hpsa.c 238.7 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46
#include <scsi/scsi_eh.h>
47 48 49
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
50
#include <linux/atomic.h>
51
#include <linux/jiffies.h>
D
Don Brace 已提交
52
#include <linux/percpu-defs.h>
53
#include <linux/percpu.h>
D
Don Brace 已提交
54
#include <asm/unaligned.h>
55
#include <asm/div64.h>
56 57 58 59
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
60
#define HPSA_DRIVER_VERSION "3.4.4-1"
61
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62
#define HPSA "hpsa"
63

64 65 66 67 68
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
86 87 88 89
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
90 91 92 93 94 95 96 97

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 99
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 102 103 104 105 106 107
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 109 110 111 112 113
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
114 115 116 117 118 119 120 121 122 123
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
124
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
125 126 127
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
128 129 130 131 132
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
133 134 135 136 137
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
138
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
139
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
155 156
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
157
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
158 159 160 161 162 163 164
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
165 166 167 168 169 170 171
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
172 173 174 175
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
176
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
177 178
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
179
	{0x21C4103C, "Smart Array", &SA5_access},
180 181 182 183
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
184
	{0x21C9103C, "Smart Array", &SA5_access},
185 186
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
187 188
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
189
	{0x21CE103C, "Smart HBA", &SA5_access},
190 191 192 193 194
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
195 196 197 198 199
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

200 201
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
202
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
203 204

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
205 206
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
207 208 209 210
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
211
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
213
	int cmd_type);
214
static void hpsa_free_cmd_pool(struct ctlr_info *h);
215
#define VPD_PAGE (1 << 8)
216

J
Jeff Garzik 已提交
217
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
218 219 220
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
221
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
222 223

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
224
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
225
static int hpsa_slave_alloc(struct scsi_device *sdev);
226
static int hpsa_slave_configure(struct scsi_device *sdev);
227 228 229 230 231 232 233
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
234 235
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
236
	int nsgs, int min_blocks, u32 *bucket_map);
R
Robert Elliott 已提交
237 238
static void hpsa_free_performant_mode(struct ctlr_info *h);
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
239
static inline u32 next_command(struct ctlr_info *h, u8 q);
240 241 242 243 244 245 246 247
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
248
static inline void finish_cmd(struct CommandList *c);
249
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
250 251
#define BOARD_NOT_READY 0
#define BOARD_READY 1
252
static void hpsa_drain_accel_commands(struct ctlr_info *h);
253
static void hpsa_flush_cache(struct ctlr_info *h);
254 255
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
256
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
257
static void hpsa_command_resubmit_worker(struct work_struct *work);
258 259
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
260 261 262 263 264 265 266

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

267 268 269 270 271 272
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

295 296 297
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
298 299 300 301 302 303 304 305 306 307 308
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == -1)
309 310
		return 0;

311
	switch (asc) {
312
	case STATE_CHANGED:
313 314 315
		dev_warn(&h->pdev->dev,
			HPSA "%d: a state change detected, command retried\n",
			h->ctlr);
316 317
		break;
	case LUN_FAILED:
318 319
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
320 321
		break;
	case REPORT_LUNS_CHANGED:
322 323
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
324
	/*
325 326
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
327 328 329
	 */
		break;
	case POWER_OR_RESET:
330
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
331 332 333
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
334
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
335 336 337
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
338
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
339 340 341 342 343 344
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

345 346 347 348 349 350 351 352 353 354
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368
static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

418 419 420 421 422 423
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
424
	h = shost_to_hba(shost);
M
Mike Miller 已提交
425
	hpsa_scan_start(h->scsi_host);
426 427 428
	return count;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

444 445 446 447 448 449
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

450 451
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
452 453
}

454 455 456 457 458 459 460 461
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
462
		h->transMethod & CFGTBL_Trans_Performant ?
463 464 465
			"performant" : "simple");
}

466 467 468 469 470 471 472 473 474 475 476
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

477
/* List of controllers which cannot be hard reset on kexec with reset_devices */
478 479
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
480
	0x324b103C, /* Smart Array P711m */
481 482 483 484 485 486 487 488 489 490
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
491
	0x40800E11, /* Smart Array 5i */
492 493
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
494 495 496 497 498 499
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
500 501
};

502 503
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
504
	0x40800E11, /* Smart Array 5i */
505 506 507 508 509 510
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
511 512 513 514 515 516 517 518 519 520 521
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
522 523 524 525 526 527 528
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
529 530 531
{
	int i;

S
Stephen Cameron 已提交
532 533 534 535
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
536 537
}

S
Stephen Cameron 已提交
538
static int ctlr_is_hard_resettable(u32 board_id)
539
{
S
Stephen Cameron 已提交
540 541 542
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
543

S
Stephen Cameron 已提交
544 545 546 547
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
548 549
}

550 551 552 553 554 555
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
556 557 558 559 560 561
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

562 563 564 565 566 567 568
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
569
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
570 571
}

572 573 574 575 576
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

577 578
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
579
};
580 581 582 583 584 585 586
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
587 588 589 590 591 592
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
593
	unsigned char rlevel;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
617
	if (rlevel > RAID_UNKNOWN)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

697 698 699 700
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
701 702
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
703 704 705
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
706 707
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
708 709 710 711 712 713
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
714 715
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
716 717
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
718 719 720 721 722

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
723
	&dev_attr_hp_ssd_smart_path_enabled,
724
	&dev_attr_lockup_detected,
725 726 727 728 729 730 731 732
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
733
	&dev_attr_resettable,
734
	&dev_attr_hp_ssd_smart_path_status,
735
	&dev_attr_raid_offload_debug,
736 737 738
	NULL,
};

739 740 741
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

742 743
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
744 745
	.name			= HPSA,
	.proc_name		= HPSA,
746 747 748
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
749
	.change_queue_depth	= hpsa_change_queue_depth,
750 751
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
752
	.eh_abort_handler	= hpsa_eh_abort_handler,
753 754 755
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
756
	.slave_configure	= hpsa_slave_configure,
757 758 759 760 761 762
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
763
	.max_sectors = 8192,
764
	.no_write_same = 1,
765 766
};

767
static inline u32 next_command(struct ctlr_info *h, u8 q)
768 769
{
	u32 a;
770
	struct reply_queue_buffer *rq = &h->reply_queue[q];
771

772 773 774
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

775
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
776
		return h->access.command_completed(h, q);
777

778 779 780
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
781
		atomic_dec(&h->commands_outstanding);
782 783 784 785
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
786 787 788
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
789 790 791 792
	}
	return a;
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

819 820
/*
 * set_performant_mode: Modify the tag for cciss performant
821 822 823
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
824 825 826
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
827
{
828
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
829
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
830 831 832
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
833
			c->Header.ReplyQueue =
834
				raw_smp_processor_id() % h->nreply_queues;
835 836
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
837
	}
838 839
}

840
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
841 842
						struct CommandList *c,
						int reply_queue)
843 844 845
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

846 847
	/*
	 * Tell the controller to post the reply to the queue for this
848 849
	 * processor.  This seems to give the best I/O throughput.
	 */
850 851 852 853 854 855
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
856 857 858 859 860 861 862 863
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
		&h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= h->ioaccel2_blockFetchTable[0];
}

886
static void set_ioaccel2_performant_mode(struct ctlr_info *h,
887 888
						struct CommandList *c,
						int reply_queue)
889 890 891
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

892 893
	/*
	 * Tell the controller to post the reply to the queue for this
894 895
	 * processor.  This seems to give the best I/O throughput.
	 */
896 897 898 899 900 901
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
902 903 904 905 906 907 908
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

938 939
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
940
{
941 942
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
943 944
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
945
		set_ioaccel1_performant_mode(h, c, reply_queue);
946
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
947 948
		break;
	case CMD_IOACCEL2:
949
		set_ioaccel2_performant_mode(h, c, reply_queue);
950
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
951
		break;
952 953 954 955
	case IOACCEL2_TMF:
		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
956
	default:
957
		set_performant_mode(h, c, reply_queue);
958
		h->access.submit_command(h, c);
959
	}
960 961
}

962 963 964 965 966 967
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
					struct CommandList *c)
{
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

982 983 984 985 986 987 988
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
989
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
990

991
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
992 993 994

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
995
			__set_bit(h->dev[i]->target, lun_taken);
996 997
	}

998 999 1000 1001 1002 1003
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
1004 1005 1006 1007
	}
	return !found;
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

1036
	if (n >= HPSA_MAX_DEVICES) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
1049
	 * unit no, zero otherwise.
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;
1092 1093
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1094 1095
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1096 1097 1098
	return 0;
}

1099 1100 1101 1102
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
1103
	int offload_enabled;
1104 1105 1106 1107 1108
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1123 1124 1125 1126 1127
	if (new_entry->hba_ioaccel_enabled) {
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
	}
	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1128
	h->dev[entry]->offload_config = new_entry->offload_config;
1129
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1130
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1141 1142
	offload_enabled = h->dev[entry]->offload_enabled;
	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1143
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1144
	h->dev[entry]->offload_enabled = offload_enabled;
1145 1146
}

1147 1148 1149 1150 1151 1152 1153
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1154
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1155 1156
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1167 1168 1169
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1170
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1171 1172
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1183
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1184 1185 1186 1187 1188 1189 1190 1191

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1192
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1260 1261 1262 1263
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1264 1265
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1266 1267 1268
	return 0;
}

1269 1270 1271
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1272 1273 1274 1275
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1276 1277 1278 1279 1280 1281 1282 1283 1284
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1285
#define DEVICE_UPDATED 3
1286
	for (i = 0; i < haystack_size; i++) {
1287 1288
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1289 1290
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1291 1292 1293
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1294
				return DEVICE_SAME;
1295
			} else {
1296 1297 1298
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1299
				return DEVICE_CHANGED;
1300
			}
1301 1302 1303 1304 1305 1306
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1463 1464
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1497 1498 1499 1500
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1501
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1515 1516
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1530 1531
	 * If minor device attributes change, just update
	 * the existing device structure.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1546 1547
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1548 1549 1550 1551
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1552 1553
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1565 1566 1567 1568 1569 1570 1571 1572

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1573
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1574 1575 1576
			continue;
		}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1593 1594 1595 1596 1597 1598 1599 1600
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1601 1602
	spin_unlock_irqrestore(&h->devlock, flags);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1637 1638
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1639
			}
1640 1641 1642 1643 1644 1645 1646
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1647 1648
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1649 1650 1651
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1652 1653
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1654 1655 1656 1657
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
R
Robert Elliott 已提交
1658
		added[i] = NULL;
1659 1660 1661 1662 1663 1664 1665 1666
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1667
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1694
	if (likely(sd)) {
1695
		atomic_set(&sd->ioaccel_cmds_out, 0);
1696 1697 1698
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1699 1700 1701 1702
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1723 1724
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1725
	/* nothing to do. */
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->ioaccel2_cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->ioaccel2_cmd_sg_list[i]);
		h->ioaccel2_cmd_sg_list[i] = NULL;
	}
	kfree(h->ioaccel2_cmd_sg_list);
	h->ioaccel2_cmd_sg_list = NULL;
}

static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->ioaccel2_cmd_sg_list =
		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
					GFP_KERNEL);
	if (!h->ioaccel2_cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->ioaccel2_cmd_sg_list[i] =
			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
					h->maxsgentries, GFP_KERNEL);
		if (!h->ioaccel2_cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	return -ENOMEM;
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

R
Robert Elliott 已提交
1782
static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1783 1784 1785 1786 1787 1788 1789 1790
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1791 1792
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1793
		return -ENOMEM;
1794
	}
1795 1796 1797
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1798 1799
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1800
			goto clean;
1801
		}
1802 1803 1804 1805 1806 1807 1808 1809
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp, struct CommandList *c)
{
	struct ioaccel2_sg_element *chain_block;
	u64 temp64;
	u32 chain_size;

	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
	chain_size = le32_to_cpu(cp->data_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
				PCI_DMA_TODEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		cp->sg->address = 0;
		return -1;
	}
	cp->sg->address = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp)
{
	struct ioaccel2_sg_element *chain_sg;
	u64 temp64;
	u32 chain_size;

	chain_sg = cp->sg;
	temp64 = le64_to_cpu(chain_sg->address);
	chain_size = le32_to_cpu(cp->data_len);
	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
}

1843
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1844 1845 1846 1847
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1848
	u32 chain_len;
1849 1850 1851

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1852 1853
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1854
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1855 1856
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1857
				PCI_DMA_TODEVICE);
1858 1859
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1860
		chain_sg->Addr = cpu_to_le64(0);
1861 1862
		return -1;
	}
1863
	chain_sg->Addr = cpu_to_le64(temp64);
1864
	return 0;
1865 1866 1867 1868 1869 1870 1871
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1872
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1873 1874 1875
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1876 1877
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1878 1879
}

1880 1881 1882 1883 1884 1885

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1886 1887 1888 1889 1890
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1891
	int retry = 0;
1892
	u32 ioaccel2_resid = 0;
1893 1894 1895 1896 1897 1898 1899

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1900
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1901
			if (c2->error_data.data_present !=
1902 1903 1904
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1905
				break;
1906
			}
1907 1908 1909 1910 1911 1912 1913 1914 1915
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1916
			retry = 1;
1917 1918
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1919
			retry = 1;
1920 1921
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1922
			retry = 1;
1923 1924
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1925
			retry = 1;
1926 1927
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1928
			retry = 1;
1929 1930
			break;
		default:
1931
			retry = 1;
1932 1933 1934 1935
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_IO_ERROR:
		case IOACCEL2_STATUS_SR_IO_ABORTED:
		case IOACCEL2_STATUS_SR_OVERRUN:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_UNDERRUN:
			cmd->result = (DID_OK << 16);		/* host byte */
			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
			ioaccel2_resid = get_unaligned_le32(
						&c2->error_data.resid_cnt[0]);
			scsi_set_resid(cmd, ioaccel2_resid);
			break;
		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
			/* We will get an event from ctlr to trigger rescan */
			retry = 1;
			break;
		default:
			retry = 1;
		}
1958 1959 1960 1961 1962 1963
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1964
		retry = 1;
1965 1966 1967 1968
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		break;
	default:
1969
		retry = 1;
1970 1971
		break;
	}
1972 1973

	return retry;	/* retry on raid path? */
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
1997 1998 1999 2000
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
		goto retry_cmd;
2001
	}
2002 2003 2004 2005

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
		goto retry_cmd;

2006 2007
	cmd_free(h, c);
	cmd->scsi_done(cmd);
2008 2009 2010 2011 2012
	return;

retry_cmd:
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2013 2014
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

2043
static void complete_scsi_command(struct CommandList *cp)
2044 2045 2046 2047
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
2048
	struct hpsa_scsi_dev_t *dev;
2049
	struct io_accel2_cmd *c2;
2050

2051 2052 2053
	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
2054
	unsigned long sense_data_size;
2055 2056

	ei = cp->err_info;
2057
	cmd = cp->scsi_cmd;
2058
	h = cp->h;
2059
	dev = cmd->device->hostdata;
2060
	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2061 2062

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2063
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
2064
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2065
		hpsa_unmap_sg_chain_block(h, cp);
2066

2067 2068 2069 2070
	if ((cp->cmd_type == CMD_IOACCEL2) &&
		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);

2071 2072
	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2073

2074 2075 2076
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

2090 2091 2092
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

2093 2094
	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0) {
2095 2096
		if (cp->cmd_type == CMD_IOACCEL1)
			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2097 2098 2099 2100 2101
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

2102 2103 2104 2105 2106
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
2107 2108 2109 2110
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2111
		cp->Header.tag = c->tag;
2112 2113
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2114 2115 2116 2117 2118 2119 2120 2121

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
2122 2123 2124
			INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
			queue_work_on(raw_smp_processor_id(),
					h->resubmit_wq, &cp->work);
2125 2126
			return;
		}
2127 2128
	}

2129 2130 2131 2132
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
2145
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2146
			if (sense_key == ABORTED_COMMAND) {
2147
				cmd->result |= DID_SOFT_ERROR << 16;
2148 2149
				break;
			}
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2185 2186
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2201
		cmd->result = DID_ERROR << 16;
2202 2203
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2204 2205 2206
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2207 2208
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2209 2210 2211
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2212 2213
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2214 2215 2216
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
2217 2218
		dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
				cp->Request.CDB, ei->ScsiStatus);
2219 2220 2221
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2222 2223
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2224 2225
		break;
	case CMD_UNSOLICITED_ABORT:
2226
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2227 2228
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2229 2230 2231
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2232 2233
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2234
		break;
2235 2236 2237 2238
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2239 2240 2241 2242
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
2243 2244 2245 2246 2247 2248 2249 2250
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2251 2252 2253 2254 2255 2256
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
2257
	cmd->scsi_done(cmd);
2258 2259 2260 2261 2262 2263 2264
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2265 2266 2267 2268
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2269 2270
}

2271
static int hpsa_map_one(struct pci_dev *pdev,
2272 2273 2274 2275 2276
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2277
	u64 addr64;
2278 2279 2280

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2281
		cp->Header.SGTotal = cpu_to_le16(0);
2282
		return 0;
2283 2284
	}

2285
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2286
	if (dma_mapping_error(&pdev->dev, addr64)) {
2287
		/* Prevent subsequent unmap of something never mapped */
2288
		cp->Header.SGList = 0;
2289
		cp->Header.SGTotal = cpu_to_le16(0);
2290
		return -1;
2291
	}
2292 2293 2294 2295 2296
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2297
	return 0;
2298 2299
}

2300 2301 2302 2303
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2304 2305 2306 2307
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2344
#define MAX_DRIVER_CMD_RETRIES 25
2345 2346
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2347
{
2348
	int backoff_time = 10, retry_count = 0;
2349
	int rc;
2350 2351

	do {
2352
		memset(c->err_info, 0, sizeof(*c->err_info));
2353 2354 2355 2356
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2357
		retry_count++;
2358 2359 2360 2361 2362
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2363
	} while ((check_for_unit_attention(h, c) ||
2364 2365
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2366
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2367 2368 2369
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2370 2371
}

2372 2373
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2374
{
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2392
	struct device *d = &cp->h->pdev->dev;
2393 2394
	u8 sense_key, asc, ascq;
	int sense_len;
2395 2396 2397

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2398 2399 2400 2401 2402 2403
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
2404 2405
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2406 2407
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
2408
		else
2409
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2410 2411 2412 2413 2414 2415 2416 2417 2418
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2419
		hpsa_print_cmd(h, "overrun condition", cp);
2420 2421 2422 2423 2424
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2425 2426
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2427 2428 2429
		}
		break;
	case CMD_PROTOCOL_ERR:
2430
		hpsa_print_cmd(h, "protocol error", cp);
2431 2432
		break;
	case CMD_HARDWARE_ERR:
2433
		hpsa_print_cmd(h, "hardware error", cp);
2434 2435
		break;
	case CMD_CONNECTION_LOST:
2436
		hpsa_print_cmd(h, "connection lost", cp);
2437 2438
		break;
	case CMD_ABORTED:
2439
		hpsa_print_cmd(h, "aborted", cp);
2440 2441
		break;
	case CMD_ABORT_FAILED:
2442
		hpsa_print_cmd(h, "abort failed", cp);
2443 2444
		break;
	case CMD_UNSOLICITED_ABORT:
2445
		hpsa_print_cmd(h, "unsolicited abort", cp);
2446 2447
		break;
	case CMD_TIMEOUT:
2448
		hpsa_print_cmd(h, "timed out", cp);
2449
		break;
2450
	case CMD_UNABORTABLE:
2451
		hpsa_print_cmd(h, "unabortable", cp);
2452
		break;
2453 2454 2455
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2456
	default:
2457 2458
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2459 2460 2461 2462 2463
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2464
			u16 page, unsigned char *buf,
2465 2466 2467 2468 2469 2470
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2471
	c = cmd_alloc(h);
2472

2473 2474 2475 2476 2477
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2478 2479 2480 2481
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2482 2483
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2484
		hpsa_scsi_interpret_error(h, c);
2485 2486
		rc = -1;
	}
2487
out:
2488
	cmd_free(h, c);
2489 2490 2491
	return rc;
}

2492 2493 2494 2495 2496 2497 2498 2499
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2500
	c = cmd_alloc(h);
2501 2502 2503 2504 2505
	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2506 2507 2508 2509
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2510 2511 2512 2513 2514 2515
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2516
	cmd_free(h, c);
2517
	return rc;
2518
}
2519

2520
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2521
	u8 reset_type, int reply_queue)
2522 2523 2524 2525 2526
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2527
	c = cmd_alloc(h);
2528 2529


2530
	/* fill_cmd can't fail here, no data buffer to map. */
2531 2532 2533
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2534 2535 2536 2537 2538
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2539 2540 2541 2542
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2543
		hpsa_scsi_interpret_error(h, c);
2544 2545
		rc = -1;
	}
2546
out:
2547
	cmd_free(h, c);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2561
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2562 2563 2564 2565 2566 2567 2568 2569
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2582 2583 2584 2585
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2610
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2611
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2612 2613 2614
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2615 2616
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2655
	c = cmd_alloc(h);
2656

2657 2658 2659
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
2660 2661 2662
		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
		cmd_free(h, c);
		return -1;
2663
	}
2664 2665 2666 2667
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2668 2669
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2670
		hpsa_scsi_interpret_error(h, c);
2671 2672
		rc = -1;
		goto out;
2673
	}
2674
	cmd_free(h, c);
2675 2676 2677 2678 2679 2680 2681 2682 2683

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2684 2685 2686
out:
	cmd_free(h, c);
	return rc;
2687 2688
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2706 2707
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2761 2762 2763 2764 2765 2766 2767 2768 2769
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2770
	this_device->offload_to_be_enabled = 0;
2771 2772 2773 2774

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2775 2776
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2777
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2778
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2794
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2795 2796 2797 2798 2799
out:
	kfree(buf);
	return;
}

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2811
		return -ENOMEM;
2812
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2813 2814 2815 2816 2817 2818 2819
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2820
		void *buf, int bufsize,
2821 2822 2823 2824 2825 2826 2827
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2828
	c = cmd_alloc(h);
2829

2830 2831
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2832 2833 2834 2835 2836
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2837 2838
	if (extended_response)
		c->Request.CDB[1] = extended_response;
2839 2840 2841 2842
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2843 2844 2845
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2846
		hpsa_scsi_interpret_error(h, c);
2847
		rc = -1;
2848
	} else {
2849 2850 2851
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2852 2853 2854
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2855
				rld->extended_response_flag);
2856 2857
			rc = -1;
		}
2858
	}
2859
out:
2860
	cmd_free(h, c);
2861 2862 2863 2864
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2865
		struct ReportExtendedLUNdata *buf, int bufsize)
2866
{
2867 2868
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2899
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2900 2901 2902 2903 2904
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2905
	if (rc != 0)
2906 2907 2908 2909 2910 2911
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2912
	if (rc != 0)
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2926
 *  0xff (offline for unknown reasons)
2927 2928 2929
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2930
static int hpsa_volume_offline(struct ctlr_info *h,
2931 2932 2933
					unsigned char scsi3addr[])
{
	struct CommandList *c;
2934 2935 2936
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
2937
	int rc, ldstat = 0;
2938 2939 2940 2941 2942 2943 2944
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
2945

2946
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2947 2948 2949 2950 2951
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
2952
	sense = c->err_info->SenseInfo;
2953 2954 2955 2956 2957
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
3019

S
Stephen Cameron 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
3032 3033 3034
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
S
Stephen Cameron 已提交
3035 3036 3037 3038 3039 3040 3041 3042
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

3043
static int hpsa_update_device_info(struct ctlr_info *h,
3044 3045
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
3046
{
3047 3048 3049 3050 3051 3052

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

3053
	unsigned char *inq_buff;
3054
	unsigned char *obdr_sig;
3055

3056
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
3081
		is_logical_dev_addr_mode(scsi3addr)) {
3082 3083
		int volume_offline;

3084
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3085 3086
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3087 3088 3089 3090
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
3091
	} else {
3092
		this_device->raid_level = RAID_UNKNOWN;
3093 3094
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
3095
		this_device->offload_to_be_enabled = 0;
3096
		this_device->hba_ioaccel_enabled = 0;
3097
		this_device->volume_offline = 0;
3098
		this_device->queue_depth = h->nr_cmds;
3099
	}
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
3110 3111 3112 3113 3114 3115 3116 3117
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

3143
static unsigned char *ext_target_model[] = {
3144 3145 3146 3147
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
3148
	"P2000 G3 SAS",
3149
	"MSA 2040 SAS",
3150 3151 3152
	NULL,
};

3153
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3154 3155 3156
{
	int i;

3157 3158 3159
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
3160 3161 3162 3163 3164
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
3165
 * Puts non-external target logical volumes on bus 0, external target logical
3166 3167 3168 3169 3170 3171
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
3172
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3173
{
3174 3175 3176 3177
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
3178
		if (is_hba_lunid(lunaddrbytes))
3179
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3180
		else
3181 3182 3183 3184 3185
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3186 3187
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3188 3189 3190 3191 3192 3193
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3194
	}
3195
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3196 3197 3198 3199
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3200
 * For the external targets (arrays), we have to manually detect the enclosure
3201 3202 3203 3204 3205 3206 3207 3208
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3209
static int add_ext_target_dev(struct ctlr_info *h,
3210
	struct hpsa_scsi_dev_t *tmpdevice,
3211
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3212
	unsigned long lunzerobits[], int *n_ext_target_devs)
3213 3214 3215
{
	unsigned char scsi3addr[8];

3216
	if (test_bit(tmpdevice->target, lunzerobits))
3217 3218 3219 3220 3221
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3222 3223
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3224

3225
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3226 3227
		return 0;

3228
	memset(scsi3addr, 0, 8);
3229
	scsi3addr[3] = tmpdevice->target;
3230 3231 3232
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3233 3234 3235
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3236
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3237 3238
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3239 3240 3241 3242
			"configuration.");
		return 0;
	}

3243
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3244
		return 0;
3245
	(*n_ext_target_devs)++;
3246 3247
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3248
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3249
	set_bit(tmpdevice->target, lunzerobits);
3250 3251 3252
	return 1;
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3264 3265 3266
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3267 3268
	int i;

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3279
}
3280

3281 3282 3283 3284 3285 3286 3287
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3288
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3289
	struct ReportLUNdata *logdev, u32 *nlogicals)
3290
{
3291
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3292 3293 3294
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3295
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3296
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3297 3298
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3299 3300
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3301
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3302 3303 3304
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3305
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3324 3325
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3326
	struct ReportExtendedLUNdata *physdev_list,
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3341 3342
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3343 3344 3345 3346 3347 3348 3349 3350

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3351 3352 3353
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3354
	int hba_mode_enabled;
3355 3356 3357 3358 3359
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3360
		return -ENOMEM;
3361 3362
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3363
	if (rc) {
3364
		kfree(ctlr_params);
3365
		return rc;
3366
	}
3367 3368 3369 3370 3371

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3372 3373
}

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
3385 3386
	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
		dev->hba_ioaccel_enabled = 1;
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3415
	struct ReportExtendedLUNdata *physdev_list = NULL;
3416
	struct ReportLUNdata *logdev_list = NULL;
3417
	struct bmic_identify_physical_device *id_phys = NULL;
3418 3419 3420
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3421 3422
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3423
	int i, n_ext_target_devs, ndevs_to_allocate;
3424
	int raid_ctlr_position;
3425
	int rescan_hba_mode;
3426
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3427

3428
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3429 3430
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3431
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3432
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3433

3434 3435
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3436 3437 3438 3439 3440
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3441
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3442 3443
	if (rescan_hba_mode < 0)
		goto out;
3444 3445 3446 3447 3448 3449 3450 3451

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3452 3453
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3454 3455
		goto out;

3456 3457 3458
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3459
	 */
3460
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3461 3462 3463

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3464 3465 3466 3467 3468 3469 3470
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3471 3472 3473 3474 3475 3476 3477 3478 3479
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3480
	if (is_scsi_rev_5(h))
3481 3482 3483 3484
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3485
	/* adjust our table of devices */
3486
	n_ext_target_devs = 0;
3487
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3488
		u8 *lunaddrbytes, is_OBDR = 0;
3489 3490

		/* Figure out where the LUN ID info is coming from */
3491 3492
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3493 3494 3495 3496 3497 3498

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3499 3500

		/* Get device type, vendor, model, device id */
3501 3502
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3503
			continue; /* skip it if we can't talk to it. */
3504
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3505
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3506 3507 3508
		this_device = currentsd[ncurrent];

		/*
3509
		 * For external target devices, we have to insert a LUN 0 which
3510 3511 3512 3513 3514
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3515
		if (add_ext_target_dev(h, tmpdevice, this_device,
3516
				lunaddrbytes, lunzerobits,
3517
				&n_ext_target_devs)) {
3518 3519 3520 3521 3522 3523
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3536
		switch (this_device->devtype) {
3537
		case TYPE_ROM:
3538 3539 3540 3541 3542 3543 3544
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3545 3546
			if (is_OBDR)
				ncurrent++;
3547 3548
			break;
		case TYPE_DISK:
3549
			if (i >= nphysicals) {
3550 3551
				ncurrent++;
				break;
3552
			}
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

			if (h->hba_mode_enabled)
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
			else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2))
				break;

			hpsa_get_ioaccel_drive_info(h, this_device,
						lunaddrbytes, id_phys);
			atomic_set(&this_device->ioaccel_cmds_out, 0);
			ncurrent++;
3565 3566 3567 3568 3569
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3570 3571 3572 3573
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3587
		if (ncurrent >= HPSA_MAX_DEVICES)
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3598
	kfree(id_phys);
3599 3600
}

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3612 3613
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3614 3615 3616
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3617
static int hpsa_scatter_gather(struct ctlr_info *h,
3618 3619 3620 3621
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3622 3623
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
3624

3625
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3626 3627 3628 3629 3630 3631 3632 3633

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3634 3635 3636
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
3637
	scsi_for_each_sg(cmd, sg, use_sg, i) {
3638 3639 3640 3641 3642 3643
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
3644
		hpsa_set_sg_descriptor(curr_sg, sg);
3645 3646
		curr_sg++;
	}
3647 3648

	/* Back the pointer up to the last entry and mark it as "last". */
3649
	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3650 3651 3652 3653 3654 3655

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3656
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3657 3658 3659 3660
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3661
		return 0;
3662 3663 3664 3665
	}

sglist_finished:

3666
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3667
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3668 3669 3670
	return 0;
}

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3719
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3720
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3721
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3733
	/* TODO: implement chaining support */
3734 3735
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3736
		return IO_ACCEL_INELIGIBLE;
3737
	}
3738

3739 3740
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3741 3742
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3743
		return IO_ACCEL_INELIGIBLE;
3744
	}
3745

3746 3747 3748 3749 3750 3751 3752 3753
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3754 3755
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3756
		return use_sg;
3757
	}
3758 3759 3760 3761 3762 3763 3764

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3765 3766 3767
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3768 3769
			curr_sg++;
		}
3770
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3792
	c->Header.SGList = use_sg;
3793
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3794 3795 3796 3797 3798
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3799 3800
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3801
	/* Tag was already set at init time. */
3802
	enqueue_cmd_and_start_io(h, c);
3803 3804
	return 0;
}
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3816 3817
	c->phys_disk = dev;

3818
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3819
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3820 3821
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3834
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3850
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3851 3852 3853 3854 3855 3856
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3857
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3858 3859 3860
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3861
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3862 3863 3864
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3865 3866
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3867 3868 3869
		BUG();
		break;
	}
D
Don Brace 已提交
3870 3871 3872 3873 3874 3875 3876

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3877 3878
}

3879 3880
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3881
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3892
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3893

3894 3895
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3896
		return IO_ACCEL_INELIGIBLE;
3897 3898
	}

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3909 3910
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3911
		return use_sg;
3912
	}
3913 3914 3915

	if (use_sg) {
		curr_sg = cp->sg;
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
		if (use_sg > h->ioaccel_maxsg) {
			addr64 = le64_to_cpu(
				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = 0;
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0x80;

			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
		}
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3943 3944
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3945 3946
			break;
		case DMA_FROM_DEVICE:
3947 3948
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3949 3950
			break;
		case DMA_NONE:
3951 3952
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3953 3954 3955 3956 3957 3958 3959 3960
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3961 3962
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3963
	}
3964 3965 3966 3967

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
3968
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3969
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3970 3971 3972 3973 3974
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
3975
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	/* fill in sg elements */
	if (use_sg > h->ioaccel_maxsg) {
		cp->sg_count = 1;
		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
			atomic_dec(&phys_disk->ioaccel_cmds_out);
			scsi_dma_unmap(cmd);
			return -1;
		}
	} else
		cp->sg_count = (u8) use_sg;

3988 3989 3990 3991 3992 3993 3994 3995 3996
	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3997
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3998
{
3999 4000 4001 4002 4003 4004
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
4005 4006
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4007 4008
						cdb, cdb_len, scsi3addr,
						phys_disk);
4009 4010
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4011 4012
						cdb, cdb_len, scsi3addr,
						phys_disk);
4013 4014
}

4015 4016 4017 4018 4019
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
4020
		*map_index %= le16_to_cpu(map->data_disks_per_row);
4021 4022 4023 4024
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
4025 4026
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
4027 4028
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
4029
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4030
			/* select map index from next group */
D
Don Brace 已提交
4031
			*map_index += le16_to_cpu(map->data_disks_per_row);
4032 4033 4034
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
4035
			*map_index %= le16_to_cpu(map->data_disks_per_row);
4036 4037 4038 4039 4040
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
4059 4060 4061 4062 4063 4064 4065 4066
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
4067 4068 4069 4070 4071 4072
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
4073
	u16 strip_size;
4074 4075 4076
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
4077
	int offload_to_mirror;
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
4088 4089
		if (block_cnt == 0)
			block_cnt = 256;
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
4145 4146
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
4147 4148 4149
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
4150 4151 4152
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
4163
	(void) do_div(tmpdiv, strip_size);
4164 4165
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
4166
	(void) do_div(tmpdiv, strip_size);
4167 4168 4169 4170 4171 4172
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
4173 4174
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
4175 4176 4177 4178 4179 4180 4181
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
4182 4183
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
4184
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4185
				le16_to_cpu(map->row_cnt);
4186 4187 4188 4189 4190 4191 4192 4193 4194
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4195
		 */
D
Don Brace 已提交
4196
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4197
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4198
			map_index += le16_to_cpu(map->data_disks_per_row);
4199
		dev->offload_to_mirror = !dev->offload_to_mirror;
4200 4201 4202 4203 4204
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4205
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4206 4207 4208 4209 4210 4211

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4212 4213
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4214 4215 4216 4217 4218 4219 4220 4221 4222
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4223
		if (le16_to_cpu(map->layout_map_count) <= 1)
4224 4225 4226 4227
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4228 4229
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4230
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4231 4232
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4248
		if (first_group != last_group)
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4295
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4296
		r5or6_last_column =
D
Don Brace 已提交
4297
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4298 4299 4300 4301 4302 4303
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4304
			le16_to_cpu(map->row_cnt);
4305 4306

		map_index = (first_group *
D
Don Brace 已提交
4307
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4308 4309 4310 4311
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4312
	}
4313

4314 4315 4316
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4317 4318
	c->phys_disk = dev->phys_disk[map_index];

4319
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4320 4321 4322 4323
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4366 4367
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4368 4369
}

4370 4371 4372 4373 4374
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4375 4376 4377
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4378 4379 4380 4381 4382 4383
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4384
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4385 4386 4387 4388 4389 4390 4391 4392 4393

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4394 4395
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4396 4397
		break;
	case DMA_FROM_DEVICE:
4398 4399
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4400 4401
		break;
	case DMA_NONE:
4402 4403
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4404 4405 4406 4407 4408 4409 4410
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4411 4412
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4430
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4431 4432 4433 4434 4435 4436 4437 4438
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
static void hpsa_cmd_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle, err_dma_handle;

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
	c->err_info = h->errinfo_pool + index;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + index * sizeof(*c->err_info);
	c->cmdindex = index;
	c->busaddr = (u32) cmd_dma_handle;
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
	c->h = h;
}

static void hpsa_preinitialize_commands(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;

		hpsa_cmd_init(h, i, c);
		atomic_set(&c->refcount, 0);
	}
}

static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);

	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	memset(c->err_info, 0, sizeof(*c->err_info));
	c->busaddr = (u32) cmd_dma_handle;
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
static int hpsa_ioaccel_submit(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		unsigned char *scsi3addr)
{
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	int rc = IO_ACCEL_INELIGIBLE;

	cmd->host_scribble = (unsigned char *) c;

	if (dev->offload_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_raid_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
4497
	} else if (dev->hba_ioaccel_enabled) {
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_direct_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	}
	return rc;
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *c =
			container_of(work, struct CommandList, work);

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
4519
		cmd_free(c->h, c);
4520 4521 4522
		cmd->scsi_done(cmd);
		return;
	}
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	if (c->cmd_type == CMD_IOACCEL2) {
		struct ctlr_info *h = c->h;
		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
		int rc;

		if (c2->error_data.serv_response ==
				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
			if (rc == 0)
				return;
			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
				/*
				 * If we get here, it means dma mapping failed.
				 * Try again via scsi mid layer, which will
				 * then get SCSI_MLQUEUE_HOST_BUSY.
				 */
				cmd->result = DID_IMM_RETRY << 16;
				cmd->scsi_done(cmd);
				cmd_free(h, c);	/* FIX-ME:  on merge, change
						 * to cmd_tagged_free() and
						 * ultimately to
						 * hpsa_cmd_free_and_done(). */
				return;
			}
			/* else, fall thru and resubmit down CISS path */
		}
	}
4550
	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4551 4552 4553 4554 4555
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
4556 4557 4558
		 *
		 * hpsa_ciss_submit will have already freed c
		 * if it encountered a dma mapping failure.
4559 4560 4561 4562 4563 4564
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	if (unlikely(lockup_detected(h))) {
4585
		cmd->result = DID_NO_CONNECT << 16;
4586 4587 4588 4589
		cmd->scsi_done(cmd);
		return 0;
	}
	c = cmd_alloc(h);
4590

4591
	if (unlikely(lockup_detected(h))) {
4592
		cmd->result = DID_NO_CONNECT << 16;
4593 4594 4595 4596
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return 0;
	}
4597

4598 4599
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4600 4601 4602 4603 4604
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
4605 4606 4607 4608 4609 4610 4611 4612
		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
		if (rc == 0)
			return 0;
		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
			cmd_free(h, c);	/* FIX-ME:  on merge, change to
					 * cmd_tagged_free(), and ultimately
					 * to hpsa_cmd_resolve_and_free(). */
			return SCSI_MLQUEUE_HOST_BUSY;
4613 4614 4615 4616 4617
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4618
static void hpsa_scan_complete(struct ctlr_info *h)
4619 4620 4621
{
	unsigned long flags;

4622 4623 4624 4625
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4626 4627
}

4628 4629 4630 4631 4632
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4633 4634 4635 4636 4637 4638 4639 4640
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4641

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4658 4659
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4660

4661 4662
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4663
	hpsa_scan_complete(h);
4664 4665
}

D
Don Brace 已提交
4666 4667
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4668 4669 4670 4671
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4672 4673 4674

	if (qdepth < 1)
		qdepth = 1;
4675 4676 4677 4678
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4679 4680
}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4704 4705
	struct Scsi_Host *sh;
	int error;
4706

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4718
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4719
	sh->cmd_per_lun = sh->can_queue;
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4740 4741 4742 4743 4744
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
4745
	int rc;
4746 4747 4748 4749
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

4750
	c = cmd_alloc(h);
4751 4752 4753 4754 4755 4756 4757 4758 4759

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;
4760
		rc = 0; /* Device ready. */
4761 4762 4763 4764 4765

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

4766 4767 4768
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
4769 4770 4771 4772
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						NO_TIMEOUT);
		if (rc)
			goto do_it_again;
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;
4783
do_it_again:
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4794
	cmd_free(h, c);
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4811 4812 4813 4814

	if (lockup_detected(h))
		return FAILED;

4815 4816 4817 4818 4819 4820
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		dev_warn(&h->pdev->dev,
			"scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
			h->scsi_host->host_no, dev->bus, dev->target,
			dev->lun);
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
		dev_warn(&h->pdev->dev,
			 "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
			 h->scsi_host->host_no, dev->bus, dev->target,
			 dev->lun);
		return FAILED;
	}

	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

4842
	/* send a reset to the SCSI LUN which the command was sent to */
4843 4844
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			     DEFAULT_REPLY_QUEUE);
4845 4846 4847
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

4848 4849 4850
	dev_warn(&h->pdev->dev,
		"scsi %d:%d:%d:%d reset failed\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4851 4852 4853
	return FAILED;
}

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4869
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
4870
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4871
{
D
Don Brace 已提交
4872
	u64 tag;
4873 4874 4875
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
4876 4877 4878
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
4879 4880 4881 4882 4883
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
4884 4885 4886
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
4887
		return;
4888
	}
D
Don Brace 已提交
4889 4890 4891
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
4892 4893
}

4894
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
4895
	struct CommandList *abort, int reply_queue)
4896 4897 4898 4899
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
4900
	__le32 tagupper, taglower;
4901

4902
	c = cmd_alloc(h);
4903

4904
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
4905
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
4906
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
4907
	if (h->needs_abort_tags_swizzled)
4908
		swizzle_abort_tag(&c->Request.CDB[4]);
4909
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4910
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4911
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
4912
		__func__, tagupper, taglower);
4913 4914 4915 4916 4917 4918
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
4919 4920 4921
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
4922 4923 4924 4925 4926
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4927
			__func__, tagupper, taglower);
4928
		hpsa_scsi_interpret_error(h, c);
4929 4930 4931
		rc = -1;
		break;
	}
4932
	cmd_free(h, c);
4933 4934
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4935 4936 4937
	return rc;
}

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
	struct CommandList *command_to_abort, int reply_queue)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
	struct io_accel2_cmd *c2a =
		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
	struct scsi_cmnd *scmd =
		(struct scsi_cmnd *) command_to_abort->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;

	/*
	 * We're overlaying struct hpsa_tmf_struct on top of something which
	 * was allocated as a struct io_accel2_cmd, so we better be sure it
	 * actually fits, and doesn't overrun the error info space.
	 */
	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
			sizeof(struct io_accel2_cmd));
	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
			offsetof(struct hpsa_tmf_struct, error_len) +
				sizeof(ac->error_len));

	c->cmd_type = IOACCEL2_TMF;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(struct io_accel2_cmd));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
	ac->reply_queue = reply_queue;
	ac->tmf = IOACCEL2_TMF_ABORT;
	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
	memset(ac->lun_id, 0, sizeof(ac->lun_id));
	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
	ac->error_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
}

4979 4980 4981 4982 4983 4984 4985 4986
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4987
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4988 4989 4990 4991 4992 4993 4994 4995
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
4996
	scmd = abort->scsi_cmd;
4997 4998 4999 5000 5001 5002 5003
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

5004 5005
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
5006
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5007
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5008
			"Reset as abort",
5009 5010 5011
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
5025 5026 5027 5028 5029
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
5030
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
	struct CommandList *abort, int reply_queue)
{
	int rc = IO_OK;
	struct CommandList *c;
	__le32 taglower, tagupper;
	struct hpsa_scsi_dev_t *dev;
	struct io_accel2_cmd *c2;

	dev = abort->scsi_cmd->device->hostdata;
	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
		return -1;

	c = cmd_alloc(h);
	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
		__func__, tagupper, taglower);
	/* no unmap needed here because no data xfer. */

	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
		__func__, tagupper, taglower, c2->error_data.serv_response);
	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		rc = 0;
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
	case IOACCEL2_SERV_RESPONSE_FAILURE:
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		rc = -1;
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
			__func__, tagupper, taglower,
			c2->error_data.serv_response);
		rc = -1;
	}
	cmd_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		tagupper, taglower);
	return rc;
}

5106
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5107
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5108
{
5109 5110
	/*
	 * ioccelerator mode 2 commands should be aborted via the
5111
	 * accelerated path, since RAID path is unaware of these commands,
5112 5113
	 * but not all underlying firmware can handle abort TMF.
	 * Change abort to physical device reset when abort TMF is unsupported.
5114
	 */
5115 5116 5117 5118 5119 5120
	if (abort->cmd_type == CMD_IOACCEL2) {
		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
			return hpsa_send_abort_ioaccel2(h, abort,
						reply_queue);
		else
			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5121
							abort, reply_queue);
5122
	}
S
Stephen Cameron 已提交
5123
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5124
}
5125

5126 5127 5128 5129 5130 5131 5132
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
5133 5134
}

S
Stephen Cameron 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
5161
	__le32 tagupper, taglower;
5162 5163 5164 5165
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
5166

S
Stephen Cameron 已提交
5167 5168 5169
	if (sc->device == NULL)
		return FAILED;

5170 5171
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
5172
	if (h == NULL)
5173 5174
		return FAILED;

5175 5176 5177 5178 5179
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
5180
		return FAILED;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
5196

5197 5198 5199 5200 5201 5202
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
5203
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5204
		h->scsi_host->host_no, sc->device->channel,
5205
		sc->device->id, sc->device->lun,
5206
		"Aborting command", sc);
5207 5208 5209 5210

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
5211 5212 5213 5214 5215 5216 5217
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
5218
	}
S
Stephen Cameron 已提交
5219 5220 5221 5222 5223 5224 5225 5226

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

5227
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5228
	reply_queue = hpsa_extract_reply_queue(h, abort);
5229
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5230
	as  = abort->scsi_cmd;
5231
	if (as != NULL)
5232 5233 5234 5235 5236
		ml += sprintf(msg+ml,
			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
			as->cmd_len, as->cmnd[0], as->cmnd[1],
			as->serial_number);
	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5237
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5238

5239 5240 5241 5242 5243
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
5244 5245
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
5246 5247
			"%s FAILED, timeout waiting for an abort command to become available.\n",
			msg);
S
Stephen Cameron 已提交
5248 5249 5250
		cmd_free(h, abort);
		return FAILED;
	}
5251
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
5252 5253
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
5254
	if (rc != 0) {
5255
		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5256
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5257
				"FAILED to abort command");
5258
		cmd_free(h, abort);
5259 5260
		return FAILED;
	}
5261
	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5262

5263 5264
	/*
	 * If the abort(s) above completed and actually aborted the
5265 5266 5267 5268 5269 5270
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
5271 5272 5273
		refcount = atomic_read(&abort->refcount);
		if (refcount < 2) {
			cmd_free(h, abort);
5274
			return SUCCESS;
5275 5276 5277
		} else {
			msleep(100);
		}
5278 5279 5280
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
5281
	cmd_free(h, abort);
5282 5283 5284
	return FAILED;
}

5285 5286 5287 5288 5289
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
5290 5291
 * This function never gives up and returns NULL.  If it hangs,
 * another thread must call cmd_free() to free some tags.
5292
 */
5293

5294 5295 5296
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
5297
	int refcount, i;
5298
	unsigned long offset;
5299

5300 5301
	/*
	 * There is some *extremely* small but non-zero chance that that
5302 5303 5304 5305 5306 5307 5308 5309 5310
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 */
5311

5312
	offset = h->last_allocation; /* benignly racy */
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	for (;;) {
		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
		if (unlikely(i == h->nr_cmds)) {
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
			offset = (i + 1) % h->nr_cmds;
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
5330
	h->last_allocation = i; /* benignly racy */
5331
	hpsa_cmd_partial_init(h, i, c);
5332 5333 5334 5335 5336
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
5337 5338
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
5339

5340 5341 5342 5343
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
5344 5345 5346 5347
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
5348 5349
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
5350 5351 5352 5353 5354 5355 5356 5357
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5358
	memset(&arg64, 0, sizeof(arg64));
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5374
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5385
	int cmd, void __user *arg)
5386 5387 5388 5389 5390 5391 5392 5393 5394
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5395
	memset(&arg64, 0, sizeof(arg64));
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5412
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5413 5414 5415 5416 5417 5418 5419 5420
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5421

D
Don Brace 已提交
5422
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5496
	u64 temp64;
5497
	int rc = 0;
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
5512
			return -ENOMEM;
5513
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5514 5515 5516
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5517 5518
				rc = -EFAULT;
				goto out_kfree;
5519 5520 5521
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5522
		}
5523
	}
5524
	c = cmd_alloc(h);
5525

5526 5527 5528 5529 5530 5531
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5532
		c->Header.SGTotal = cpu_to_le16(1);
5533 5534
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5535
		c->Header.SGTotal = cpu_to_le16(0);
5536 5537 5538 5539 5540 5541 5542 5543 5544
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5545
		temp64 = pci_map_single(h->pdev, buff,
5546
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5547 5548 5549
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5550 5551 5552
			rc = -ENOMEM;
			goto out;
		}
5553 5554 5555
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5556
	}
5557
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5558 5559
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5560
	check_ioctl_unit_attention(h, c);
5561 5562 5563 5564
	if (rc) {
		rc = -EIO;
		goto out;
	}
5565 5566 5567 5568 5569

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5570 5571
		rc = -EFAULT;
		goto out;
5572
	}
5573
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5574
		iocommand.buf_size > 0) {
5575 5576
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5577 5578
			rc = -EFAULT;
			goto out;
5579 5580
		}
	}
5581
out:
5582
	cmd_free(h, c);
5583 5584 5585
out_kfree:
	kfree(buff);
	return rc;
5586 5587 5588 5589 5590 5591 5592 5593
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5594
	u64 temp64;
5595 5596
	BYTE sg_used = 0;
	int status = 0;
5597 5598
	u32 left;
	u32 sz;
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5625
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5626 5627 5628
		status = -EINVAL;
		goto cleanup1;
	}
5629
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5630 5631 5632 5633
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5634
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5649
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5650
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5651
				status = -EFAULT;
5652 5653 5654 5655 5656 5657 5658 5659
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5660
	c = cmd_alloc(h);
5661

5662 5663
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
5664 5665
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5666 5667 5668 5669 5670
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5671
			temp64 = pci_map_single(h->pdev, buff[i],
5672
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5673 5674 5675 5676
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5677 5678 5679
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5680
				goto cleanup0;
5681
			}
5682 5683 5684
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5685
		}
5686
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5687
	}
5688
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5689 5690
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5691
	check_ioctl_unit_attention(h, c);
5692 5693 5694 5695 5696
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

5697 5698 5699 5700
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5701
		goto cleanup0;
5702
	}
5703
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5704 5705
		int i;

5706 5707 5708 5709 5710
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5711
				goto cleanup0;
5712 5713 5714 5715 5716
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5717
cleanup0:
5718
	cmd_free(h, c);
5719 5720
cleanup1:
	if (buff) {
D
Don Brace 已提交
5721 5722
		int i;

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5739

5740 5741 5742
/*
 * ioctl
 */
D
Don Brace 已提交
5743
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5744 5745 5746
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5747
	int rc;
5748 5749 5750 5751 5752 5753 5754

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5755
		hpsa_scan_start(h->scsi_host);
5756 5757 5758 5759 5760 5761
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5762
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5763 5764
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5765
		atomic_inc(&h->passthru_cmds_avail);
5766
		return rc;
5767
	case CCISS_BIG_PASSTHRU:
5768
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5769 5770
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5771
		atomic_inc(&h->passthru_cmds_avail);
5772
		return rc;
5773 5774 5775 5776 5777
	default:
		return -ENOTTY;
	}
}

5778
static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5779
				u8 reset_type)
5780 5781 5782 5783
{
	struct CommandList *c;

	c = cmd_alloc(h);
5784

5785 5786
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5787 5788 5789 5790 5791 5792 5793 5794
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
5795
	return;
5796 5797
}

5798
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5799
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5800 5801 5802
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
5803
	u64 tag; /* for commands to be aborted */
5804 5805 5806 5807 5808

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
5809
		c->Header.SGTotal = cpu_to_le16(1);
5810 5811
	} else {
		c->Header.SGList = 0;
5812
		c->Header.SGTotal = cpu_to_le16(0);
5813 5814 5815 5816 5817 5818 5819
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
5820
			if (page_code & VPD_PAGE) {
5821
				c->Request.CDB[1] = 0x01;
5822
				c->Request.CDB[2] = (page_code & 0xff);
5823 5824
			}
			c->Request.CDBLen = 6;
5825 5826
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
5837 5838
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5839 5840 5841 5842 5843 5844 5845 5846 5847
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
5848 5849 5850
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5851 5852 5853
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5854 5855
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5856 5857 5858
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
5859 5860
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5861 5862
			c->Request.Timeout = 0;
			break;
5863 5864
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
5865 5866
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5867 5868 5869 5870 5871 5872 5873 5874
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5875 5876
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
5877 5878
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5879 5880 5881 5882 5883 5884
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
5895 5896 5897
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
5898
			return -1;
5899 5900 5901 5902 5903 5904
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
5905 5906
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5907
			c->Request.Timeout = 0; /* Don't time out */
5908 5909
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
5910
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5911 5912 5913 5914 5915 5916
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
5917 5918
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
5919
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
5920
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
5921 5922
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
5923
			c->Request.CDBLen = 16;
5924 5925 5926
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5927 5928 5929 5930 5931 5932
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
5933
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
5934 5935 5936 5937
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

5949
	switch (GET_DIR(c->Request.type_attr_dir)) {
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5962 5963 5964
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5965 5966 5967 5968 5969 5970 5971 5972 5973
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5974 5975
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5976 5977 5978 5979

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

5980
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5981
{
5982
	return h->access.command_completed(h, q);
5983 5984
}

5985
static inline bool interrupt_pending(struct ctlr_info *h)
5986 5987 5988 5989 5990 5991
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5992 5993
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5994 5995
}

5996 5997
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5998 5999 6000 6001 6002 6003 6004 6005
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

6006
static inline void finish_cmd(struct CommandList *c)
6007
{
6008
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6009 6010
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
6011
		complete_scsi_command(c);
6012
	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6013
		complete(c->waiting);
6014 6015
}

6016 6017

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6018
{
6019 6020
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
6021
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6022 6023
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
6024 6025
}

6026
/* process completion of an indexed ("direct lookup") command */
6027
static inline void process_indexed_cmd(struct ctlr_info *h,
6028 6029 6030 6031 6032
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

6033
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6034 6035 6036 6037
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
6038 6039
}

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

6059 6060 6061 6062 6063 6064
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
6065
{
6066 6067 6068 6069 6070 6071 6072
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
6073 6074 6075 6076 6077 6078 6079
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6080
	h->last_intr_timestamp = get_jiffies_64();
6081
	while (interrupt_pending(h)) {
6082
		raw_tag = get_next_completion(h, q);
6083
		while (raw_tag != FIFO_EMPTY)
6084
			raw_tag = next_command(h, q);
6085 6086 6087 6088
	}
	return IRQ_HANDLED;
}

6089
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6090
{
6091
	struct ctlr_info *h = queue_to_hba(queue);
6092
	u32 raw_tag;
6093
	u8 q = *(u8 *) queue;
6094 6095 6096 6097

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

6098
	h->last_intr_timestamp = get_jiffies_64();
6099
	raw_tag = get_next_completion(h, q);
6100
	while (raw_tag != FIFO_EMPTY)
6101
		raw_tag = next_command(h, q);
6102 6103 6104
	return IRQ_HANDLED;
}

6105
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6106
{
6107
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6108
	u32 raw_tag;
6109
	u8 q = *(u8 *) queue;
6110 6111 6112

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6113
	h->last_intr_timestamp = get_jiffies_64();
6114
	while (interrupt_pending(h)) {
6115
		raw_tag = get_next_completion(h, q);
6116
		while (raw_tag != FIFO_EMPTY) {
6117
			process_indexed_cmd(h, raw_tag);
6118
			raw_tag = next_command(h, q);
6119 6120 6121 6122 6123
		}
	}
	return IRQ_HANDLED;
}

6124
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6125
{
6126
	struct ctlr_info *h = queue_to_hba(queue);
6127
	u32 raw_tag;
6128
	u8 q = *(u8 *) queue;
6129

6130
	h->last_intr_timestamp = get_jiffies_64();
6131
	raw_tag = get_next_completion(h, q);
6132
	while (raw_tag != FIFO_EMPTY) {
6133
		process_indexed_cmd(h, raw_tag);
6134
		raw_tag = next_command(h, q);
6135 6136 6137 6138
	}
	return IRQ_HANDLED;
}

6139 6140 6141 6142
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
6143 6144
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
6155 6156
	__le32 paddr32;
	u32 tag;
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
6171
		return err;
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
6184
	paddr32 = cpu_to_le32(paddr64);
6185 6186 6187

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
6188
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
6189
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6190 6191 6192
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
6193 6194
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6195 6196 6197 6198
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6199
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
6200
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6201
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6202

D
Don Brace 已提交
6203
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6204 6205 6206

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
6207
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

6238
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
6239
	void __iomem *vaddr, u32 use_doorbell)
6240 6241 6242 6243 6244 6245 6246 6247
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6248
		writel(use_doorbell, vaddr + SA5_DOORBELL);
6249

6250
		/* PMC hardware guys tell us we need a 10 second delay after
6251 6252 6253 6254
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
6255
		msleep(10000);
6256 6257 6258 6259 6260 6261 6262 6263 6264
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
6265 6266 6267

		int rc = 0;

6268
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6269

6270
		/* enter the D3hot power management state */
6271 6272 6273
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
6274 6275 6276 6277

		msleep(500);

		/* enter the D0 power management state */
6278 6279 6280
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
6281 6282 6283 6284 6285 6286 6287

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
6288 6289 6290 6291
	}
	return 0;
}

6292
static void init_driver_version(char *driver_version, int len)
6293 6294
{
	memset(driver_version, 0, len);
6295
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6296 6297
}

6298
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

6314 6315
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
6316 6317 6318 6319 6320 6321 6322
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

6323
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
6343
/* This does a hard reset of the controller using PCI power management
6344
 * states or the using the doorbell register.
6345
 */
6346
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6347
{
6348 6349 6350 6351 6352
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6353
	u32 misc_fw_support;
6354
	int rc;
6355
	struct CfgTable __iomem *cfgtable;
6356
	u32 use_doorbell;
6357
	u16 command_register;
6358

6359 6360
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6361 6362 6363 6364 6365 6366
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6367 6368 6369
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6370
	 */
6371

6372 6373
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6374 6375
		return -ENODEV;
	}
6376 6377 6378 6379

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6380

6381 6382 6383
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6384

6385 6386 6387 6388 6389 6390 6391
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6392

6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6404 6405
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6406
		goto unmap_cfgtable;
6407

6408 6409 6410
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6411
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6412 6413 6414 6415 6416 6417
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6418 6419
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6420
			rc = -ENOTSUPP; /* try soft reset */
6421 6422 6423
			goto unmap_cfgtable;
		}
	}
6424

6425 6426 6427
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6428

6429 6430
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6431

6432 6433 6434 6435
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6436 6437 6438
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6439
			"Failed waiting for board to become ready after hard reset\n");
6440 6441 6442
		goto unmap_cfgtable;
	}

6443 6444 6445 6446
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6447 6448 6449
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6450
	} else {
6451
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6452 6453 6454 6455 6456 6457 6458 6459
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6460 6461 6462 6463 6464 6465 6466
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6467
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6468
{
6469
#ifdef HPSA_DEBUG
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6490
	dev_info(dev, "   Max outstanding commands = %d\n",
6491 6492 6493 6494 6495 6496 6497 6498 6499
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6500
}
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

6537 6538 6539 6540 6541
static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
{
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
R
Robert Elliott 已提交
6542
		h->msix_vector = 0;
6543 6544 6545
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
R
Robert Elliott 已提交
6546
		h->msi_vector = 0;
6547 6548 6549
	}
}

6550
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6551
 * controllers that are capable. If not, we use legacy INTx mode.
6552
 */
6553
static void hpsa_interrupt_mode(struct ctlr_info *h)
6554 6555
{
#ifdef CONFIG_PCI_MSI
6556 6557 6558 6559 6560 6561 6562
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6563 6564

	/* Some boards advertise MSI but don't really support it */
6565 6566
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6567
		goto default_int_mode;
6568
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6569
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6570
		h->msix_vector = MAX_REPLY_QUEUES;
6571 6572
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6573 6574 6575 6576 6577 6578 6579
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6580
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6581 6582
			       "available\n", err);
		}
6583 6584 6585 6586
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6587
	}
6588
single_msi_mode:
6589
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6590
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6591
		if (!pci_enable_msi(h->pdev))
6592 6593
			h->msi_vector = 1;
		else
6594
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6595 6596 6597 6598
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6599
	h->intr[h->intr_mode] = h->pdev->irq;
6600 6601
}

6602
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6616 6617 6618
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6619 6620 6621 6622 6623 6624 6625
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6626 6627
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6628 6629 6630 6631
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6632
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6633
			/* addressing mode bits already removed */
6634 6635
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6636 6637 6638
				*memory_bar);
			return 0;
		}
6639
	dev_warn(&pdev->dev, "no memory BAR found\n");
6640 6641 6642
	return -ENODEV;
}

6643 6644
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6645
{
6646
	int i, iterations;
6647
	u32 scratchpad;
6648 6649 6650 6651
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6652

6653 6654 6655 6656 6657 6658 6659 6660 6661
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6662 6663
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6664
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6665 6666 6667
	return -ENODEV;
}

6668 6669 6670
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

R
Robert Elliott 已提交
6683 6684
static void hpsa_free_cfgtables(struct ctlr_info *h)
{
R
Robert Elliott 已提交
6685
	if (h->transtable) {
R
Robert Elliott 已提交
6686
		iounmap(h->transtable);
R
Robert Elliott 已提交
6687 6688 6689
		h->transtable = NULL;
	}
	if (h->cfgtable) {
R
Robert Elliott 已提交
6690
		iounmap(h->cfgtable);
R
Robert Elliott 已提交
6691 6692
		h->cfgtable = NULL;
	}
R
Robert Elliott 已提交
6693 6694 6695 6696 6697
}

/* Find and map CISS config table and transfer table
+ * several items must be unmapped (freed) later
+ * */
6698
static int hpsa_find_cfgtables(struct ctlr_info *h)
6699
{
6700 6701 6702
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6703
	u32 trans_offset;
6704
	int rc;
6705

6706 6707 6708 6709
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6710
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6711
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6712 6713
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6714
		return -ENOMEM;
6715
	}
6716 6717 6718
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6719
	/* Find performant mode table. */
6720
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6721 6722 6723
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
R
Robert Elliott 已提交
6724 6725 6726
	if (!h->transtable) {
		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
		hpsa_free_cfgtables(h);
6727
		return -ENOMEM;
R
Robert Elliott 已提交
6728
	}
6729 6730 6731
	return 0;
}

6732
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6733
{
6734 6735 6736 6737
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6738 6739 6740 6741 6742

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6743 6744 6745 6746 6747 6748
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6749 6750 6751
	}
}

6752 6753 6754 6755 6756 6757 6758 6759 6760
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6761 6762 6763 6764
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6765
static void hpsa_find_board_params(struct ctlr_info *h)
6766
{
6767
	hpsa_get_max_perf_mode_cmds(h);
6768
	h->nr_cmds = h->max_commands;
6769
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6770
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6771 6772
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6773
		h->max_cmd_sg_entries = 32;
6774
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6775 6776
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6777 6778 6779 6780 6781 6782
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6783
		h->maxsgentries = 31; /* default to traditional values */
6784
		h->chainsize = 0;
6785
	}
6786 6787 6788

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6789 6790 6791 6792
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6793 6794
	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
6795 6796
}

6797 6798
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
6799
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6800
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6801 6802 6803 6804 6805
		return false;
	}
	return true;
}

6806
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6807
{
6808
	u32 driver_support;
6809

6810
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
6811 6812
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
6813
	driver_support |= ENABLE_SCSI_PREFETCH;
6814
#endif
6815 6816
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
6817 6818
}

6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

6833
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6834 6835 6836 6837 6838
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6839
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6840 6841 6842 6843
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6844
			goto done;
6845
		/* delay and try again */
6846
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
6847
	}
6848 6849 6850
	return -ENODEV;
done:
	return 0;
6851 6852
}

6853
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6854 6855
{
	int i;
6856 6857
	u32 doorbell_value;
	unsigned long flags;
6858 6859 6860 6861 6862

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
6863
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6864 6865
		if (h->remove_in_progress)
			goto done;
6866 6867 6868
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6869
		if (!(doorbell_value & CFGTBL_ChangeReq))
6870
			goto done;
6871
		/* delay and try again */
6872
		msleep(MODE_CHANGE_WAIT_INTERVAL);
6873
	}
6874 6875 6876
	return -ENODEV;
done:
	return 0;
6877 6878
}

6879
/* return -ENODEV or other reason on error, 0 on success */
6880
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6881 6882 6883 6884 6885 6886 6887 6888
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6889

6890 6891
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6892
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6893
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6894 6895
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
6896
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6897 6898
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6899
	h->transMethod = CFGTBL_Trans_Simple;
6900
	return 0;
6901
error:
6902
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6903
	return -ENODEV;
6904 6905
}

R
Robert Elliott 已提交
6906 6907 6908 6909 6910
/* free items allocated or mapped by hpsa_pci_init */
static void hpsa_free_pci_init(struct ctlr_info *h)
{
	hpsa_free_cfgtables(h);			/* pci_init 4 */
	iounmap(h->vaddr);			/* pci_init 3 */
R
Robert Elliott 已提交
6911
	h->vaddr = NULL;
R
Robert Elliott 已提交
6912 6913 6914 6915 6916 6917
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
	pci_release_regions(h->pdev);		/* pci_init 2 */
	pci_disable_device(h->pdev);		/* pci_init 1 */
}

/* several items must be freed later */
6918
static int hpsa_pci_init(struct ctlr_info *h)
6919
{
6920
	int prod_index, err;
6921

6922 6923
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
6924
		return prod_index;
6925 6926
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6927

S
Stephen Cameron 已提交
6928 6929 6930
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
6931 6932 6933
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6934
	err = pci_enable_device(h->pdev);
6935
	if (err) {
R
Robert Elliott 已提交
6936
		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
6937 6938 6939
		return err;
	}

6940
	err = pci_request_regions(h->pdev, HPSA);
6941
	if (err) {
6942
		dev_err(&h->pdev->dev,
R
Robert Elliott 已提交
6943 6944
			"failed to obtain PCI resources\n");
		goto clean1;	/* pci */
6945
	}
6946 6947 6948

	pci_set_master(h->pdev);

6949
	hpsa_interrupt_mode(h);
6950
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6951
	if (err)
R
Robert Elliott 已提交
6952
		goto clean2;	/* intmode+region, pci */
6953
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6954
	if (!h->vaddr) {
R
Robert Elliott 已提交
6955
		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
6956
		err = -ENOMEM;
R
Robert Elliott 已提交
6957
		goto clean2;	/* intmode+region, pci */
6958
	}
6959
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6960
	if (err)
R
Robert Elliott 已提交
6961
		goto clean3;	/* vaddr, intmode+region, pci */
6962 6963
	err = hpsa_find_cfgtables(h);
	if (err)
R
Robert Elliott 已提交
6964
		goto clean3;	/* vaddr, intmode+region, pci */
6965
	hpsa_find_board_params(h);
6966

6967
	if (!hpsa_CISS_signature_present(h)) {
6968
		err = -ENODEV;
R
Robert Elliott 已提交
6969
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
6970
	}
6971
	hpsa_set_driver_support_bits(h);
6972
	hpsa_p600_dma_prefetch_quirk(h);
6973 6974
	err = hpsa_enter_simple_mode(h);
	if (err)
R
Robert Elliott 已提交
6975
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
6976 6977
	return 0;

R
Robert Elliott 已提交
6978 6979 6980 6981
clean4:	/* cfgtables, vaddr, intmode+region, pci */
	hpsa_free_cfgtables(h);
clean3:	/* vaddr, intmode+region, pci */
	iounmap(h->vaddr);
R
Robert Elliott 已提交
6982
	h->vaddr = NULL;
R
Robert Elliott 已提交
6983 6984
clean2:	/* intmode+region, pci */
	hpsa_disable_interrupt_mode(h);
6985
	pci_release_regions(h->pdev);
R
Robert Elliott 已提交
6986 6987
clean1:	/* pci */
	pci_disable_device(h->pdev);
6988 6989 6990
	return err;
}

6991
static void hpsa_hba_inquiry(struct ctlr_info *h)
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

7007
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7008
{
7009
	int rc, i;
7010
	void __iomem *vaddr;
7011 7012 7013 7014

	if (!reset_devices)
		return 0;

7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
7031

7032
	pci_set_master(pdev);
7033

7034 7035 7036 7037 7038 7039 7040 7041
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

7042
	/* Reset the controller with a PCI power-cycle or via doorbell */
7043
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7044

7045 7046
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
7047 7048
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
7049
	 */
7050
	if (rc)
7051
		goto out_disable;
7052 7053

	/* Now try to get the controller to respond to a no-op */
7054
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7055 7056 7057 7058 7059 7060 7061
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
7062 7063 7064 7065 7066

out_disable:

	pci_disable_device(pdev);
	return rc;
7067 7068
}

7069 7070 7071
static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
R
Robert Elliott 已提交
7072 7073
	h->cmd_pool_bits = NULL;
	if (h->cmd_pool) {
7074 7075 7076 7077
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct CommandList),
				h->cmd_pool,
				h->cmd_pool_dhandle);
R
Robert Elliott 已提交
7078 7079 7080 7081
		h->cmd_pool = NULL;
		h->cmd_pool_dhandle = 0;
	}
	if (h->errinfo_pool) {
7082 7083 7084 7085
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct ErrorInfo),
				h->errinfo_pool,
				h->errinfo_pool_dhandle);
R
Robert Elliott 已提交
7086 7087 7088
		h->errinfo_pool = NULL;
		h->errinfo_pool_dhandle = 0;
	}
7089 7090
}

7091
static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7106
		goto clean_up;
7107
	}
7108
	hpsa_preinitialize_commands(h);
7109
	return 0;
7110 7111 7112
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
7113 7114
}

7115 7116
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
7117
	int i, cpu;
7118 7119 7120

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
7121
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7122 7123 7124 7125
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7136
		h->q[i] = 0;
7137 7138 7139 7140 7141 7142
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7143
		h->q[i] = 0;
7144
	}
7145 7146
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
7147 7148
}

7149 7150
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
7151 7152 7153
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
7154
	int rc, i;
7155

7156 7157 7158 7159 7160 7161 7162
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

7163
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7164
		/* If performant mode and MSI-X, use multiple reply queues */
7165
		for (i = 0; i < h->msix_vector; i++) {
7166 7167 7168
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
7184
		hpsa_irq_affinity_hints(h);
7185 7186
	} else {
		/* Use single reply pool */
7187
		if (h->msix_vector > 0 || h->msi_vector) {
7188 7189 7190 7191 7192 7193 7194 7195
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
R
Robert Elliott 已提交
7196
		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7197
	}
7198
	if (rc) {
R
Robert Elliott 已提交
7199
		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7200
		       h->intr[h->intr_mode], h->devname);
R
Robert Elliott 已提交
7201
		hpsa_free_irqs(h);
7202 7203 7204 7205 7206
		return -ENODEV;
	}
	return 0;
}

7207
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7208
{
7209
	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

7227 7228 7229 7230 7231 7232 7233
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
7234 7235 7236 7237
		pci_free_consistent(h->pdev,
					h->reply_queue_size,
					h->reply_queue[i].head,
					h->reply_queue[i].busaddr);
7238 7239 7240
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
R
Robert Elliott 已提交
7241
	h->reply_queue_size = 0;
7242 7243
}

7244 7245
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
R
Robert Elliott 已提交
7246 7247 7248 7249 7250 7251
	hpsa_free_performant_mode(h);		/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
	hpsa_free_cmd_pool(h);			/* init_one 5 */
	hpsa_free_irqs(h);			/* init_one 4 */
	hpsa_free_pci_init(h);			/* init_one 3 */
	kfree(h);				/* init_one 1 */
7252 7253
}

7254
/* Called when controller lockup detected. */
7255
static void fail_all_outstanding_cmds(struct ctlr_info *h)
7256
{
7257 7258
	int i, refcount;
	struct CommandList *c;
7259
	int failcount = 0;
7260

7261
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7262 7263
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
7264 7265
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
7266
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7267
			finish_cmd(c);
7268
			atomic_dec(&h->commands_outstanding);
7269
			failcount++;
7270 7271
		}
		cmd_free(h, c);
7272
	}
7273 7274
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
7275 7276
}

7277 7278
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
7279
	int cpu;
7280

7281
	for_each_online_cpu(cpu) {
7282 7283 7284 7285 7286 7287 7288
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

7289 7290 7291
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
7292
	u32 lockup_detected;
7293 7294 7295

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
7296 7297 7298 7299
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
7300 7301
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
7302 7303 7304
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
7305
	spin_unlock_irqrestore(&h->lock, flags);
7306 7307
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
7308
	pci_disable_device(h->pdev);
7309
	fail_all_outstanding_cmds(h);
7310 7311
}

7312
static int detect_controller_lockup(struct ctlr_info *h)
7313 7314 7315 7316 7317 7318 7319 7320
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
7321
				(h->heartbeat_sample_interval), now))
7322
		return false;
7323 7324 7325 7326 7327 7328 7329

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
7330
				(h->heartbeat_sample_interval), now))
7331
		return false;
7332 7333 7334 7335 7336 7337 7338

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
7339
		return true;
7340 7341 7342 7343 7344
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
7345
	return false;
7346 7347
}

7348
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7349 7350 7351 7352
{
	int i;
	char *event_type;

7353 7354 7355
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

7356
	/* Ask the controller to clear the events we're handling. */
7357 7358
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
7370
		hpsa_drain_accel_commands(h);
7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7391
	return;
7392 7393 7394 7395
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7396 7397
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7398
 */
7399
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7400 7401
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7402
		return 0;
7403 7404

	h->events = readl(&(h->cfgtable->event_notify));
7405 7406
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7407

7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7422 7423 7424 7425
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7426
			return 1;
7427
		}
7428 7429 7430 7431
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7432 7433
}

7434
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7435 7436
{
	unsigned long flags;
7437
	struct ctlr_info *h = container_of(to_delayed_work(work),
7438 7439 7440 7441
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7442
		return;
7443 7444 7445 7446 7447 7448 7449

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7450
	spin_lock_irqsave(&h->lock, flags);
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7465
		return;
7466 7467 7468 7469

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7470 7471
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7472 7473
}

7474 7475 7476 7477 7478
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7479
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7480 7481 7482 7483 7484 7485
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7486
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7487
{
7488
	int dac, rc;
7489
	struct ctlr_info *h;
7490 7491
	int try_soft_reset = 0;
	unsigned long flags;
7492
	u32 board_id;
7493 7494 7495 7496

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7497 7498 7499 7500 7501 7502 7503
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7517

7518 7519 7520 7521 7522
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7523
	h = kzalloc(sizeof(*h), GFP_KERNEL);
R
Robert Elliott 已提交
7524 7525
	if (!h) {
		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7526
		return -ENOMEM;
R
Robert Elliott 已提交
7527
	}
7528

7529
	h->pdev = pdev;
R
Robert Elliott 已提交
7530

7531
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7532
	INIT_LIST_HEAD(&h->offline_device_list);
7533
	spin_lock_init(&h->lock);
7534
	spin_lock_init(&h->offline_device_lock);
7535
	spin_lock_init(&h->scan_lock);
7536
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7537
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7538

7539 7540 7541 7542 7543 7544 7545
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean1;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
7546 7547
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
R
Robert Elliott 已提交
7548
		goto clean1;	/* aer/h */
7549
	}
7550

7551 7552
	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7553
	if (!h->lockup_detected) {
R
Robert Elliott 已提交
7554
		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7555
		rc = -ENOMEM;
R
Robert Elliott 已提交
7556
		goto clean1;	/* wq/aer/h */
7557
	}
7558 7559
	set_lockup_detected_for_all_cpus(h, 0);

7560
	rc = hpsa_pci_init(h);
R
Robert Elliott 已提交
7561 7562
	if (rc)
		goto clean2;	/* lockup, wq/aer/h */
7563

7564
	sprintf(h->devname, HPSA "%d", number_of_controllers);
7565 7566 7567 7568
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7569 7570
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7571
		dac = 1;
7572 7573 7574 7575 7576 7577
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
R
Robert Elliott 已提交
7578
			goto clean3;	/* pci, lockup, wq/aer/h */
7579
		}
7580 7581 7582 7583
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7584

R
Robert Elliott 已提交
7585 7586 7587
	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
	if (rc)
		goto clean3;	/* pci, lockup, wq/aer/h */
7588 7589
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
7590
	       h->intr[h->intr_mode], dac ? "" : " not");
7591
	rc = hpsa_alloc_cmd_pool(h);
7592
	if (rc)
R
Robert Elliott 已提交
7593 7594 7595 7596
		goto clean4;	/* irq, pci, lockup, wq/aer/h */
	rc = hpsa_alloc_sg_chain_blocks(h);
	if (rc)
		goto clean5;	/* cmd, irq, pci, lockup, wq/aer/h */
7597
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7598
	init_waitqueue_head(&h->abort_cmd_wait_queue);
7599
	h->scan_finished = 1; /* no scan currently in progress */
7600 7601

	pci_set_drvdata(pdev, h);
7602
	h->ndevices = 0;
7603
	h->hba_mode_enabled = 0;
7604 7605
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
R
Robert Elliott 已提交
7606 7607 7608
	rc = hpsa_put_ctlr_into_performant_mode(h);
	if (rc)
		goto clean6;	/* sg, cmd, irq, pci, lockup, wq/aer/h */
7609

R
Robert Elliott 已提交
7610 7611
	/*
	 * At this point, the controller is ready to take commands.
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7627
		hpsa_free_irqs(h);
7628
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7629 7630
					hpsa_intx_discard_completions);
		if (rc) {
7631 7632
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7665

R
Robert Elliott 已提交
7666 7667
	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;
7668

7669

7670 7671 7672
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7673
	hpsa_hba_inquiry(h);
R
Robert Elliott 已提交
7674
	rc = hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7675
	if (rc)
R
Robert Elliott 已提交
7676
		goto clean7;
7677 7678 7679 7680 7681 7682

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7683 7684 7685
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7686
	return 0;
7687

R
Robert Elliott 已提交
7688 7689 7690 7691 7692
clean7: /* perf, sg, cmd, irq, pci, lockup, wq/aer/h */
	kfree(h->hba_inquiry_data);
	hpsa_free_performant_mode(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
7693
	hpsa_free_sg_chain_blocks(h);
R
Robert Elliott 已提交
7694
clean5: /* cmd, irq, pci, lockup, wq/aer/h */
7695
	hpsa_free_cmd_pool(h);
R
Robert Elliott 已提交
7696
clean4: /* irq, pci, lockup, wq/aer/h */
7697
	hpsa_free_irqs(h);
R
Robert Elliott 已提交
7698
clean3: /* pci, lockup, wq/aer/h */
R
Robert Elliott 已提交
7699
	hpsa_free_pci_init(h);
R
Robert Elliott 已提交
7700 7701 7702 7703 7704 7705 7706
clean2: /* lockup, wq/aer/h */
	if (h->lockup_detected) {
		free_percpu(h->lockup_detected);
		h->lockup_detected = NULL;
	}
clean1:	/* wq/aer/h */
	if (h->resubmit_wq) {
7707
		destroy_workqueue(h->resubmit_wq);
R
Robert Elliott 已提交
7708 7709 7710
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
7711
		destroy_workqueue(h->rescan_ctlr_wq);
R
Robert Elliott 已提交
7712 7713
		h->rescan_ctlr_wq = NULL;
	}
7714
	kfree(h);
7715
	return rc;
7716 7717 7718 7719 7720 7721
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7722
	int rc;
7723 7724

	/* Don't bother trying to flush the cache if locked up */
7725
	/* FIXME not necessary if do_simple_cmd does the check */
7726
	if (unlikely(lockup_detected(h)))
7727
		return;
7728 7729 7730 7731
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7732
	c = cmd_alloc(h);
7733

7734 7735 7736 7737
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7738 7739 7740 7741
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
7742
	if (c->err_info->CommandStatus != 0)
7743
out:
7744 7745
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
7746
	cmd_free(h, c);
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
R
Robert Elliott 已提交
7761
	hpsa_free_irqs(h);			/* init_one 4 */
7762
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7763 7764
}

7765
static void hpsa_free_device_info(struct ctlr_info *h)
7766 7767 7768
{
	int i;

R
Robert Elliott 已提交
7769
	for (i = 0; i < h->ndevices; i++) {
7770
		kfree(h->dev[i]);
R
Robert Elliott 已提交
7771 7772
		h->dev[i] = NULL;
	}
7773 7774
}

7775
static void hpsa_remove_one(struct pci_dev *pdev)
7776 7777
{
	struct ctlr_info *h;
7778
	unsigned long flags;
7779 7780

	if (pci_get_drvdata(pdev) == NULL) {
7781
		dev_err(&pdev->dev, "unable to remove device\n");
7782 7783 7784
		return;
	}
	h = pci_get_drvdata(pdev);
7785 7786 7787 7788 7789

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
7790 7791 7792 7793
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
7794

R
Robert Elliott 已提交
7795
	/* includes hpsa_free_irqs - init_one 4 */
R
Robert Elliott 已提交
7796
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
7797
	hpsa_shutdown(pdev);
7798

R
Robert Elliott 已提交
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
	hpsa_free_device_info(h);		/* scan */

	hpsa_unregister_scsi(h);			/* init_one "8" */
	kfree(h->hba_inquiry_data);			/* init_one "8" */
	h->hba_inquiry_data = NULL;			/* init_one "8" */
	hpsa_free_performant_mode(h);			/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
	hpsa_free_cmd_pool(h);				/* init_one 5 */

	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
R
Robert Elliott 已提交
7809 7810

	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
R
Robert Elliott 已提交
7811
	hpsa_free_pci_init(h);				/* init_one 3 */
R
Robert Elliott 已提交
7812

R
Robert Elliott 已提交
7813 7814 7815 7816
	free_percpu(h->lockup_detected);		/* init_one 2 */
	h->lockup_detected = NULL;			/* init_one 2 */
	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
	kfree(h);					/* init_one 1 */
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
7831
	.name = HPSA,
7832
	.probe = hpsa_init_one,
7833
	.remove = hpsa_remove_one,
7834 7835 7836 7837 7838 7839
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
7853
	int nsgs, int min_blocks, u32 *bucket_map)
7854 7855 7856 7857 7858 7859
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
7860
		size = i + min_blocks;
7861 7862
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
7863
		for (j = 0; j < num_buckets; j++) {
7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

R
Robert Elliott 已提交
7874 7875 7876 7877
/*
 * return -ENODEV on err, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
7878
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7879
{
7880 7881
	int i;
	unsigned long register_value;
7882 7883
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
7884 7885 7886
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
7887
	struct access_method access = SA5_performant_access;
7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
7899
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7900 7901 7902 7903 7904 7905
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
7906
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7917
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7918 7919 7920 7921 7922 7923
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

7924 7925 7926 7927 7928 7929 7930
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

7931
	/* Controller spec: zero out this buffer. */
7932 7933
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7934

7935 7936
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
7937
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7938 7939 7940 7941 7942
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
7943
	writel(h->nreply_queues, &h->transtable->RepQCount);
7944 7945
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
7946 7947 7948

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
7949
		writel(h->reply_queue[i].busaddr,
7950 7951 7952
			&h->transtable->RepQAddr[i].lower);
	}

7953
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7954 7955 7956 7957 7958 7959 7960 7961
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7962 7963 7964 7965 7966 7967
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
7968
	}
7969
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7970 7971 7972 7973 7974
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
7975 7976
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
7977 7978
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
7979
		return -ENODEV;
7980
	}
7981
	/* Change the access methods to the performant access methods */
7982 7983 7984
	h->access = access;
	h->transMethod = transMethod;

7985 7986
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
7987
		return 0;
7988

7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
7999

8000
		/* initialize all reply queue entries to unused */
8001 8002 8003 8004
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
8005

8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
8017 8018
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8019 8020
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
8021
			cp->tag =
8022
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8023 8024
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8049
	}
8050
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8051 8052 8053 8054 8055 8056
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
8057 8058
}

8059 8060 8061
/* Free ioaccel1 mode command blocks and block fetch table */
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
R
Robert Elliott 已提交
8062
	if (h->ioaccel_cmd_pool) {
8063 8064 8065 8066
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool,
			h->ioaccel_cmd_pool_dhandle);
R
Robert Elliott 已提交
8067 8068 8069
		h->ioaccel_cmd_pool = NULL;
		h->ioaccel_cmd_pool_dhandle = 0;
	}
8070
	kfree(h->ioaccel1_blockFetchTable);
R
Robert Elliott 已提交
8071
	h->ioaccel1_blockFetchTable = NULL;
8072 8073
}

8074 8075
/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8076
{
8077 8078 8079 8080 8081
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
8094
		kmalloc(((h->ioaccel_maxsg + 1) *
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
8106
	hpsa_free_ioaccel1_cmd_and_bft(h);
8107
	return -ENOMEM;
8108 8109
}

8110 8111 8112
/* Free ioaccel2 mode command blocks and block fetch table */
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
8113 8114
	hpsa_free_ioaccel2_sg_chain_blocks(h);

R
Robert Elliott 已提交
8115
	if (h->ioaccel2_cmd_pool) {
8116 8117 8118 8119
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool,
			h->ioaccel2_cmd_pool_dhandle);
R
Robert Elliott 已提交
8120 8121 8122
		h->ioaccel2_cmd_pool = NULL;
		h->ioaccel2_cmd_pool_dhandle = 0;
	}
8123
	kfree(h->ioaccel2_blockFetchTable);
R
Robert Elliott 已提交
8124
	h->ioaccel2_blockFetchTable = NULL;
8125 8126
}

8127 8128
/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8129
{
8130 8131
	int rc;

8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
8151 8152 8153 8154 8155 8156 8157
		(h->ioaccel2_blockFetchTable == NULL)) {
		rc = -ENOMEM;
		goto clean_up;
	}

	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
	if (rc)
8158 8159 8160 8161 8162 8163 8164
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
8165
	hpsa_free_ioaccel2_cmd_and_bft(h);
8166
	return rc;
8167 8168
}

R
Robert Elliott 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
static void hpsa_free_performant_mode(struct ctlr_info *h)
{
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
}

/* return -ENODEV on error, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8183 8184
{
	u32 trans_support;
8185 8186
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
R
Robert Elliott 已提交
8187
	int i, rc;
8188

8189
	if (hpsa_simple_mode)
R
Robert Elliott 已提交
8190
		return 0;
8191

8192 8193
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
R
Robert Elliott 已提交
8194
		return 0;
8195

8196 8197 8198 8199
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8200 8201 8202 8203 8204
		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
		if (rc)
			return rc;
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		transMethod |= CFGTBL_Trans_io_accel2 |
8205
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8206 8207 8208
		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
		if (rc)
			return rc;
8209 8210
	}

8211
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8212
	hpsa_get_max_perf_mode_cmds(h);
8213
	/* Performant mode ring buffer and supporting data structures */
8214
	h->reply_queue_size = h->max_commands * sizeof(u64);
8215

8216
	for (i = 0; i < h->nreply_queues; i++) {
8217 8218 8219
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
R
Robert Elliott 已提交
8220 8221 8222 8223
		if (!h->reply_queue[i].head) {
			rc = -ENOMEM;
			goto clean1;	/* rq, ioaccel */
		}
8224 8225 8226 8227 8228
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

8229
	/* Need a block fetch table for performant mode */
8230
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8231
				sizeof(u32)), GFP_KERNEL);
R
Robert Elliott 已提交
8232 8233 8234 8235
	if (!h->blockFetchTable) {
		rc = -ENOMEM;
		goto clean1;	/* rq, ioaccel */
	}
8236

R
Robert Elliott 已提交
8237 8238 8239 8240
	rc = hpsa_enter_performant_mode(h, trans_support);
	if (rc)
		goto clean2;	/* bft, rq, ioaccel */
	return 0;
8241

R
Robert Elliott 已提交
8242
clean2:	/* bft, rq, ioaccel */
8243
	kfree(h->blockFetchTable);
R
Robert Elliott 已提交
8244 8245 8246 8247 8248 8249
	h->blockFetchTable = NULL;
clean1:	/* rq, ioaccel */
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
8250 8251
}

8252
static int is_accelerated_cmd(struct CommandList *c)
8253
{
8254 8255 8256 8257 8258 8259
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
8260
	int i, accel_cmds_out;
8261
	int refcount;
8262

8263
	do { /* wait for all outstanding ioaccel commands to drain out */
8264
		accel_cmds_out = 0;
8265 8266
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
8267 8268 8269 8270
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
8271
		}
8272
		if (accel_cmds_out <= 0)
8273
			break;
8274 8275 8276 8277
		msleep(100);
	} while (1);
}

8278 8279 8280 8281 8282 8283
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
8284
	return pci_register_driver(&hpsa_pci_driver);
8285 8286 8287 8288 8289 8290 8291
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

8292 8293
static void __attribute__((unused)) verify_offsets(void)
{
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
8363
	VERIFY_OFFSET(tag, 0x68);
8364 8365 8366 8367 8368 8369
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

8370 8371
module_init(hpsa_init);
module_exit(hpsa_cleanup);