_no, sc->device->channel,
5360
		sc->device->id, sc->device->lun,
5361
		"Aborting command", sc);
5362 5363 5364 5365

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
5366 5367 5368 5369 5370 5371 5372
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
5373
	}
S
Stephen Cameron 已提交
5374 5375 5376 5377 5378 5379 5380 5381

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	/*
	 * Check that we're aborting the right command.
	 * It's possible the CommandList already completed and got re-used.
	 */
	if (abort->scsi_cmd != sc) {
		cmd_free(h, abort);
		return SUCCESS;
	}

	abort->abort_pending = true;
5392
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5393
	reply_queue = hpsa_extract_reply_queue(h, abort);
5394
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5395
	as  = abort->scsi_cmd;
5396
	if (as != NULL)
5397 5398 5399 5400 5401
		ml += sprintf(msg+ml,
			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
			as->cmd_len, as->cmnd[0], as->cmnd[1],
			as->serial_number);
	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5402
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5403

5404 5405 5406 5407 5408
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
5409 5410
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
5411 5412
			"%s FAILED, timeout waiting for an abort command to become available.\n",
			msg);
S
Stephen Cameron 已提交
5413 5414 5415
		cmd_free(h, abort);
		return FAILED;
	}
5416
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
5417 5418
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
5419
	if (rc != 0) {
5420
		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5421
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5422
				"FAILED to abort command");
5423
		cmd_free(h, abort);
5424 5425
		return FAILED;
	}
5426
	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5427 5428
	wait_event(h->abort_sync_wait_queue,
		   abort->scsi_cmd != sc || lockup_detected(h));
5429
	cmd_free(h, abort);
5430
	return !lockup_detected(h) ? SUCCESS : FAILED;
5431 5432
}

5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
/*
 * For operations with an associated SCSI command, a command block is allocated
 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 * block request tag as an index into a table of entries.  cmd_tagged_free() is
 * the complement, although cmd_free() may be called instead.
 */
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd)
{
	int idx = hpsa_get_cmd_index(scmd);
	struct CommandList *c = h->cmd_pool + idx;

	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
		/* The index value comes from the block layer, so if it's out of
		 * bounds, it's probably not our bug.
		 */
		BUG();
	}

	atomic_inc(&c->refcount);
	if (unlikely(!hpsa_is_cmd_idle(c))) {
		/*
		 * We expect that the SCSI layer will hand us a unique tag
		 * value.  Thus, there should never be a collision here between
		 * two requests...because if the selected command isn't idle
		 * then someone is going to be very disappointed.
		 */
		dev_err(&h->pdev->dev,
			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
			idx);
		if (c->scsi_cmd != NULL)
			scsi_print_command(c->scsi_cmd);
		scsi_print_command(scmd);
	}

	hpsa_cmd_partial_init(h, idx, c);
	return c;
}

static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
{
	/*
	 * Release our reference to the block.  We don't need to do anything
	 * else to free it, because it is accessed by index.  (There's no point
	 * in checking the result of the decrement, since we cannot guarantee
	 * that there isn't a concurrent abort which is also accessing it.)
	 */
	(void)atomic_dec(&c->refcount);
}

5485 5486 5487 5488 5489
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
5490 5491
 * This function never gives up and returns NULL.  If it hangs,
 * another thread must call cmd_free() to free some tags.
5492
 */
5493

5494 5495 5496
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
5497
	int refcount, i;
5498
	int offset = 0;
5499

5500 5501
	/*
	 * There is some *extremely* small but non-zero chance that that
5502 5503 5504 5505 5506 5507 5508 5509
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
5510 5511 5512 5513 5514 5515 5516
	 *
	 * Note that we start allocating commands before the SCSI host structure
	 * is initialized.  Since the search starts at bit zero, this
	 * all works, since we have at least one command structure available;
	 * however, it means that the structures with the low indexes have to be
	 * reserved for driver-initiated requests, while requests from the block
	 * layer will use the higher indexes.
5517
	 */
5518

5519
	for (;;) {
5520 5521 5522 5523
		i = find_next_zero_bit(h->cmd_pool_bits,
					HPSA_NRESERVED_CMDS,
					offset);
		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5524 5525 5526 5527 5528 5529 5530
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
5531
			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5532 5533 5534 5535 5536 5537
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
5538
	hpsa_cmd_partial_init(h, i, c);
5539 5540 5541
	return c;
}

5542 5543 5544 5545 5546 5547
/*
 * This is the complementary operation to cmd_alloc().  Note, however, in some
 * corner cases it may also be used to free blocks allocated by
 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 * the clear-bit is harmless.
 */
5548 5549
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
5550 5551
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
5552

5553 5554 5555 5556
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
5557 5558 5559 5560
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
5561 5562
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
5563 5564 5565 5566 5567 5568 5569 5570
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5571
	memset(&arg64, 0, sizeof(arg64));
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5587
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5598
	int cmd, void __user *arg)
5599 5600 5601 5602 5603 5604 5605 5606 5607
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5608
	memset(&arg64, 0, sizeof(arg64));
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5625
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5626 5627 5628 5629 5630 5631 5632 5633
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5634

D
Don Brace 已提交
5635
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5709
	u64 temp64;
5710
	int rc = 0;
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
5725
			return -ENOMEM;
5726
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5727 5728 5729
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5730 5731
				rc = -EFAULT;
				goto out_kfree;
5732 5733 5734
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5735
		}
5736
	}
5737
	c = cmd_alloc(h);
5738

5739 5740
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
5741
	c->scsi_cmd = SCSI_CMD_BUSY;
5742 5743 5744 5745
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5746
		c->Header.SGTotal = cpu_to_le16(1);
5747 5748
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5749
		c->Header.SGTotal = cpu_to_le16(0);
5750 5751 5752 5753 5754 5755 5756 5757 5758
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5759
		temp64 = pci_map_single(h->pdev, buff,
5760
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5761 5762 5763
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5764 5765 5766
			rc = -ENOMEM;
			goto out;
		}
5767 5768 5769
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5770
	}
5771
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5772 5773
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5774
	check_ioctl_unit_attention(h, c);
5775 5776 5777 5778
	if (rc) {
		rc = -EIO;
		goto out;
	}
5779 5780 5781 5782 5783

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5784 5785
		rc = -EFAULT;
		goto out;
5786
	}
5787
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5788
		iocommand.buf_size > 0) {
5789 5790
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5791 5792
			rc = -EFAULT;
			goto out;
5793 5794
		}
	}
5795
out:
5796
	cmd_free(h, c);
5797 5798 5799
out_kfree:
	kfree(buff);
	return rc;
5800 5801 5802 5803 5804 5805 5806 5807
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5808
	u64 temp64;
5809 5810
	BYTE sg_used = 0;
	int status = 0;
5811 5812
	u32 left;
	u32 sz;
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5839
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5840 5841 5842
		status = -EINVAL;
		goto cleanup1;
	}
5843
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5844 5845 5846 5847
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5848
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5863
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5864
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5865
				status = -EFAULT;
5866 5867 5868 5869 5870 5871 5872 5873
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5874
	c = cmd_alloc(h);
5875

5876
	c->cmd_type = CMD_IOCTL_PEND;
5877
	c->scsi_cmd = SCSI_CMD_BUSY;
5878
	c->Header.ReplyQueue = 0;
5879 5880
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5881 5882 5883 5884 5885
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5886
			temp64 = pci_map_single(h->pdev, buff[i],
5887
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5888 5889 5890 5891
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5892 5893 5894
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5895
				goto cleanup0;
5896
			}
5897 5898 5899
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5900
		}
5901
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5902
	}
5903
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5904 5905
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5906
	check_ioctl_unit_attention(h, c);
5907 5908 5909 5910 5911
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

5912 5913 5914 5915
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5916
		goto cleanup0;
5917
	}
5918
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5919 5920
		int i;

5921 5922 5923 5924 5925
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5926
				goto cleanup0;
5927 5928 5929 5930 5931
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5932
cleanup0:
5933
	cmd_free(h, c);
5934 5935
cleanup1:
	if (buff) {
D
Don Brace 已提交
5936 5937
		int i;

5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5954

5955 5956 5957
/*
 * ioctl
 */
D
Don Brace 已提交
5958
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5959 5960 5961
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5962
	int rc;
5963 5964 5965 5966 5967 5968 5969

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5970
		hpsa_scan_start(h->scsi_host);
5971 5972 5973 5974 5975 5976
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5977
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5978 5979
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5980
		atomic_inc(&h->passthru_cmds_avail);
5981
		return rc;
5982
	case CCISS_BIG_PASSTHRU:
5983
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5984 5985
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5986
		atomic_inc(&h->passthru_cmds_avail);
5987
		return rc;
5988 5989 5990 5991 5992
	default:
		return -ENOTTY;
	}
}

5993
static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5994
				u8 reset_type)
5995 5996 5997 5998
{
	struct CommandList *c;

	c = cmd_alloc(h);
5999

6000 6001
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6002 6003 6004 6005 6006 6007 6008 6009
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
6010
	return;
6011 6012
}

6013
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6014
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6015 6016 6017
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
6018
	u64 tag; /* for commands to be aborted */
6019 6020

	c->cmd_type = CMD_IOCTL_PEND;
6021
	c->scsi_cmd = SCSI_CMD_BUSY;
6022 6023 6024
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
6025
		c->Header.SGTotal = cpu_to_le16(1);
6026 6027
	} else {
		c->Header.SGList = 0;
6028
		c->Header.SGTotal = cpu_to_le16(0);
6029 6030 6031 6032 6033 6034 6035
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
6036
			if (page_code & VPD_PAGE) {
6037
				c->Request.CDB[1] = 0x01;
6038
				c->Request.CDB[2] = (page_code & 0xff);
6039 6040
			}
			c->Request.CDBLen = 6;
6041 6042
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
6053 6054
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6055 6056 6057 6058 6059 6060 6061 6062 6063
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
6064 6065 6066
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6067 6068 6069
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6070 6071
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
6072 6073 6074
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
6075 6076
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6077 6078
			c->Request.Timeout = 0;
			break;
6079 6080
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
6081 6082
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6083 6084 6085 6086 6087 6088 6089 6090
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
6091 6092
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
6093 6094
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6095 6096 6097 6098 6099 6100
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
6111 6112 6113
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
6114
			return -1;
6115 6116 6117 6118 6119 6120
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
6121 6122
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6123
			c->Request.Timeout = 0; /* Don't time out */
6124 6125
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
6126
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6127 6128 6129 6130 6131 6132
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
6133 6134
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
6135
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
6136
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
6137 6138
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
6139
			c->Request.CDBLen = 16;
6140 6141 6142
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6143 6144 6145 6146 6147 6148
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
6149
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6150 6151 6152 6153
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

6165
	switch (GET_DIR(c->Request.type_attr_dir)) {
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
6178 6179 6180
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
6181 6182 6183 6184 6185 6186 6187 6188 6189
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
6190 6191
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
6192 6193 6194 6195

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

6196
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6197
{
6198
	return h->access.command_completed(h, q);
6199 6200
}

6201
static inline bool interrupt_pending(struct ctlr_info *h)
6202 6203 6204 6205 6206 6207
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
6208 6209
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
6210 6211
}

6212 6213
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
6214 6215 6216 6217 6218 6219 6220 6221
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

6222
static inline void finish_cmd(struct CommandList *c)
6223
{
6224
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6225 6226
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
6227
		complete_scsi_command(c);
6228
	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6229
		complete(c->waiting);
6230 6231
}

6232 6233

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6234
{
6235 6236
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
6237
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6238 6239
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
6240 6241
}

6242
/* process completion of an indexed ("direct lookup") command */
6243
static inline void process_indexed_cmd(struct ctlr_info *h,
6244 6245 6246 6247 6248
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

6249
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6250 6251 6252 6253
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
6254 6255
}

6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

6275 6276 6277 6278 6279 6280
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
6281
{
6282 6283 6284 6285 6286 6287 6288
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
6289 6290 6291 6292 6293 6294 6295
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6296
	h->last_intr_timestamp = get_jiffies_64();
6297
	while (interrupt_pending(h)) {
6298
		raw_tag = get_next_completion(h, q);
6299
		while (raw_tag != FIFO_EMPTY)
6300
			raw_tag = next_command(h, q);
6301 6302 6303 6304
	}
	return IRQ_HANDLED;
}

6305
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6306
{
6307
	struct ctlr_info *h = queue_to_hba(queue);
6308
	u32 raw_tag;
6309
	u8 q = *(u8 *) queue;
6310 6311 6312 6313

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

6314
	h->last_intr_timestamp = get_jiffies_64();
6315
	raw_tag = get_next_completion(h, q);
6316
	while (raw_tag != FIFO_EMPTY)
6317
		raw_tag = next_command(h, q);
6318 6319 6320
	return IRQ_HANDLED;
}

6321
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6322
{
6323
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6324
	u32 raw_tag;
6325
	u8 q = *(u8 *) queue;
6326 6327 6328

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6329
	h->last_intr_timestamp = get_jiffies_64();
6330
	while (interrupt_pending(h)) {
6331
		raw_tag = get_next_completion(h, q);
6332
		while (raw_tag != FIFO_EMPTY) {
6333
			process_indexed_cmd(h, raw_tag);
6334
			raw_tag = next_command(h, q);
6335 6336 6337 6338 6339
		}
	}
	return IRQ_HANDLED;
}

6340
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6341
{
6342
	struct ctlr_info *h = queue_to_hba(queue);
6343
	u32 raw_tag;
6344
	u8 q = *(u8 *) queue;
6345

6346
	h->last_intr_timestamp = get_jiffies_64();
6347
	raw_tag = get_next_completion(h, q);
6348
	while (raw_tag != FIFO_EMPTY) {
6349
		process_indexed_cmd(h, raw_tag);
6350
		raw_tag = next_command(h, q);
6351 6352 6353 6354
	}
	return IRQ_HANDLED;
}

6355 6356 6357 6358
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
6359 6360
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
6371 6372
	__le32 paddr32;
	u32 tag;
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
6387
		return err;
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
6400
	paddr32 = cpu_to_le32(paddr64);
6401 6402 6403

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
6404
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
6405
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6406 6407 6408
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
6409 6410
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6411 6412 6413 6414
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6415
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
6416
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6417
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6418

D
Don Brace 已提交
6419
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6420 6421 6422

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
6423
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

6454
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
6455
	void __iomem *vaddr, u32 use_doorbell)
6456 6457 6458 6459 6460 6461 6462 6463
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6464
		writel(use_doorbell, vaddr + SA5_DOORBELL);
6465

6466
		/* PMC hardware guys tell us we need a 10 second delay after
6467 6468 6469 6470
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
6471
		msleep(10000);
6472 6473 6474 6475 6476 6477 6478 6479 6480
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
6481 6482 6483

		int rc = 0;

6484
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6485

6486
		/* enter the D3hot power management state */
6487 6488 6489
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
6490 6491 6492 6493

		msleep(500);

		/* enter the D0 power management state */
6494 6495 6496
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
6497 6498 6499 6500 6501 6502 6503

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
6504 6505 6506 6507
	}
	return 0;
}

6508
static void init_driver_version(char *driver_version, int len)
6509 6510
{
	memset(driver_version, 0, len);
6511
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6512 6513
}

6514
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

6530 6531
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
6532 6533 6534 6535 6536 6537 6538
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

6539
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
6559
/* This does a hard reset of the controller using PCI power management
6560
 * states or the using the doorbell register.
6561
 */
6562
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6563
{
6564 6565 6566 6567 6568
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6569
	u32 misc_fw_support;
6570
	int rc;
6571
	struct CfgTable __iomem *cfgtable;
6572
	u32 use_doorbell;
6573
	u16 command_register;
6574

6575 6576
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6577 6578 6579 6580 6581 6582
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6583 6584 6585
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6586
	 */
6587

6588 6589
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6590 6591
		return -ENODEV;
	}
6592 6593 6594 6595

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6596

6597 6598 6599
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6600

6601 6602 6603 6604 6605 6606 6607
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6608

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6620 6621
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6622
		goto unmap_cfgtable;
6623

6624 6625 6626
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6627
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6628 6629 6630 6631 6632 6633
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6634 6635
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6636
			rc = -ENOTSUPP; /* try soft reset */
6637 6638 6639
			goto unmap_cfgtable;
		}
	}
6640

6641 6642 6643
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6644

6645 6646
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6647

6648 6649 6650 6651
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6652 6653 6654
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6655
			"Failed waiting for board to become ready after hard reset\n");
6656 6657 6658
		goto unmap_cfgtable;
	}

6659 6660 6661 6662
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6663 6664 6665
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6666
	} else {
6667
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6668 6669 6670 6671 6672 6673 6674 6675
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6676 6677 6678 6679 6680 6681 6682
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6683
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6684
{
6685
#ifdef HPSA_DEBUG
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6706
	dev_info(dev, "   Max outstanding commands = %d\n",
6707 6708 6709 6710 6711 6712 6713 6714 6715
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6716
}
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

6753 6754 6755 6756 6757
static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
{
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
R
Robert Elliott 已提交
6758
		h->msix_vector = 0;
6759 6760 6761
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
R
Robert Elliott 已提交
6762
		h->msi_vector = 0;
6763 6764 6765
	}
}

6766
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6767
 * controllers that are capable. If not, we use legacy INTx mode.
6768
 */
6769
static void hpsa_interrupt_mode(struct ctlr_info *h)
6770 6771
{
#ifdef CONFIG_PCI_MSI
6772 6773 6774 6775 6776 6777 6778
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6779 6780

	/* Some boards advertise MSI but don't really support it */
6781 6782
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6783
		goto default_int_mode;
6784
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6785
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6786
		h->msix_vector = MAX_REPLY_QUEUES;
6787 6788
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6789 6790 6791 6792 6793 6794 6795
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6796
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6797 6798
			       "available\n", err);
		}
6799 6800 6801 6802
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6803
	}
6804
single_msi_mode:
6805
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6806
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6807
		if (!pci_enable_msi(h->pdev))
6808 6809
			h->msi_vector = 1;
		else
6810
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6811 6812 6813 6814
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6815
	h->intr[h->intr_mode] = h->pdev->irq;
6816 6817
}

6818
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6832 6833 6834
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6835 6836 6837 6838 6839 6840 6841
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6842 6843
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6844 6845 6846 6847
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6848
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6849
			/* addressing mode bits already removed */
6850 6851
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6852 6853 6854
				*memory_bar);
			return 0;
		}
6855
	dev_warn(&pdev->dev, "no memory BAR found\n");
6856 6857 6858
	return -ENODEV;
}

6859 6860
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6861
{
6862
	int i, iterations;
6863
	u32 scratchpad;
6864 6865 6866 6867
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6868

6869 6870 6871 6872 6873 6874 6875 6876 6877
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6878 6879
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6880
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6881 6882 6883
	return -ENODEV;
}

6884 6885 6886
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

R
Robert Elliott 已提交
6899 6900
static void hpsa_free_cfgtables(struct ctlr_info *h)
{
R
Robert Elliott 已提交
6901
	if (h->transtable) {
R
Robert Elliott 已提交
6902
		iounmap(h->transtable);
R
Robert Elliott 已提交
6903 6904 6905
		h->transtable = NULL;
	}
	if (h->cfgtable) {
R
Robert Elliott 已提交
6906
		iounmap(h->cfgtable);
R
Robert Elliott 已提交
6907 6908
		h->cfgtable = NULL;
	}
R
Robert Elliott 已提交
6909 6910 6911 6912 6913
}

/* Find and map CISS config table and transfer table
+ * several items must be unmapped (freed) later
+ * */
6914
static int hpsa_find_cfgtables(struct ctlr_info *h)
6915
{
6916 6917 6918
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6919
	u32 trans_offset;
6920
	int rc;
6921

6922 6923 6924 6925
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6926
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6927
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6928 6929
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6930
		return -ENOMEM;
6931
	}
6932 6933 6934
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6935
	/* Find performant mode table. */
6936
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6937 6938 6939
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
R
Robert Elliott 已提交
6940 6941 6942
	if (!h->transtable) {
		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
		hpsa_free_cfgtables(h);
6943
		return -ENOMEM;
R
Robert Elliott 已提交
6944
	}
6945 6946 6947
	return 0;
}

6948
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6949
{
6950 6951 6952 6953
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6954 6955 6956 6957 6958

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6959 6960 6961 6962 6963 6964
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6965 6966 6967
	}
}

6968 6969 6970 6971 6972 6973 6974 6975 6976
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6977 6978 6979 6980
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6981
static void hpsa_find_board_params(struct ctlr_info *h)
6982
{
6983
	hpsa_get_max_perf_mode_cmds(h);
6984
	h->nr_cmds = h->max_commands;
6985
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6986
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6987 6988
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6989
		h->max_cmd_sg_entries = 32;
6990
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6991 6992
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6993 6994 6995 6996 6997 6998
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6999
		h->maxsgentries = 31; /* default to traditional values */
7000
		h->chainsize = 0;
7001
	}
7002 7003 7004

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7005 7006 7007 7008
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7009 7010
	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7011 7012
}

7013 7014
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
7015
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7016
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7017 7018 7019 7020 7021
		return false;
	}
	return true;
}

7022
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7023
{
7024
	u32 driver_support;
7025

7026
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
7027 7028
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
7029
	driver_support |= ENABLE_SCSI_PREFETCH;
7030
#endif
7031 7032
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
7033 7034
}

7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

7049
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7050 7051 7052 7053 7054
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7055
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7056 7057 7058 7059
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7060
			goto done;
7061
		/* delay and try again */
7062
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7063
	}
7064 7065 7066
	return -ENODEV;
done:
	return 0;
7067 7068
}

7069
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7070 7071
{
	int i;
7072 7073
	u32 doorbell_value;
	unsigned long flags;
7074 7075 7076 7077 7078

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
7079
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7080 7081
		if (h->remove_in_progress)
			goto done;
7082 7083 7084
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
7085
		if (!(doorbell_value & CFGTBL_ChangeReq))
7086
			goto done;
7087
		/* delay and try again */
7088
		msleep(MODE_CHANGE_WAIT_INTERVAL);
7089
	}
7090 7091 7092
	return -ENODEV;
done:
	return 0;
7093 7094
}

7095
/* return -ENODEV or other reason on error, 0 on success */
7096
static int hpsa_enter_simple_mode(struct ctlr_info *h)
7097 7098 7099 7100 7101 7102 7103 7104
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7105

7106 7107
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7108
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7109
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7110 7111
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
7112
	print_cfg_table(&h->pdev->dev, h->cfgtable);
7113 7114
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
7115
	h->transMethod = CFGTBL_Trans_Simple;
7116
	return 0;
7117
error:
7118
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7119
	return -ENODEV;
7120 7121
}

R
Robert Elliott 已提交
7122 7123 7124 7125 7126
/* free items allocated or mapped by hpsa_pci_init */
static void hpsa_free_pci_init(struct ctlr_info *h)
{
	hpsa_free_cfgtables(h);			/* pci_init 4 */
	iounmap(h->vaddr);			/* pci_init 3 */
R
Robert Elliott 已提交
7127
	h->vaddr = NULL;
R
Robert Elliott 已提交
7128
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7129 7130 7131 7132
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7133
	pci_disable_device(h->pdev);		/* pci_init 1 */
7134
	pci_release_regions(h->pdev);		/* pci_init 2 */
R
Robert Elliott 已提交
7135 7136 7137
}

/* several items must be freed later */
7138
static int hpsa_pci_init(struct ctlr_info *h)
7139
{
7140
	int prod_index, err;
7141

7142 7143
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
7144
		return prod_index;
7145 7146
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
7147

S
Stephen Cameron 已提交
7148 7149 7150
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
7151 7152 7153
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

7154
	err = pci_enable_device(h->pdev);
7155
	if (err) {
R
Robert Elliott 已提交
7156
		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7157
		pci_disable_device(h->pdev);
7158 7159 7160
		return err;
	}

7161
	err = pci_request_regions(h->pdev, HPSA);
7162
	if (err) {
7163
		dev_err(&h->pdev->dev,
R
Robert Elliott 已提交
7164
			"failed to obtain PCI resources\n");
7165 7166
		pci_disable_device(h->pdev);
		return err;
7167
	}
7168 7169 7170

	pci_set_master(h->pdev);

7171
	hpsa_interrupt_mode(h);
7172
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7173
	if (err)
R
Robert Elliott 已提交
7174
		goto clean2;	/* intmode+region, pci */
7175
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7176
	if (!h->vaddr) {
R
Robert Elliott 已提交
7177
		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7178
		err = -ENOMEM;
R
Robert Elliott 已提交
7179
		goto clean2;	/* intmode+region, pci */
7180
	}
7181
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7182
	if (err)
R
Robert Elliott 已提交
7183
		goto clean3;	/* vaddr, intmode+region, pci */
7184 7185
	err = hpsa_find_cfgtables(h);
	if (err)
R
Robert Elliott 已提交
7186
		goto clean3;	/* vaddr, intmode+region, pci */
7187
	hpsa_find_board_params(h);
7188

7189
	if (!hpsa_CISS_signature_present(h)) {
7190
		err = -ENODEV;
R
Robert Elliott 已提交
7191
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7192
	}
7193
	hpsa_set_driver_support_bits(h);
7194
	hpsa_p600_dma_prefetch_quirk(h);
7195 7196
	err = hpsa_enter_simple_mode(h);
	if (err)
R
Robert Elliott 已提交
7197
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7198 7199
	return 0;

R
Robert Elliott 已提交
7200 7201 7202 7203
clean4:	/* cfgtables, vaddr, intmode+region, pci */
	hpsa_free_cfgtables(h);
clean3:	/* vaddr, intmode+region, pci */
	iounmap(h->vaddr);
R
Robert Elliott 已提交
7204
	h->vaddr = NULL;
R
Robert Elliott 已提交
7205 7206
clean2:	/* intmode+region, pci */
	hpsa_disable_interrupt_mode(h);
7207 7208 7209 7210
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7211
	pci_disable_device(h->pdev);
7212
	pci_release_regions(h->pdev);
7213 7214 7215
	return err;
}

7216
static void hpsa_hba_inquiry(struct ctlr_info *h)
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

7232
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7233
{
7234
	int rc, i;
7235
	void __iomem *vaddr;
7236 7237 7238 7239

	if (!reset_devices)
		return 0;

7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
7256

7257
	pci_set_master(pdev);
7258

7259 7260 7261 7262 7263 7264 7265 7266
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

7267
	/* Reset the controller with a PCI power-cycle or via doorbell */
7268
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7269

7270 7271
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
7272 7273
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
7274
	 */
7275
	if (rc)
7276
		goto out_disable;
7277 7278

	/* Now try to get the controller to respond to a no-op */
7279
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7280 7281 7282 7283 7284 7285 7286
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
7287 7288 7289 7290 7291

out_disable:

	pci_disable_device(pdev);
	return rc;
7292 7293
}

7294 7295 7296
static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
R
Robert Elliott 已提交
7297 7298
	h->cmd_pool_bits = NULL;
	if (h->cmd_pool) {
7299 7300 7301 7302
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct CommandList),
				h->cmd_pool,
				h->cmd_pool_dhandle);
R
Robert Elliott 已提交
7303 7304 7305 7306
		h->cmd_pool = NULL;
		h->cmd_pool_dhandle = 0;
	}
	if (h->errinfo_pool) {
7307 7308 7309 7310
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct ErrorInfo),
				h->errinfo_pool,
				h->errinfo_pool_dhandle);
R
Robert Elliott 已提交
7311 7312 7313
		h->errinfo_pool = NULL;
		h->errinfo_pool_dhandle = 0;
	}
7314 7315
}

7316
static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7331
		goto clean_up;
7332
	}
7333
	hpsa_preinitialize_commands(h);
7334
	return 0;
7335 7336 7337
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
7338 7339
}

7340 7341
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
7342
	int i, cpu;
7343 7344 7345

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
7346
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7347 7348 7349 7350
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7361
		h->q[i] = 0;
7362 7363 7364 7365 7366 7367
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7368
		h->q[i] = 0;
7369
	}
7370 7371
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
7372 7373
}

7374 7375
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
7376 7377 7378
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
7379
	int rc, i;
7380

7381 7382 7383 7384 7385 7386 7387
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

7388
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7389
		/* If performant mode and MSI-X, use multiple reply queues */
7390
		for (i = 0; i < h->msix_vector; i++) {
7391
			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7392
			rc = request_irq(h->intr[i], msixhandler,
7393
					0, h->intrname[i],
7394
					&h->q[i]);
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
7410
		hpsa_irq_affinity_hints(h);
7411 7412
	} else {
		/* Use single reply pool */
7413
		if (h->msix_vector > 0 || h->msi_vector) {
7414 7415 7416 7417 7418 7419
			if (h->msix_vector)
				sprintf(h->intrname[h->intr_mode],
					"%s-msix", h->devname);
			else
				sprintf(h->intrname[h->intr_mode],
					"%s-msi", h->devname);
7420
			rc = request_irq(h->intr[h->intr_mode],
7421 7422
				msixhandler, 0,
				h->intrname[h->intr_mode],
7423 7424
				&h->q[h->intr_mode]);
		} else {
7425 7426
			sprintf(h->intrname[h->intr_mode],
				"%s-intx", h->devname);
7427
			rc = request_irq(h->intr[h->intr_mode],
7428 7429
				intxhandler, IRQF_SHARED,
				h->intrname[h->intr_mode],
7430 7431
				&h->q[h->intr_mode]);
		}
R
Robert Elliott 已提交
7432
		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7433
	}
7434
	if (rc) {
R
Robert Elliott 已提交
7435
		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7436
		       h->intr[h->intr_mode], h->devname);
R
Robert Elliott 已提交
7437
		hpsa_free_irqs(h);
7438 7439 7440 7441 7442
		return -ENODEV;
	}
	return 0;
}

7443
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7444
{
7445
	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

7463 7464 7465 7466 7467 7468 7469
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
7470 7471 7472 7473
		pci_free_consistent(h->pdev,
					h->reply_queue_size,
					h->reply_queue[i].head,
					h->reply_queue[i].busaddr);
7474 7475 7476
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
R
Robert Elliott 已提交
7477
	h->reply_queue_size = 0;
7478 7479
}

7480 7481
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
R
Robert Elliott 已提交
7482 7483 7484 7485 7486
	hpsa_free_performant_mode(h);		/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
	hpsa_free_cmd_pool(h);			/* init_one 5 */
	hpsa_free_irqs(h);			/* init_one 4 */
	hpsa_free_pci_init(h);			/* init_one 3 */
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
	free_percpu(h->lockup_detected);	/* init_one 2 */
	h->lockup_detected = NULL;		/* init_one 2 */
	if (h->resubmit_wq) {
		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
		destroy_workqueue(h->rescan_ctlr_wq);
		h->rescan_ctlr_wq = NULL;
	}
R
Robert Elliott 已提交
7497
	kfree(h);				/* init_one 1 */
7498 7499
}

7500
/* Called when controller lockup detected. */
7501
static void fail_all_outstanding_cmds(struct ctlr_info *h)
7502
{
7503 7504
	int i, refcount;
	struct CommandList *c;
7505
	int failcount = 0;
7506

7507
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7508 7509
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
7510 7511
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
7512
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7513
			finish_cmd(c);
7514
			atomic_dec(&h->commands_outstanding);
7515
			failcount++;
7516 7517
		}
		cmd_free(h, c);
7518
	}
7519 7520
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
7521 7522
}

7523 7524
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
7525
	int cpu;
7526

7527
	for_each_online_cpu(cpu) {
7528 7529 7530 7531 7532 7533 7534
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

7535 7536 7537
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
7538
	u32 lockup_detected;
7539 7540 7541

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
7542 7543 7544 7545
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
7546 7547
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
7548 7549 7550
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
7551
	spin_unlock_irqrestore(&h->lock, flags);
7552 7553
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
7554
	pci_disable_device(h->pdev);
7555
	fail_all_outstanding_cmds(h);
7556 7557
}

7558
static int detect_controller_lockup(struct ctlr_info *h)
7559 7560 7561 7562 7563 7564 7565 7566
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
7567
				(h->heartbeat_sample_interval), now))
7568
		return false;
7569 7570 7571 7572 7573 7574 7575

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
7576
				(h->heartbeat_sample_interval), now))
7577
		return false;
7578 7579 7580 7581 7582 7583 7584

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
7585
		return true;
7586 7587 7588 7589 7590
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
7591
	return false;
7592 7593
}

7594
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7595 7596 7597 7598
{
	int i;
	char *event_type;

7599 7600 7601
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

7602
	/* Ask the controller to clear the events we're handling. */
7603 7604
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
7616
		hpsa_drain_accel_commands(h);
7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7637
	return;
7638 7639 7640 7641
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7642 7643
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7644
 */
7645
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7646 7647
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7648
		return 0;
7649 7650

	h->events = readl(&(h->cfgtable->event_notify));
7651 7652
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7653

7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7668 7669 7670 7671
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7672
			return 1;
7673
		}
7674 7675 7676 7677
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7678 7679
}

7680
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7681 7682
{
	unsigned long flags;
7683
	struct ctlr_info *h = container_of(to_delayed_work(work),
7684 7685 7686 7687
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7688
		return;
7689 7690 7691 7692 7693 7694 7695

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7696
	spin_lock_irqsave(&h->lock, flags);
7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7711
		return;
7712 7713 7714 7715

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7716 7717
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7718 7719
}

7720 7721 7722 7723 7724
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7725
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7726 7727 7728 7729 7730 7731
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7732
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7733
{
7734
	int dac, rc;
7735
	struct ctlr_info *h;
7736 7737
	int try_soft_reset = 0;
	unsigned long flags;
7738
	u32 board_id;
7739 7740 7741 7742

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7743 7744 7745 7746 7747 7748 7749
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7763

7764 7765 7766 7767 7768
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7769
	h = kzalloc(sizeof(*h), GFP_KERNEL);
R
Robert Elliott 已提交
7770 7771
	if (!h) {
		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7772
		return -ENOMEM;
R
Robert Elliott 已提交
7773
	}
7774

7775
	h->pdev = pdev;
R
Robert Elliott 已提交
7776

7777
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7778
	INIT_LIST_HEAD(&h->offline_device_list);
7779
	spin_lock_init(&h->lock);
7780
	spin_lock_init(&h->offline_device_lock);
7781
	spin_lock_init(&h->scan_lock);
7782
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7783
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7784 7785 7786

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7787
	if (!h->lockup_detected) {
R
Robert Elliott 已提交
7788
		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7789
		rc = -ENOMEM;
7790
		goto clean1;	/* aer/h */
7791
	}
7792 7793
	set_lockup_detected_for_all_cpus(h, 0);

7794
	rc = hpsa_pci_init(h);
R
Robert Elliott 已提交
7795
	if (rc)
7796
		goto clean2;	/* lockup, aer/h */
7797

7798
	sprintf(h->devname, HPSA "%d", number_of_controllers);
7799 7800 7801 7802
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7803 7804
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7805
		dac = 1;
7806 7807 7808 7809 7810 7811
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
7812
			goto clean3;	/* pci, lockup, aer/h */
7813
		}
7814 7815 7816 7817
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7818

R
Robert Elliott 已提交
7819 7820
	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
	if (rc)
7821
		goto clean3;	/* pci, lockup, aer/h */
7822
	rc = hpsa_alloc_cmd_pool(h);
7823
	if (rc)
7824
		goto clean4;	/* irq, pci, lockup, aer/h */
R
Robert Elliott 已提交
7825 7826
	rc = hpsa_alloc_sg_chain_blocks(h);
	if (rc)
7827
		goto clean5;	/* cmd, irq, pci, lockup, aer/h */
7828
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7829
	init_waitqueue_head(&h->abort_cmd_wait_queue);
7830
	init_waitqueue_head(&h->abort_sync_wait_queue);
7831
	h->scan_finished = 1; /* no scan currently in progress */
7832 7833

	pci_set_drvdata(pdev, h);
7834
	h->ndevices = 0;
7835
	h->hba_mode_enabled = 0;
7836 7837
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
R
Robert Elliott 已提交
7838 7839
	rc = hpsa_put_ctlr_into_performant_mode(h);
	if (rc)
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853
		goto clean6;	/* sg, cmd, irq, pci, lockup, aer/h */

	/* create the resubmit workqueue */
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean7;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean7;	/* aer/h */
	}
7854

R
Robert Elliott 已提交
7855 7856
	/*
	 * At this point, the controller is ready to take commands.
7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7872
		hpsa_free_irqs(h);
7873
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7874 7875
					hpsa_intx_discard_completions);
		if (rc) {
7876 7877
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
7878
			/*
7879 7880 7881 7882 7883 7884 7885 7886 7887
			 * cannot goto clean7 or free_irqs will be called
			 * again. Instead, do its work
			 */
			hpsa_free_performant_mode(h);	/* clean7 */
			hpsa_free_sg_chain_blocks(h);	/* clean6 */
			hpsa_free_cmd_pool(h);		/* clean5 */
			/*
			 * skip hpsa_free_irqs(h) clean4 since that
			 * was just called before request_irqs failed
7888 7889
			 */
			goto clean3;
7890 7891 7892 7893 7894
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
7895
			goto clean8;
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
7916
			/* don't goto clean, we already unallocated */
7917 7918 7919 7920
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7921

R
Robert Elliott 已提交
7922 7923
	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;
7924

7925

7926 7927 7928
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7929
	hpsa_hba_inquiry(h);
R
Robert Elliott 已提交
7930
	rc = hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7931
	if (rc)
7932
		goto clean8; /* wq, perf, sg, cmd, irq, pci, lockup, aer/h */
7933 7934 7935 7936 7937 7938

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7939 7940 7941
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7942
	return 0;
7943

7944
clean8: /* perf, sg, cmd, irq, pci, lockup, aer/h */
R
Robert Elliott 已提交
7945
	kfree(h->hba_inquiry_data);
7946
clean7: /* perf, sg, cmd, irq, pci, lockup, aer/h */
R
Robert Elliott 已提交
7947 7948 7949
	hpsa_free_performant_mode(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
7950
	hpsa_free_sg_chain_blocks(h);
7951
clean5: /* cmd, irq, pci, lockup, aer/h */
7952
	hpsa_free_cmd_pool(h);
7953
clean4: /* irq, pci, lockup, aer/h */
7954
	hpsa_free_irqs(h);
7955
clean3: /* pci, lockup, aer/h */
R
Robert Elliott 已提交
7956
	hpsa_free_pci_init(h);
7957
clean2: /* lockup, aer/h */
R
Robert Elliott 已提交
7958 7959 7960 7961 7962 7963
	if (h->lockup_detected) {
		free_percpu(h->lockup_detected);
		h->lockup_detected = NULL;
	}
clean1:	/* wq/aer/h */
	if (h->resubmit_wq) {
7964
		destroy_workqueue(h->resubmit_wq);
R
Robert Elliott 已提交
7965 7966 7967
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
7968
		destroy_workqueue(h->rescan_ctlr_wq);
R
Robert Elliott 已提交
7969 7970
		h->rescan_ctlr_wq = NULL;
	}
7971
	kfree(h);
7972
	return rc;
7973 7974 7975 7976 7977 7978
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7979
	int rc;
7980

7981
	if (unlikely(lockup_detected(h)))
7982
		return;
7983 7984 7985 7986
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7987
	c = cmd_alloc(h);
7988

7989 7990 7991 7992
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7993 7994 7995 7996
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
7997
	if (c->err_info->CommandStatus != 0)
7998
out:
7999 8000
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
8001
	cmd_free(h, c);
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
R
Robert Elliott 已提交
8016
	hpsa_free_irqs(h);			/* init_one 4 */
8017
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8018 8019
}

8020
static void hpsa_free_device_info(struct ctlr_info *h)
8021 8022 8023
{
	int i;

R
Robert Elliott 已提交
8024
	for (i = 0; i < h->ndevices; i++) {
8025
		kfree(h->dev[i]);
R
Robert Elliott 已提交
8026 8027
		h->dev[i] = NULL;
	}
8028 8029
}

8030
static void hpsa_remove_one(struct pci_dev *pdev)
8031 8032
{
	struct ctlr_info *h;
8033
	unsigned long flags;
8034 8035

	if (pci_get_drvdata(pdev) == NULL) {
8036
		dev_err(&pdev->dev, "unable to remove device\n");
8037 8038 8039
		return;
	}
	h = pci_get_drvdata(pdev);
8040 8041 8042 8043 8044

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
8045 8046 8047 8048
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
8049

R
Robert Elliott 已提交
8050
	/* includes hpsa_free_irqs - init_one 4 */
R
Robert Elliott 已提交
8051
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8052
	hpsa_shutdown(pdev);
8053

R
Robert Elliott 已提交
8054 8055
	hpsa_free_device_info(h);		/* scan */

8056 8057 8058
	hpsa_unregister_scsi(h);			/* init_one 9 */
	kfree(h->hba_inquiry_data);			/* init_one 9 */
	h->hba_inquiry_data = NULL;			/* init_one 9 */
R
Robert Elliott 已提交
8059 8060 8061 8062 8063
	hpsa_free_performant_mode(h);			/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
	hpsa_free_cmd_pool(h);				/* init_one 5 */

	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
R
Robert Elliott 已提交
8064 8065

	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
R
Robert Elliott 已提交
8066
	hpsa_free_pci_init(h);				/* init_one 3 */
R
Robert Elliott 已提交
8067

R
Robert Elliott 已提交
8068 8069 8070 8071
	free_percpu(h->lockup_detected);		/* init_one 2 */
	h->lockup_detected = NULL;			/* init_one 2 */
	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
	kfree(h);					/* init_one 1 */
8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
8086
	.name = HPSA,
8087
	.probe = hpsa_init_one,
8088
	.remove = hpsa_remove_one,
8089 8090 8091 8092 8093 8094
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
8108
	int nsgs, int min_blocks, u32 *bucket_map)
8109 8110 8111 8112 8113 8114
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
8115
		size = i + min_blocks;
8116 8117
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
8118
		for (j = 0; j < num_buckets; j++) {
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

R
Robert Elliott 已提交
8129 8130 8131 8132
/*
 * return -ENODEV on err, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
8133
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8134
{
8135 8136
	int i;
	unsigned long register_value;
8137 8138
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
8139 8140 8141
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
8142
	struct access_method access = SA5_performant_access;
8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
8154
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8155 8156 8157 8158 8159 8160
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
8161
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8172
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8173 8174 8175 8176 8177 8178
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

8179 8180 8181 8182 8183 8184 8185
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

8186
	/* Controller spec: zero out this buffer. */
8187 8188
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8189

8190 8191
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
8192
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8193 8194 8195 8196 8197
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
8198
	writel(h->nreply_queues, &h->transtable->RepQCount);
8199 8200
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
8201 8202 8203

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
8204
		writel(h->reply_queue[i].busaddr,
8205 8206 8207
			&h->transtable->RepQAddr[i].lower);
	}

8208
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8209 8210 8211 8212 8213 8214 8215 8216
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8217 8218 8219 8220 8221 8222
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
8223
	}
8224
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8225 8226 8227 8228 8229
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
8230 8231
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
8232 8233
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
8234
		return -ENODEV;
8235
	}
8236
	/* Change the access methods to the performant access methods */
8237 8238 8239
	h->access = access;
	h->transMethod = transMethod;

8240 8241
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
8242
		return 0;
8243

8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
8254

8255
		/* initialize all reply queue entries to unused */
8256 8257 8258 8259
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
8260

8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
8272 8273
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8274 8275
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
8276
			cp->tag =
8277
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8278 8279
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8304
	}
8305
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8306 8307 8308 8309 8310 8311
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
8312 8313
}

8314 8315 8316
/* Free ioaccel1 mode command blocks and block fetch table */
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
R
Robert Elliott 已提交
8317
	if (h->ioaccel_cmd_pool) {
8318 8319 8320 8321
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool,
			h->ioaccel_cmd_pool_dhandle);
R
Robert Elliott 已提交
8322 8323 8324
		h->ioaccel_cmd_pool = NULL;
		h->ioaccel_cmd_pool_dhandle = 0;
	}
8325
	kfree(h->ioaccel1_blockFetchTable);
R
Robert Elliott 已提交
8326
	h->ioaccel1_blockFetchTable = NULL;
8327 8328
}

8329 8330
/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8331
{
8332 8333 8334 8335 8336
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
8349
		kmalloc(((h->ioaccel_maxsg + 1) *
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
8361
	hpsa_free_ioaccel1_cmd_and_bft(h);
8362
	return -ENOMEM;
8363 8364
}

8365 8366 8367
/* Free ioaccel2 mode command blocks and block fetch table */
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
8368 8369
	hpsa_free_ioaccel2_sg_chain_blocks(h);

R
Robert Elliott 已提交
8370
	if (h->ioaccel2_cmd_pool) {
8371 8372 8373 8374
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool,
			h->ioaccel2_cmd_pool_dhandle);
R
Robert Elliott 已提交
8375 8376 8377
		h->ioaccel2_cmd_pool = NULL;
		h->ioaccel2_cmd_pool_dhandle = 0;
	}
8378
	kfree(h->ioaccel2_blockFetchTable);
R
Robert Elliott 已提交
8379
	h->ioaccel2_blockFetchTable = NULL;
8380 8381
}

8382 8383
/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8384
{
8385 8386
	int rc;

8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
8406 8407 8408 8409 8410 8411 8412
		(h->ioaccel2_blockFetchTable == NULL)) {
		rc = -ENOMEM;
		goto clean_up;
	}

	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
	if (rc)
8413 8414 8415 8416 8417 8418 8419
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
8420
	hpsa_free_ioaccel2_cmd_and_bft(h);
8421
	return rc;
8422 8423
}

R
Robert Elliott 已提交
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
static void hpsa_free_performant_mode(struct ctlr_info *h)
{
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
}

/* return -ENODEV on error, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8438 8439
{
	u32 trans_support;
8440 8441
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
R
Robert Elliott 已提交
8442
	int i, rc;
8443

8444
	if (hpsa_simple_mode)
R
Robert Elliott 已提交
8445
		return 0;
8446

8447 8448
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
R
Robert Elliott 已提交
8449
		return 0;
8450

8451 8452 8453 8454
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8455 8456 8457 8458 8459
		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
		if (rc)
			return rc;
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		transMethod |= CFGTBL_Trans_io_accel2 |
8460
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8461 8462 8463
		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
		if (rc)
			return rc;
8464 8465
	}

8466
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8467
	hpsa_get_max_perf_mode_cmds(h);
8468
	/* Performant mode ring buffer and supporting data structures */
8469
	h->reply_queue_size = h->max_commands * sizeof(u64);
8470

8471
	for (i = 0; i < h->nreply_queues; i++) {
8472 8473 8474
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
R
Robert Elliott 已提交
8475 8476 8477 8478
		if (!h->reply_queue[i].head) {
			rc = -ENOMEM;
			goto clean1;	/* rq, ioaccel */
		}
8479 8480 8481 8482 8483
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

8484
	/* Need a block fetch table for performant mode */
8485
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8486
				sizeof(u32)), GFP_KERNEL);
R
Robert Elliott 已提交
8487 8488 8489 8490
	if (!h->blockFetchTable) {
		rc = -ENOMEM;
		goto clean1;	/* rq, ioaccel */
	}
8491

R
Robert Elliott 已提交
8492 8493 8494 8495
	rc = hpsa_enter_performant_mode(h, trans_support);
	if (rc)
		goto clean2;	/* bft, rq, ioaccel */
	return 0;
8496

R
Robert Elliott 已提交
8497
clean2:	/* bft, rq, ioaccel */
8498
	kfree(h->blockFetchTable);
R
Robert Elliott 已提交
8499 8500 8501 8502 8503 8504
	h->blockFetchTable = NULL;
clean1:	/* rq, ioaccel */
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
8505 8506
}

8507
static int is_accelerated_cmd(struct CommandList *c)
8508
{
8509 8510 8511 8512 8513 8514
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
8515
	int i, accel_cmds_out;
8516
	int refcount;
8517

8518
	do { /* wait for all outstanding ioaccel commands to drain out */
8519
		accel_cmds_out = 0;
8520 8521
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
8522 8523 8524 8525
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
8526
		}
8527
		if (accel_cmds_out <= 0)
8528
			break;
8529 8530 8531 8532
		msleep(100);
	} while (1);
}

8533 8534 8535 8536 8537 8538
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
8539
	return pci_register_driver(&hpsa_pci_driver);
8540 8541 8542 8543 8544 8545 8546
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

8547 8548
static void __attribute__((unused)) verify_offsets(void)
{
8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
8618
	VERIFY_OFFSET(tag, 0x68);
8619 8620 8621 8622 8623 8624
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

8625 8626
module_init(hpsa_init);
module_exit(hpsa_cleanup);