hpsa.c 246.9 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46
#include <scsi/scsi_eh.h>
47
#include <scsi/scsi_dbg.h>
48 49 50
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
51
#include <linux/atomic.h>
52
#include <linux/jiffies.h>
D
Don Brace 已提交
53
#include <linux/percpu-defs.h>
54
#include <linux/percpu.h>
D
Don Brace 已提交
55
#include <asm/unaligned.h>
56
#include <asm/div64.h>
57 58 59 60
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61
#define HPSA_DRIVER_VERSION "3.4.4-1"
62
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63
#define HPSA "hpsa"
64

65 66 67 68 69
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
87 88 89 90
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
91 92 93 94 95 96 97 98

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 103 104 105 106 107 108
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 110 111 112 113 114
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
115 116 117 118 119 120 121 122 123 124
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
125
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
126 127 128
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
129 130 131 132 133
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
134 135 136 137 138
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
139
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
140
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
156 157
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
158
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
159 160 161 162 163 164 165
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
166 167 168 169 170 171 172
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
173 174 175 176
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
177
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
178 179
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
180
	{0x21C4103C, "Smart Array", &SA5_access},
181 182 183 184
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
185
	{0x21C9103C, "Smart Array", &SA5_access},
186 187
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
188 189
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
190
	{0x21CE103C, "Smart HBA", &SA5_access},
191 192 193 194 195
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
196 197 198
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

199 200 201 202
#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
static const struct scsi_cmnd hpsa_cmd_busy;
#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
static const struct scsi_cmnd hpsa_cmd_idle;
203 204
static int number_of_controllers;

205 206
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
207
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
208 209

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
210 211
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
212 213 214 215
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
216 217 218
static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd);
219
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
220
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
221
	int cmd_type);
222
static void hpsa_free_cmd_pool(struct ctlr_info *h);
223
#define VPD_PAGE (1 << 8)
224

J
Jeff Garzik 已提交
225
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
226 227 228
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
229
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
230 231

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
232
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
233
static int hpsa_slave_alloc(struct scsi_device *sdev);
234
static int hpsa_slave_configure(struct scsi_device *sdev);
235 236 237 238 239 240 241
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
242 243
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
244
	int nsgs, int min_blocks, u32 *bucket_map);
R
Robert Elliott 已提交
245 246
static void hpsa_free_performant_mode(struct ctlr_info *h);
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
247
static inline u32 next_command(struct ctlr_info *h, u8 q);
248 249 250 251 252 253 254 255
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
256
static inline void finish_cmd(struct CommandList *c);
257
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
258 259
#define BOARD_NOT_READY 0
#define BOARD_READY 1
260
static void hpsa_drain_accel_commands(struct ctlr_info *h);
261
static void hpsa_flush_cache(struct ctlr_info *h);
262 263
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
264
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
265
static void hpsa_command_resubmit_worker(struct work_struct *work);
266 267
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
268 269 270 271 272 273 274

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

275 276 277 278 279 280
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

281 282 283 284 285
static inline bool hpsa_is_cmd_idle(struct CommandList *c)
{
	return c->scsi_cmd == SCSI_CMD_IDLE;
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

308 309 310
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
311 312 313 314 315 316 317 318 319 320 321
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == -1)
322 323
		return 0;

324
	switch (asc) {
325
	case STATE_CHANGED:
326
		dev_warn(&h->pdev->dev,
327 328
			"%s: a state change detected, command retried\n",
			h->devname);
329 330
		break;
	case LUN_FAILED:
331
		dev_warn(&h->pdev->dev,
332
			"%s: LUN failure detected\n", h->devname);
333 334
		break;
	case REPORT_LUNS_CHANGED:
335
		dev_warn(&h->pdev->dev,
336
			"%s: report LUN data changed\n", h->devname);
337
	/*
338 339
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
340 341 342
	 */
		break;
	case POWER_OR_RESET:
343 344 345
		dev_warn(&h->pdev->dev,
			"%s: a power on or device reset detected\n",
			h->devname);
346 347
		break;
	case UNIT_ATTENTION_CLEARED:
348 349 350
		dev_warn(&h->pdev->dev,
			"%s: unit attention cleared by another initiator\n",
			h->devname);
351 352
		break;
	default:
353 354 355
		dev_warn(&h->pdev->dev,
			"%s: unknown unit attention detected\n",
			h->devname);
356 357 358 359 360
		break;
	}
	return 1;
}

361 362 363 364 365 366 367 368 369 370
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384
static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

434 435 436 437 438 439
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
440
	h = shost_to_hba(shost);
M
Mike Miller 已提交
441
	hpsa_scan_start(h->scsi_host);
442 443 444
	return count;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

460 461 462 463 464 465
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

466 467
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
468 469
}

470 471 472 473 474 475 476 477
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
478
		h->transMethod & CFGTBL_Trans_Performant ?
479 480 481
			"performant" : "simple");
}

482 483 484 485 486 487 488 489 490 491 492
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

493
/* List of controllers which cannot be hard reset on kexec with reset_devices */
494 495
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
496
	0x324b103C, /* Smart Array P711m */
497 498 499 500 501 502 503 504 505 506
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
507
	0x40800E11, /* Smart Array 5i */
508 509
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
510 511 512 513 514 515
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
516 517
};

518 519
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
520
	0x40800E11, /* Smart Array 5i */
521 522 523 524 525 526
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
527 528 529 530 531 532 533 534 535 536 537
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
538 539 540 541 542 543 544
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
545 546 547
{
	int i;

S
Stephen Cameron 已提交
548 549 550 551
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
552 553
}

S
Stephen Cameron 已提交
554
static int ctlr_is_hard_resettable(u32 board_id)
555
{
S
Stephen Cameron 已提交
556 557 558
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
559

S
Stephen Cameron 已提交
560 561 562 563
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
564 565
}

566 567 568 569 570 571
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
572 573 574 575 576 577
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

578 579 580 581 582 583 584
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
585
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
586 587
}

588 589 590 591 592
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

593 594
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
595
};
596 597 598 599 600 601 602
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
603 604 605 606 607 608
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
609
	unsigned char rlevel;
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
633
	if (rlevel > RAID_UNKNOWN)
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

713 714 715 716
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
717 718
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
719 720 721
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
722 723
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
724 725 726 727 728 729
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
730 731
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
732 733
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
734 735 736 737 738

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
739
	&dev_attr_hp_ssd_smart_path_enabled,
740
	&dev_attr_lockup_detected,
741 742 743 744 745 746 747 748
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
749
	&dev_attr_resettable,
750
	&dev_attr_hp_ssd_smart_path_status,
751
	&dev_attr_raid_offload_debug,
752 753 754
	NULL,
};

755 756 757
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

758 759
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
760 761
	.name			= HPSA,
	.proc_name		= HPSA,
762 763 764
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
765
	.change_queue_depth	= hpsa_change_queue_depth,
766 767
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
768
	.eh_abort_handler	= hpsa_eh_abort_handler,
769 770 771
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
772
	.slave_configure	= hpsa_slave_configure,
773 774 775 776 777 778
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
779
	.max_sectors = 8192,
780
	.no_write_same = 1,
781 782
};

783
static inline u32 next_command(struct ctlr_info *h, u8 q)
784 785
{
	u32 a;
786
	struct reply_queue_buffer *rq = &h->reply_queue[q];
787

788 789 790
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

791
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
792
		return h->access.command_completed(h, q);
793

794 795 796
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
797
		atomic_dec(&h->commands_outstanding);
798 799 800 801
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
802 803 804
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
805 806 807 808
	}
	return a;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

835 836
/*
 * set_performant_mode: Modify the tag for cciss performant
837 838 839
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
840 841 842
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
843
{
844
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
845
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
846 847 848
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
849
			c->Header.ReplyQueue =
850
				raw_smp_processor_id() % h->nreply_queues;
851 852
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
853
	}
854 855
}

856
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
857 858
						struct CommandList *c,
						int reply_queue)
859 860 861
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

862 863
	/*
	 * Tell the controller to post the reply to the queue for this
864 865
	 * processor.  This seems to give the best I/O throughput.
	 */
866 867 868 869 870 871
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
872 873 874 875 876 877 878 879
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
		&h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= h->ioaccel2_blockFetchTable[0];
}

902
static void set_ioaccel2_performant_mode(struct ctlr_info *h,
903 904
						struct CommandList *c,
						int reply_queue)
905 906 907
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

908 909
	/*
	 * Tell the controller to post the reply to the queue for this
910 911
	 * processor.  This seems to give the best I/O throughput.
	 */
912 913 914 915 916 917
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
918 919 920 921 922 923 924
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

954 955
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
956
{
957 958
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
959 960
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
961
		set_ioaccel1_performant_mode(h, c, reply_queue);
962
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
963 964
		break;
	case CMD_IOACCEL2:
965
		set_ioaccel2_performant_mode(h, c, reply_queue);
966
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
967
		break;
968 969 970 971
	case IOACCEL2_TMF:
		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
972
	default:
973
		set_performant_mode(h, c, reply_queue);
974
		h->access.submit_command(h, c);
975
	}
976 977
}

978
static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
979
{
980 981 982
	if (unlikely(c->abort_pending))
		return finish_cmd(c);

983 984 985
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

1000 1001 1002 1003 1004 1005 1006
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
1007
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1008

1009
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1010 1011 1012

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1013
			__set_bit(h->dev[i]->target, lun_taken);
1014 1015
	}

1016 1017 1018 1019 1020 1021
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
1022 1023 1024 1025
	}
	return !found;
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

1054
	if (n >= HPSA_MAX_DEVICES) {
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
1067
	 * unit no, zero otherwise.
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;
1110 1111
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1112 1113
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1114 1115 1116
	return 0;
}

1117 1118 1119 1120
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
1121
	int offload_enabled;
1122 1123 1124 1125 1126
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1141 1142 1143 1144 1145
	if (new_entry->hba_ioaccel_enabled) {
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
	}
	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1146
	h->dev[entry]->offload_config = new_entry->offload_config;
1147
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1148
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1159 1160
	offload_enabled = h->dev[entry]->offload_enabled;
	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1161
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1162
	h->dev[entry]->offload_enabled = offload_enabled;
1163 1164
}

1165 1166 1167 1168 1169 1170 1171
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1172
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1173 1174
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1185 1186 1187
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1188
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1189 1190
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1201
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1202 1203 1204 1205 1206 1207 1208 1209

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1210
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1278 1279 1280 1281
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1282 1283
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1284 1285 1286
	return 0;
}

1287 1288 1289
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1290 1291 1292 1293
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1294 1295 1296 1297 1298 1299 1300 1301 1302
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1303
#define DEVICE_UPDATED 3
1304
	for (i = 0; i < haystack_size; i++) {
1305 1306
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1307 1308
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1309 1310 1311
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1312
				return DEVICE_SAME;
1313
			} else {
1314 1315 1316
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1317
				return DEVICE_CHANGED;
1318
			}
1319 1320 1321 1322 1323 1324
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1481 1482
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1515 1516 1517 1518
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1519
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1533 1534
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1548 1549
	 * If minor device attributes change, just update
	 * the existing device structure.
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1564 1565
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1566 1567 1568 1569
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1570 1571
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1583 1584 1585 1586 1587 1588 1589 1590

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1591
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1592 1593 1594
			continue;
		}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1611 1612 1613 1614 1615 1616 1617 1618
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1619 1620
	spin_unlock_irqrestore(&h->devlock, flags);

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1655 1656
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1657
			}
1658 1659 1660 1661 1662 1663 1664
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1665 1666
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1667 1668 1669
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1670 1671
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1672 1673 1674 1675
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
R
Robert Elliott 已提交
1676
		added[i] = NULL;
1677 1678 1679 1680 1681 1682 1683 1684
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1685
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1712
	if (likely(sd)) {
1713
		atomic_set(&sd->ioaccel_cmds_out, 0);
1714 1715 1716
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1717 1718 1719 1720
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1741 1742
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1743
	/* nothing to do. */
1744 1745
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->ioaccel2_cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->ioaccel2_cmd_sg_list[i]);
		h->ioaccel2_cmd_sg_list[i] = NULL;
	}
	kfree(h->ioaccel2_cmd_sg_list);
	h->ioaccel2_cmd_sg_list = NULL;
}

static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->ioaccel2_cmd_sg_list =
		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
					GFP_KERNEL);
	if (!h->ioaccel2_cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->ioaccel2_cmd_sg_list[i] =
			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
					h->maxsgentries, GFP_KERNEL);
		if (!h->ioaccel2_cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	return -ENOMEM;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

R
Robert Elliott 已提交
1800
static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1801 1802 1803 1804 1805 1806 1807 1808
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1809 1810
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1811
		return -ENOMEM;
1812
	}
1813 1814 1815
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1816 1817
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1818
			goto clean;
1819
		}
1820 1821 1822 1823 1824 1825 1826 1827
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp, struct CommandList *c)
{
	struct ioaccel2_sg_element *chain_block;
	u64 temp64;
	u32 chain_size;

	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
	chain_size = le32_to_cpu(cp->data_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
				PCI_DMA_TODEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		cp->sg->address = 0;
		return -1;
	}
	cp->sg->address = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp)
{
	struct ioaccel2_sg_element *chain_sg;
	u64 temp64;
	u32 chain_size;

	chain_sg = cp->sg;
	temp64 = le64_to_cpu(chain_sg->address);
	chain_size = le32_to_cpu(cp->data_len);
	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
}

1861
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1862 1863 1864 1865
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1866
	u32 chain_len;
1867 1868 1869

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1870 1871
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1872
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1873 1874
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1875
				PCI_DMA_TODEVICE);
1876 1877
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1878
		chain_sg->Addr = cpu_to_le64(0);
1879 1880
		return -1;
	}
1881
	chain_sg->Addr = cpu_to_le64(temp64);
1882
	return 0;
1883 1884 1885 1886 1887 1888 1889
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1890
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1891 1892 1893
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1894 1895
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1896 1897
}

1898 1899 1900 1901 1902 1903

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1904 1905 1906 1907 1908
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1909
	int retry = 0;
1910
	u32 ioaccel2_resid = 0;
1911 1912 1913 1914 1915 1916 1917

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1918
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1919
			if (c2->error_data.data_present !=
1920 1921 1922
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1923
				break;
1924
			}
1925 1926 1927 1928 1929 1930 1931 1932 1933
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1934
			retry = 1;
1935 1936
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1937
			retry = 1;
1938 1939
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1940
			retry = 1;
1941 1942
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1943
			retry = 1;
1944 1945
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1946
			retry = 1;
1947 1948
			break;
		default:
1949
			retry = 1;
1950 1951 1952 1953
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_IO_ERROR:
		case IOACCEL2_STATUS_SR_IO_ABORTED:
		case IOACCEL2_STATUS_SR_OVERRUN:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_UNDERRUN:
			cmd->result = (DID_OK << 16);		/* host byte */
			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
			ioaccel2_resid = get_unaligned_le32(
						&c2->error_data.resid_cnt[0]);
			scsi_set_resid(cmd, ioaccel2_resid);
			break;
		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
			/* We will get an event from ctlr to trigger rescan */
			retry = 1;
			break;
		default:
			retry = 1;
		}
1976 1977 1978 1979 1980 1981
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1982
		retry = 1;
1983 1984 1985 1986
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		break;
	default:
1987
		retry = 1;
1988 1989
		break;
	}
1990 1991

	return retry;	/* retry on raid path? */
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static void hpsa_cmd_resolve_events(struct ctlr_info *h,
		struct CommandList *c)
{
	/*
	 * Prevent the following race in the abort handler:
	 *
	 * 1. LLD is requested to abort a SCSI command
	 * 2. The SCSI command completes
	 * 3. The struct CommandList associated with step 2 is made available
	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
	 * 5. Abort handler follows scsi_cmnd->host_scribble and
	 *    finds struct CommandList and tries to aborts it
	 * Now we have aborted the wrong command.
	 *
	 * Clear c->scsi_cmd here so that the abort handler will know this
	 * command has completed.  Then, check to see if the abort handler is
	 * waiting for this command, and, if so, wake it.
	 */
	c->scsi_cmd = SCSI_CMD_IDLE;
	mb(); /* Ensure c->scsi_cmd is set to SCSI_CMD_IDLE */
	if (c->abort_pending) {
		c->abort_pending = false;
		wake_up_all(&h->abort_sync_wait_queue);
	}
}

2020 2021 2022 2023 2024 2025 2026
static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
				      struct CommandList *c)
{
	hpsa_cmd_resolve_events(h, c);
	cmd_tagged_free(h, c);
}

2027 2028 2029
static void hpsa_cmd_free_and_done(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd)
{
2030
	hpsa_cmd_resolve_and_free(h, c);
2031 2032 2033 2034 2035 2036 2037 2038 2039
	cmd->scsi_done(cmd);
}

static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
{
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
{
	cmd->result = DID_ABORT << 16;
}

static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
				    struct scsi_cmnd *cmd)
{
	hpsa_set_scsi_cmd_aborted(cmd);
	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
			 c->Request.CDB, c->err_info->ScsiStatus);
2051
	hpsa_cmd_resolve_and_free(h, c);
2052 2053
}

2054 2055 2056 2057 2058 2059 2060 2061
static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
2062 2063
			c2->error_data.status == 0))
		return hpsa_cmd_free_and_done(h, c, cmd);
2064

2065 2066 2067 2068
	/* don't requeue a command which is being aborted */
	if (unlikely(c->abort_pending))
		return hpsa_cmd_abort_and_free(h, c, cmd);

2069 2070
	/*
	 * Any RAID offload error results in retry which will use
2071 2072 2073 2074 2075 2076
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
2077 2078 2079
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
2080 2081

		return hpsa_retry_cmd(h, c);
2082
	}
2083 2084

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2085
		return hpsa_retry_cmd(h, c);
2086

2087
	return hpsa_cmd_free_and_done(h, c, cmd);
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

2118
static void complete_scsi_command(struct CommandList *cp)
2119 2120 2121 2122
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
2123
	struct hpsa_scsi_dev_t *dev;
2124
	struct io_accel2_cmd *c2;
2125

2126 2127 2128
	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
2129
	unsigned long sense_data_size;
2130 2131

	ei = cp->err_info;
2132
	cmd = cp->scsi_cmd;
2133
	h = cp->h;
2134
	dev = cmd->device->hostdata;
2135
	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2136 2137

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2138
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
2139
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2140
		hpsa_unmap_sg_chain_block(h, cp);
2141

2142 2143 2144 2145
	if ((cp->cmd_type == CMD_IOACCEL2) &&
		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);

2146 2147
	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2148

2149 2150 2151
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

2152 2153 2154 2155 2156 2157 2158 2159
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
2160
		return hpsa_cmd_free_and_done(h, cp, cmd);
2161 2162
	}

2163 2164 2165
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

2166
	scsi_set_resid(cmd, ei->ResidualCnt);
2167 2168
	if (ei->CommandStatus == 0)
		return hpsa_cmd_free_and_done(h, cp, cmd);
2169

2170 2171 2172 2173 2174
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
2175 2176 2177 2178
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2179
		cp->Header.tag = c->tag;
2180 2181
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2182 2183 2184 2185 2186 2187 2188 2189

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
2190 2191
			if (!cp->abort_pending)
				return hpsa_retry_cmd(h, cp);
2192
		}
2193 2194
	}

2195 2196 2197
	if (cp->abort_pending)
		ei->CommandStatus = CMD_ABORTED;

2198 2199 2200 2201
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
2214
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2215
			if (sense_key == ABORTED_COMMAND) {
2216
				cmd->result |= DID_SOFT_ERROR << 16;
2217 2218
				break;
			}
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2254 2255
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2270
		cmd->result = DID_ERROR << 16;
2271 2272
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2273 2274 2275
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2276 2277
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2278 2279 2280
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2281 2282
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2283 2284
		break;
	case CMD_ABORTED:
2285 2286
		/* Return now to avoid calling scsi_done(). */
		return hpsa_cmd_abort_and_free(h, cp, cmd);
2287 2288
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2289 2290
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2291 2292
		break;
	case CMD_UNSOLICITED_ABORT:
2293
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2294 2295
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2296 2297 2298
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2299 2300
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2301
		break;
2302 2303 2304 2305
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2306 2307 2308 2309
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
2310 2311 2312 2313 2314 2315 2316 2317
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2318 2319 2320 2321 2322
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
2323 2324

	return hpsa_cmd_free_and_done(h, cp, cmd);
2325 2326 2327 2328 2329 2330 2331
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2332 2333 2334 2335
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2336 2337
}

2338
static int hpsa_map_one(struct pci_dev *pdev,
2339 2340 2341 2342 2343
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2344
	u64 addr64;
2345 2346 2347

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2348
		cp->Header.SGTotal = cpu_to_le16(0);
2349
		return 0;
2350 2351
	}

2352
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2353
	if (dma_mapping_error(&pdev->dev, addr64)) {
2354
		/* Prevent subsequent unmap of something never mapped */
2355
		cp->Header.SGList = 0;
2356
		cp->Header.SGTotal = cpu_to_le16(0);
2357
		return -1;
2358
	}
2359 2360 2361 2362 2363
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2364
	return 0;
2365 2366
}

2367 2368 2369 2370
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2371 2372 2373 2374
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2411
#define MAX_DRIVER_CMD_RETRIES 25
2412 2413
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2414
{
2415
	int backoff_time = 10, retry_count = 0;
2416
	int rc;
2417 2418

	do {
2419
		memset(c->err_info, 0, sizeof(*c->err_info));
2420 2421 2422 2423
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2424
		retry_count++;
2425 2426 2427 2428 2429
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2430
	} while ((check_for_unit_attention(h, c) ||
2431 2432
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2433
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2434 2435 2436
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2437 2438
}

2439 2440
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2441
{
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2459
	struct device *d = &cp->h->pdev->dev;
2460 2461
	u8 sense_key, asc, ascq;
	int sense_len;
2462 2463 2464

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2465 2466 2467 2468 2469 2470
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
2471 2472
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2473 2474
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
2475
		else
2476
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2477 2478 2479 2480 2481 2482 2483 2484 2485
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2486
		hpsa_print_cmd(h, "overrun condition", cp);
2487 2488 2489 2490 2491
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2492 2493
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2494 2495 2496
		}
		break;
	case CMD_PROTOCOL_ERR:
2497
		hpsa_print_cmd(h, "protocol error", cp);
2498 2499
		break;
	case CMD_HARDWARE_ERR:
2500
		hpsa_print_cmd(h, "hardware error", cp);
2501 2502
		break;
	case CMD_CONNECTION_LOST:
2503
		hpsa_print_cmd(h, "connection lost", cp);
2504 2505
		break;
	case CMD_ABORTED:
2506
		hpsa_print_cmd(h, "aborted", cp);
2507 2508
		break;
	case CMD_ABORT_FAILED:
2509
		hpsa_print_cmd(h, "abort failed", cp);
2510 2511
		break;
	case CMD_UNSOLICITED_ABORT:
2512
		hpsa_print_cmd(h, "unsolicited abort", cp);
2513 2514
		break;
	case CMD_TIMEOUT:
2515
		hpsa_print_cmd(h, "timed out", cp);
2516
		break;
2517
	case CMD_UNABORTABLE:
2518
		hpsa_print_cmd(h, "unabortable", cp);
2519
		break;
2520 2521 2522
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2523
	default:
2524 2525
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2526 2527 2528 2529 2530
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2531
			u16 page, unsigned char *buf,
2532 2533 2534 2535 2536 2537
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2538
	c = cmd_alloc(h);
2539

2540 2541 2542 2543 2544
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2545 2546 2547 2548
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2549 2550
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2551
		hpsa_scsi_interpret_error(h, c);
2552 2553
		rc = -1;
	}
2554
out:
2555
	cmd_free(h, c);
2556 2557 2558
	return rc;
}

2559 2560 2561 2562 2563 2564 2565 2566
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2567
	c = cmd_alloc(h);
2568 2569 2570 2571 2572
	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2573 2574 2575 2576
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2577 2578 2579 2580 2581 2582
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2583
	cmd_free(h, c);
2584
	return rc;
2585
}
2586

2587
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2588
	u8 reset_type, int reply_queue)
2589 2590 2591 2592 2593
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2594
	c = cmd_alloc(h);
2595 2596


2597
	/* fill_cmd can't fail here, no data buffer to map. */
2598 2599 2600
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2601 2602 2603 2604 2605
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2606 2607 2608 2609
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2610
		hpsa_scsi_interpret_error(h, c);
2611 2612
		rc = -1;
	}
2613
out:
2614
	cmd_free(h, c);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2628
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2629 2630 2631 2632 2633 2634 2635 2636
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2649 2650 2651 2652
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2677
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2678
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2679 2680 2681
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2682 2683
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2722
	c = cmd_alloc(h);
2723

2724 2725 2726
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
2727 2728 2729
		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
		cmd_free(h, c);
		return -1;
2730
	}
2731 2732 2733 2734
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2735 2736
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2737
		hpsa_scsi_interpret_error(h, c);
2738 2739
		rc = -1;
		goto out;
2740
	}
2741
	cmd_free(h, c);
2742 2743 2744 2745 2746 2747 2748 2749 2750

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2751 2752 2753
out:
	cmd_free(h, c);
	return rc;
2754 2755
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2773 2774
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2828 2829 2830 2831 2832 2833 2834 2835 2836
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2837
	this_device->offload_to_be_enabled = 0;
2838 2839 2840 2841

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2842 2843
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2844
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2845
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2861
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2862 2863 2864 2865 2866
out:
	kfree(buf);
	return;
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2878
		return -ENOMEM;
2879
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2880 2881 2882 2883 2884 2885 2886
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2887
		void *buf, int bufsize,
2888 2889 2890 2891 2892 2893 2894
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2895
	c = cmd_alloc(h);
2896

2897 2898
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2899 2900 2901 2902 2903
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2904 2905
	if (extended_response)
		c->Request.CDB[1] = extended_response;
2906 2907 2908 2909
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2910 2911 2912
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2913
		hpsa_scsi_interpret_error(h, c);
2914
		rc = -1;
2915
	} else {
2916 2917 2918
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2919 2920 2921
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2922
				rld->extended_response_flag);
2923 2924
			rc = -1;
		}
2925
	}
2926
out:
2927
	cmd_free(h, c);
2928 2929 2930 2931
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2932
		struct ReportExtendedLUNdata *buf, int bufsize)
2933
{
2934 2935
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2966
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2967 2968 2969 2970 2971
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2972
	if (rc != 0)
2973 2974 2975 2976 2977 2978
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2979
	if (rc != 0)
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2993
 *  0xff (offline for unknown reasons)
2994 2995 2996
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2997
static int hpsa_volume_offline(struct ctlr_info *h,
2998 2999 3000
					unsigned char scsi3addr[])
{
	struct CommandList *c;
3001 3002 3003
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
3004
	int rc, ldstat = 0;
3005 3006 3007 3008 3009 3010 3011
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
3012

3013
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3014 3015 3016 3017 3018
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
3019
	sense = c->err_info->SenseInfo;
3020 3021 3022 3023 3024
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
3086

S
Stephen Cameron 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
3099 3100 3101
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
S
Stephen Cameron 已提交
3102 3103 3104 3105 3106 3107 3108 3109
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

3110
static int hpsa_update_device_info(struct ctlr_info *h,
3111 3112
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
3113
{
3114 3115 3116 3117 3118 3119

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

3120
	unsigned char *inq_buff;
3121
	unsigned char *obdr_sig;
3122

3123
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
3148
		is_logical_dev_addr_mode(scsi3addr)) {
3149 3150
		int volume_offline;

3151
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3152 3153
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3154 3155 3156 3157
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
3158
	} else {
3159
		this_device->raid_level = RAID_UNKNOWN;
3160 3161
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
3162
		this_device->offload_to_be_enabled = 0;
3163
		this_device->hba_ioaccel_enabled = 0;
3164
		this_device->volume_offline = 0;
3165
		this_device->queue_depth = h->nr_cmds;
3166
	}
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
3177 3178 3179 3180 3181 3182 3183 3184
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

3210
static unsigned char *ext_target_model[] = {
3211 3212 3213 3214
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
3215
	"P2000 G3 SAS",
3216
	"MSA 2040 SAS",
3217 3218 3219
	NULL,
};

3220
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3221 3222 3223
{
	int i;

3224 3225 3226
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
3227 3228 3229 3230 3231
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
3232
 * Puts non-external target logical volumes on bus 0, external target logical
3233 3234 3235 3236 3237 3238
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
3239
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3240
{
3241 3242 3243 3244
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
3245
		if (is_hba_lunid(lunaddrbytes))
3246
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3247
		else
3248 3249 3250 3251 3252
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3253 3254
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3255 3256 3257 3258 3259 3260
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3261
	}
3262
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3263 3264 3265 3266
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3267
 * For the external targets (arrays), we have to manually detect the enclosure
3268 3269 3270 3271 3272 3273 3274 3275
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3276
static int add_ext_target_dev(struct ctlr_info *h,
3277
	struct hpsa_scsi_dev_t *tmpdevice,
3278
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3279
	unsigned long lunzerobits[], int *n_ext_target_devs)
3280 3281 3282
{
	unsigned char scsi3addr[8];

3283
	if (test_bit(tmpdevice->target, lunzerobits))
3284 3285 3286 3287 3288
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3289 3290
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3291

3292
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3293 3294
		return 0;

3295
	memset(scsi3addr, 0, 8);
3296
	scsi3addr[3] = tmpdevice->target;
3297 3298 3299
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3300 3301 3302
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3303
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3304 3305
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3306 3307 3308 3309
			"configuration.");
		return 0;
	}

3310
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3311
		return 0;
3312
	(*n_ext_target_devs)++;
3313 3314
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3315
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3316
	set_bit(tmpdevice->target, lunzerobits);
3317 3318 3319
	return 1;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3331 3332 3333
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3334 3335
	int i;

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3346
}
3347

3348 3349 3350 3351 3352 3353 3354
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3355
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3356
	struct ReportLUNdata *logdev, u32 *nlogicals)
3357
{
3358
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3359 3360 3361
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3362
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3363
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3364 3365
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3366 3367
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3368
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3369 3370 3371
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3372
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3391 3392
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3393
	struct ReportExtendedLUNdata *physdev_list,
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3408 3409
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3410 3411 3412 3413 3414 3415 3416 3417

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3418 3419 3420
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3421
	int hba_mode_enabled;
3422 3423 3424 3425 3426
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3427
		return -ENOMEM;
3428 3429
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3430
	if (rc) {
3431
		kfree(ctlr_params);
3432
		return rc;
3433
	}
3434 3435 3436 3437 3438

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3439 3440
}

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
3452 3453
	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
		dev->hba_ioaccel_enabled = 1;
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3482
	struct ReportExtendedLUNdata *physdev_list = NULL;
3483
	struct ReportLUNdata *logdev_list = NULL;
3484
	struct bmic_identify_physical_device *id_phys = NULL;
3485 3486 3487
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3488 3489
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3490
	int i, n_ext_target_devs, ndevs_to_allocate;
3491
	int raid_ctlr_position;
3492
	int rescan_hba_mode;
3493
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3494

3495
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3496 3497
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3498
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3499
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3500

3501 3502
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3503 3504 3505 3506 3507
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3508
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3509 3510
	if (rescan_hba_mode < 0)
		goto out;
3511 3512 3513 3514 3515 3516 3517 3518

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3519 3520
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3521 3522
		goto out;

3523 3524 3525
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3526
	 */
3527
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3528 3529 3530

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3531 3532 3533 3534 3535 3536 3537
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3538 3539 3540 3541 3542 3543 3544 3545 3546
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3547
	if (is_scsi_rev_5(h))
3548 3549 3550 3551
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3552
	/* adjust our table of devices */
3553
	n_ext_target_devs = 0;
3554
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3555
		u8 *lunaddrbytes, is_OBDR = 0;
3556 3557

		/* Figure out where the LUN ID info is coming from */
3558 3559
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3560 3561 3562 3563 3564 3565

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3566 3567

		/* Get device type, vendor, model, device id */
3568 3569
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3570
			continue; /* skip it if we can't talk to it. */
3571
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3572
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3573 3574 3575
		this_device = currentsd[ncurrent];

		/*
3576
		 * For external target devices, we have to insert a LUN 0 which
3577 3578 3579 3580 3581
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3582
		if (add_ext_target_dev(h, tmpdevice, this_device,
3583
				lunaddrbytes, lunzerobits,
3584
				&n_ext_target_devs)) {
3585 3586 3587 3588 3589 3590
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3603
		switch (this_device->devtype) {
3604
		case TYPE_ROM:
3605 3606 3607 3608 3609 3610 3611
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3612 3613
			if (is_OBDR)
				ncurrent++;
3614 3615
			break;
		case TYPE_DISK:
3616
			if (i >= nphysicals) {
3617 3618
				ncurrent++;
				break;
3619
			}
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

			if (h->hba_mode_enabled)
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
			else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2))
				break;

			hpsa_get_ioaccel_drive_info(h, this_device,
						lunaddrbytes, id_phys);
			atomic_set(&this_device->ioaccel_cmds_out, 0);
			ncurrent++;
3632 3633 3634 3635 3636
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3637 3638 3639 3640
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3654
		if (ncurrent >= HPSA_MAX_DEVICES)
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3665
	kfree(id_phys);
3666 3667
}

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3679 3680
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3681 3682 3683
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3684
static int hpsa_scatter_gather(struct ctlr_info *h,
3685 3686 3687 3688
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3689
	int use_sg, i, sg_limit, chained, last_sg;
3690
	struct SGDescriptor *curr_sg;
3691

3692
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3693 3694 3695 3696 3697 3698 3699 3700

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3701 3702 3703 3704 3705 3706 3707
	/*
	 * If the number of entries is greater than the max for a single list,
	 * then we have a chained list; we will set up all but one entry in the
	 * first list (the last entry is saved for link information);
	 * otherwise, we don't have a chained list and we'll set up at each of
	 * the entries in the one list.
	 */
3708
	curr_sg = cp->SG;
3709 3710 3711 3712
	chained = use_sg > h->max_cmd_sg_entries;
	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
	last_sg = scsi_sg_count(cmd) - 1;
	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3713
		hpsa_set_sg_descriptor(curr_sg, sg);
3714 3715
		curr_sg++;
	}
3716

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	if (chained) {
		/*
		 * Continue with the chained list.  Set curr_sg to the chained
		 * list.  Modify the limit to the total count less the entries
		 * we've already set up.  Resume the scan at the list entry
		 * where the previous loop left off.
		 */
		curr_sg = h->cmd_sg_list[cp->cmdindex];
		sg_limit = use_sg - sg_limit;
		for_each_sg(sg, sg, sg_limit, i) {
			hpsa_set_sg_descriptor(curr_sg, sg);
			curr_sg++;
		}
	}

3732
	/* Back the pointer up to the last entry and mark it as "last". */
3733
	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3734 3735 3736 3737 3738 3739

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3740
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3741 3742 3743 3744
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3745
		return 0;
3746 3747 3748 3749
	}

sglist_finished:

3750
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3751
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3752 3753 3754
	return 0;
}

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3803
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3804
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3805
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3817
	/* TODO: implement chaining support */
3818 3819
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3820
		return IO_ACCEL_INELIGIBLE;
3821
	}
3822

3823 3824
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3825 3826
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3827
		return IO_ACCEL_INELIGIBLE;
3828
	}
3829

3830 3831 3832 3833 3834 3835 3836 3837
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3838 3839
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3840
		return use_sg;
3841
	}
3842 3843 3844 3845 3846 3847 3848

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3849 3850 3851
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3852 3853
			curr_sg++;
		}
3854
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3876
	c->Header.SGList = use_sg;
3877
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3878 3879 3880 3881 3882
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3883 3884
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3885
	/* Tag was already set at init time. */
3886
	enqueue_cmd_and_start_io(h, c);
3887 3888
	return 0;
}
3889

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3900 3901
	c->phys_disk = dev;

3902
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3903
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3904 3905
}

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3918
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3934
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3935 3936 3937 3938 3939 3940
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3941
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3942 3943 3944
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3945
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3946 3947 3948
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3949 3950
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3951 3952 3953
		BUG();
		break;
	}
D
Don Brace 已提交
3954 3955 3956 3957 3958 3959 3960

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3961 3962
}

3963 3964
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3965
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3976
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3977

3978 3979
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3980
		return IO_ACCEL_INELIGIBLE;
3981 3982
	}

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3993 3994
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3995
		return use_sg;
3996
	}
3997 3998 3999

	if (use_sg) {
		curr_sg = cp->sg;
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
		if (use_sg > h->ioaccel_maxsg) {
			addr64 = le64_to_cpu(
				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = 0;
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0x80;

			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
		}
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
4027 4028
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4029 4030
			break;
		case DMA_FROM_DEVICE:
4031 4032
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
4033 4034
			break;
		case DMA_NONE:
4035 4036
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
4037 4038 4039 4040 4041 4042 4043 4044
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
4045 4046
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
4047
	}
4048 4049 4050 4051

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
4052
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4053
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4054 4055 4056 4057 4058
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
4059
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4060

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/* fill in sg elements */
	if (use_sg > h->ioaccel_maxsg) {
		cp->sg_count = 1;
		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
			atomic_dec(&phys_disk->ioaccel_cmds_out);
			scsi_dma_unmap(cmd);
			return -1;
		}
	} else
		cp->sg_count = (u8) use_sg;

4072 4073 4074 4075 4076 4077 4078 4079 4080
	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4081
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4082
{
4083 4084 4085 4086 4087 4088
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
4089 4090
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4091 4092
						cdb, cdb_len, scsi3addr,
						phys_disk);
4093 4094
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4095 4096
						cdb, cdb_len, scsi3addr,
						phys_disk);
4097 4098
}

4099 4100 4101 4102 4103
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
4104
		*map_index %= le16_to_cpu(map->data_disks_per_row);
4105 4106 4107 4108
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
4109 4110
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
4111 4112
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
4113
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4114
			/* select map index from next group */
D
Don Brace 已提交
4115
			*map_index += le16_to_cpu(map->data_disks_per_row);
4116 4117 4118
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
4119
			*map_index %= le16_to_cpu(map->data_disks_per_row);
4120 4121 4122 4123 4124
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
4143 4144 4145 4146 4147 4148 4149 4150
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
4151 4152 4153 4154 4155 4156
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
4157
	u16 strip_size;
4158 4159 4160
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
4161
	int offload_to_mirror;
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
4172 4173
		if (block_cnt == 0)
			block_cnt = 256;
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
4229 4230
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
4231 4232 4233
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
4234 4235 4236
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
4247
	(void) do_div(tmpdiv, strip_size);
4248 4249
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
4250
	(void) do_div(tmpdiv, strip_size);
4251 4252 4253 4254 4255 4256
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
4257 4258
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
4259 4260 4261 4262 4263 4264 4265
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
4266 4267
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
4268
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4269
				le16_to_cpu(map->row_cnt);
4270 4271 4272 4273 4274 4275 4276 4277 4278
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4279
		 */
D
Don Brace 已提交
4280
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4281
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4282
			map_index += le16_to_cpu(map->data_disks_per_row);
4283
		dev->offload_to_mirror = !dev->offload_to_mirror;
4284 4285 4286 4287 4288
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4289
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4290 4291 4292 4293 4294 4295

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4296 4297
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4298 4299 4300 4301 4302 4303 4304 4305 4306
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4307
		if (le16_to_cpu(map->layout_map_count) <= 1)
4308 4309 4310 4311
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4312 4313
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4314
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4315 4316
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4332
		if (first_group != last_group)
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4379
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4380
		r5or6_last_column =
D
Don Brace 已提交
4381
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4382 4383 4384 4385 4386 4387
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4388
			le16_to_cpu(map->row_cnt);
4389 4390

		map_index = (first_group *
D
Don Brace 已提交
4391
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4392 4393 4394 4395
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4396
	}
4397

4398 4399 4400
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4401 4402
	c->phys_disk = dev->phys_disk[map_index];

4403
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4404 4405 4406 4407
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4450 4451
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4452 4453
}

4454 4455 4456 4457 4458
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4459 4460 4461
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4462 4463 4464 4465 4466 4467
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4468
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4469 4470 4471 4472 4473 4474 4475 4476 4477

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4478 4479
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4480 4481
		break;
	case DMA_FROM_DEVICE:
4482 4483
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4484 4485
		break;
	case DMA_NONE:
4486 4487
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4488 4489 4490 4491 4492 4493 4494
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4495 4496
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4514
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4515
		hpsa_cmd_resolve_and_free(h, c);
4516 4517 4518 4519 4520 4521 4522
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
static void hpsa_cmd_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle, err_dma_handle;

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
	c->err_info = h->errinfo_pool + index;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + index * sizeof(*c->err_info);
	c->cmdindex = index;
	c->busaddr = (u32) cmd_dma_handle;
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
	c->h = h;
4541
	c->scsi_cmd = SCSI_CMD_IDLE;
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
}

static void hpsa_preinitialize_commands(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;

		hpsa_cmd_init(h, i, c);
		atomic_set(&c->refcount, 0);
	}
}

static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);

4561 4562
	BUG_ON(c->cmdindex != index);

4563 4564 4565 4566 4567
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	memset(c->err_info, 0, sizeof(*c->err_info));
	c->busaddr = (u32) cmd_dma_handle;
}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
static int hpsa_ioaccel_submit(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		unsigned char *scsi3addr)
{
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	int rc = IO_ACCEL_INELIGIBLE;

	cmd->host_scribble = (unsigned char *) c;

	if (dev->offload_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_raid_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
4584
	} else if (dev->hba_ioaccel_enabled) {
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_direct_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	}
	return rc;
}

4595 4596 4597 4598
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
4599
	struct CommandList *c = container_of(work, struct CommandList, work);
4600 4601 4602 4603 4604

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
4605
		return hpsa_cmd_free_and_done(c->h, c, cmd);
4606
	}
4607 4608
	if (c->abort_pending)
		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	if (c->cmd_type == CMD_IOACCEL2) {
		struct ctlr_info *h = c->h;
		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
		int rc;

		if (c2->error_data.serv_response ==
				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
			if (rc == 0)
				return;
			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
				/*
				 * If we get here, it means dma mapping failed.
				 * Try again via scsi mid layer, which will
				 * then get SCSI_MLQUEUE_HOST_BUSY.
				 */
				cmd->result = DID_IMM_RETRY << 16;
4626
				return hpsa_cmd_free_and_done(h, c, cmd);
4627 4628 4629 4630
			}
			/* else, fall thru and resubmit down CISS path */
		}
	}
4631
	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4632 4633 4634 4635 4636
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
4637 4638 4639
		 *
		 * hpsa_ciss_submit will have already freed c
		 * if it encountered a dma mapping failure.
4640 4641 4642 4643 4644 4645
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
4657 4658 4659

	BUG_ON(cmd->request->tag < 0);

4660 4661 4662 4663 4664 4665 4666
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}

4667
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4668

4669
	if (unlikely(lockup_detected(h))) {
4670
		cmd->result = DID_NO_CONNECT << 16;
4671 4672 4673
		cmd->scsi_done(cmd);
		return 0;
	}
4674
	c = cmd_tagged_alloc(h, cmd);
4675

4676 4677
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4678 4679 4680 4681 4682
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
4683 4684 4685 4686
		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
		if (rc == 0)
			return 0;
		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4687
			hpsa_cmd_resolve_and_free(h, c);
4688
			return SCSI_MLQUEUE_HOST_BUSY;
4689 4690 4691 4692 4693
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4694
static void hpsa_scan_complete(struct ctlr_info *h)
4695 4696 4697
{
	unsigned long flags;

4698 4699 4700 4701
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4702 4703
}

4704 4705 4706 4707 4708
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4709 4710 4711 4712 4713 4714 4715 4716
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4717

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4734 4735
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4736

4737 4738
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4739
	hpsa_scan_complete(h);
4740 4741
}

D
Don Brace 已提交
4742 4743
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4744 4745 4746 4747
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4748 4749 4750

	if (qdepth < 1)
		qdepth = 1;
4751 4752 4753 4754
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4755 4756
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4770
static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4771
{
4772 4773
	struct Scsi_Host *sh;
	int error;
4774

4775
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4776 4777 4778 4779
	if (sh == NULL) {
		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
		return -ENOMEM;
	}
4780 4781 4782 4783 4784 4785 4786 4787

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4788
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4789
	sh->cmd_per_lun = sh->can_queue;
4790 4791 4792 4793
	sh->sg_tablesize = h->maxsgentries;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
4794 4795 4796 4797 4798
	error = scsi_init_shared_tag_map(sh, sh->can_queue);
	if (error) {
		dev_err(&h->pdev->dev,
			"%s: scsi_init_shared_tag_map failed for controller %d\n",
			__func__, h->ctlr);
4799 4800
			scsi_host_put(sh);
			return error;
4801
	}
4802
	h->scsi_host = sh;
4803
	return 0;
4804
}
4805

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
static int hpsa_scsi_add_host(struct ctlr_info *h)
{
	int rv;

	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
	if (rv) {
		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
		return rv;
	}
	scsi_scan_host(h->scsi_host);
	return 0;
4817 4818
}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
/*
 * The block layer has already gone to the trouble of picking out a unique,
 * small-integer tag for this request.  We use an offset from that value as
 * an index to select our command block.  (The offset allows us to reserve the
 * low-numbered entries for our own uses.)
 */
static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
{
	int idx = scmd->request->tag;

	if (idx < 0)
		return idx;

	/* Offset to leave space for internal cmds. */
	return idx += HPSA_NRESERVED_CMDS;
}

4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
/*
 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 */
static int hpsa_send_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c, unsigned char lunaddr[],
				int reply_queue)
{
	int rc;

	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
	(void) fill_cmd(c, TEST_UNIT_READY, h,
			NULL, 0, 0, lunaddr, TYPE_CMD);
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc)
		return rc;
	/* no unmap needed here because no data xfer. */

	/* Check if the unit is already ready. */
	if (c->err_info->CommandStatus == CMD_SUCCESS)
		return 0;

	/*
	 * The first command sent after reset will receive "unit attention" to
	 * indicate that the LUN has been reset...this is actually what we're
	 * looking for (but, success is good too).
	 */
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
		return 0;

	return 1;
}

/*
 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 * returns zero when the unit is ready, and non-zero when giving up.
 */
static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c,
				unsigned char lunaddr[], int reply_queue)
4879
{
4880
	int rc;
4881 4882 4883 4884
	int count = 0;
	int waittime = 1; /* seconds */

	/* Send test unit ready until device ready, or give up. */
4885
	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
4886

4887 4888
		/*
		 * Wait for a bit.  do this first, because if we send
4889 4890 4891
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
4892 4893 4894 4895

		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
		if (!rc)
			break;
4896 4897 4898

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4899
			waittime *= 2;
4900

4901 4902 4903 4904
		dev_warn(&h->pdev->dev,
			 "waiting %d secs for device to become ready.\n",
			 waittime);
	}
4905

4906 4907
	return rc;
}
4908

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
static int wait_for_device_to_become_ready(struct ctlr_info *h,
					   unsigned char lunaddr[],
					   int reply_queue)
{
	int first_queue;
	int last_queue;
	int rq;
	int rc = 0;
	struct CommandList *c;

	c = cmd_alloc(h);

	/*
	 * If no specific reply queue was requested, then send the TUR
	 * repeatedly, requesting a reply on each reply queue; otherwise execute
	 * the loop exactly once using only the specified queue.
	 */
	if (reply_queue == DEFAULT_REPLY_QUEUE) {
		first_queue = 0;
		last_queue = h->nreply_queues - 1;
	} else {
		first_queue = reply_queue;
		last_queue = reply_queue;
	}

	for (rq = first_queue; rq <= last_queue; rq++) {
		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
		if (rc)
4937 4938 4939 4940 4941 4942 4943 4944
			break;
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4945
	cmd_free(h, c);
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
4957
	char msg[40];
4958 4959 4960 4961 4962

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4963 4964 4965 4966

	if (lockup_detected(h))
		return FAILED;

4967 4968 4969 4970 4971 4972
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4973 4974 4975

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
4976 4977 4978
		sprintf(msg, "cmd %d RESET FAILED, lockup detected",
				hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
4979 4980 4981 4982 4983
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
4984 4985 4986
		sprintf(msg, "cmd %d RESET FAILED, new lockup detected",
				hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
4987 4988 4989 4990 4991
		return FAILED;
	}

	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

4992
	/* send a reset to the SCSI LUN which the command was sent to */
4993 4994
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			     DEFAULT_REPLY_QUEUE);
4995
	if (rc == 0)
4996 4997
		return SUCCESS;

4998 4999 5000
	dev_warn(&h->pdev->dev,
		"scsi %d:%d:%d:%d reset failed\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
5001 5002 5003
	return FAILED;
}

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

5019
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
5020
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5021
{
D
Don Brace 已提交
5022
	u64 tag;
5023 5024 5025
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
5026 5027 5028
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
5029 5030 5031 5032 5033
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
5034 5035 5036
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
5037
		return;
5038
	}
D
Don Brace 已提交
5039 5040 5041
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
5042 5043
}

5044
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
5045
	struct CommandList *abort, int reply_queue)
5046 5047 5048 5049
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
5050
	__le32 tagupper, taglower;
5051

5052
	c = cmd_alloc(h);
5053

5054
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
5055
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5056
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
5057
	if (h->needs_abort_tags_swizzled)
5058
		swizzle_abort_tag(&c->Request.CDB[4]);
5059
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5060
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5061
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5062
		__func__, tagupper, taglower);
5063 5064 5065 5066 5067 5068
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
5069 5070 5071
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
5072 5073 5074 5075 5076
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5077
			__func__, tagupper, taglower);
5078
		hpsa_scsi_interpret_error(h, c);
5079 5080 5081
		rc = -1;
		break;
	}
5082
	cmd_free(h, c);
5083 5084
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
5085 5086 5087
	return rc;
}

5088 5089 5090 5091 5092 5093 5094
static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
	struct CommandList *command_to_abort, int reply_queue)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
	struct io_accel2_cmd *c2a =
		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5095
	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;

	/*
	 * We're overlaying struct hpsa_tmf_struct on top of something which
	 * was allocated as a struct io_accel2_cmd, so we better be sure it
	 * actually fits, and doesn't overrun the error info space.
	 */
	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
			sizeof(struct io_accel2_cmd));
	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
			offsetof(struct hpsa_tmf_struct, error_len) +
				sizeof(ac->error_len));

	c->cmd_type = IOACCEL2_TMF;
5110 5111
	c->scsi_cmd = SCSI_CMD_BUSY;

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(struct io_accel2_cmd));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
	ac->reply_queue = reply_queue;
	ac->tmf = IOACCEL2_TMF_ABORT;
	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
	memset(ac->lun_id, 0, sizeof(ac->lun_id));
	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
	ac->error_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
}

5130 5131 5132 5133 5134 5135 5136 5137
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5138
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5139 5140 5141 5142 5143 5144 5145 5146
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
5147
	scmd = abort->scsi_cmd;
5148 5149 5150 5151 5152 5153 5154
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

5155 5156
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
5157
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5158
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5159
			"Reset as abort",
5160 5161 5162
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
5176 5177 5178 5179 5180
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
5181
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5182 5183 5184 5185 5186 5187 5188 5189 5190
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
5191
	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
	struct CommandList *abort, int reply_queue)
{
	int rc = IO_OK;
	struct CommandList *c;
	__le32 taglower, tagupper;
	struct hpsa_scsi_dev_t *dev;
	struct io_accel2_cmd *c2;

	dev = abort->scsi_cmd->device->hostdata;
	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
		return -1;

	c = cmd_alloc(h);
	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
		__func__, tagupper, taglower);
	/* no unmap needed here because no data xfer. */

	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
		__func__, tagupper, taglower, c2->error_data.serv_response);
	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		rc = 0;
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
	case IOACCEL2_SERV_RESPONSE_FAILURE:
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		rc = -1;
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
			__func__, tagupper, taglower,
			c2->error_data.serv_response);
		rc = -1;
	}
	cmd_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		tagupper, taglower);
	return rc;
}

5257
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5258
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5259
{
5260 5261
	/*
	 * ioccelerator mode 2 commands should be aborted via the
5262
	 * accelerated path, since RAID path is unaware of these commands,
5263 5264
	 * but not all underlying firmware can handle abort TMF.
	 * Change abort to physical device reset when abort TMF is unsupported.
5265
	 */
5266 5267 5268 5269 5270 5271
	if (abort->cmd_type == CMD_IOACCEL2) {
		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
			return hpsa_send_abort_ioaccel2(h, abort,
						reply_queue);
		else
			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5272
							abort, reply_queue);
5273
	}
S
Stephen Cameron 已提交
5274
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5275
}
5276

5277 5278 5279 5280 5281 5282 5283
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
5284 5285
}

S
Stephen Cameron 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

5298 5299 5300 5301 5302 5303 5304
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

5305
	int rc;
5306 5307 5308 5309 5310 5311
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
5312
	__le32 tagupper, taglower;
5313 5314 5315 5316
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
5317

S
Stephen Cameron 已提交
5318 5319 5320
	if (sc->device == NULL)
		return FAILED;

5321 5322
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
5323
	if (h == NULL)
5324 5325
		return FAILED;

5326 5327 5328 5329 5330
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
5331
		return FAILED;
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
5347

5348 5349 5350 5351 5352 5353
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
5354
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5355
		h->scsi_host->host_no, sc->device->channel,
5356
		sc->device->id, sc->device->lun,
5357
		"Aborting command", sc);
5358 5359 5360 5361

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
5362 5363 5364 5365 5366 5367 5368
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
5369
	}
S
Stephen Cameron 已提交
5370 5371 5372 5373 5374 5375 5376 5377

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	/*
	 * Check that we're aborting the right command.
	 * It's possible the CommandList already completed and got re-used.
	 */
	if (abort->scsi_cmd != sc) {
		cmd_free(h, abort);
		return SUCCESS;
	}

	abort->abort_pending = true;
5388
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5389
	reply_queue = hpsa_extract_reply_queue(h, abort);
5390
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5391
	as  = abort->scsi_cmd;
5392
	if (as != NULL)
5393 5394 5395 5396 5397
		ml += sprintf(msg+ml,
			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
			as->cmd_len, as->cmnd[0], as->cmnd[1],
			as->serial_number);
	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5398
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5399

5400 5401 5402 5403 5404
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
5405 5406
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
5407 5408
			"%s FAILED, timeout waiting for an abort command to become available.\n",
			msg);
S
Stephen Cameron 已提交
5409 5410 5411
		cmd_free(h, abort);
		return FAILED;
	}
5412
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
5413 5414
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
5415
	if (rc != 0) {
5416
		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5417
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5418
				"FAILED to abort command");
5419
		cmd_free(h, abort);
5420 5421
		return FAILED;
	}
5422
	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5423 5424
	wait_event(h->abort_sync_wait_queue,
		   abort->scsi_cmd != sc || lockup_detected(h));
5425
	cmd_free(h, abort);
5426
	return !lockup_detected(h) ? SUCCESS : FAILED;
5427 5428
}

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
/*
 * For operations with an associated SCSI command, a command block is allocated
 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 * block request tag as an index into a table of entries.  cmd_tagged_free() is
 * the complement, although cmd_free() may be called instead.
 */
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd)
{
	int idx = hpsa_get_cmd_index(scmd);
	struct CommandList *c = h->cmd_pool + idx;

	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
		/* The index value comes from the block layer, so if it's out of
		 * bounds, it's probably not our bug.
		 */
		BUG();
	}

	atomic_inc(&c->refcount);
	if (unlikely(!hpsa_is_cmd_idle(c))) {
		/*
		 * We expect that the SCSI layer will hand us a unique tag
		 * value.  Thus, there should never be a collision here between
		 * two requests...because if the selected command isn't idle
		 * then someone is going to be very disappointed.
		 */
		dev_err(&h->pdev->dev,
			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
			idx);
		if (c->scsi_cmd != NULL)
			scsi_print_command(c->scsi_cmd);
		scsi_print_command(scmd);
	}

	hpsa_cmd_partial_init(h, idx, c);
	return c;
}

static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
{
	/*
	 * Release our reference to the block.  We don't need to do anything
	 * else to free it, because it is accessed by index.  (There's no point
	 * in checking the result of the decrement, since we cannot guarantee
	 * that there isn't a concurrent abort which is also accessing it.)
	 */
	(void)atomic_dec(&c->refcount);
}

5481 5482 5483 5484 5485
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
5486 5487
 * This function never gives up and returns NULL.  If it hangs,
 * another thread must call cmd_free() to free some tags.
5488
 */
5489

5490 5491 5492
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
5493
	int refcount, i;
5494
	int offset = 0;
5495

5496 5497
	/*
	 * There is some *extremely* small but non-zero chance that that
5498 5499 5500 5501 5502 5503 5504 5505
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
5506 5507 5508 5509 5510 5511 5512
	 *
	 * Note that we start allocating commands before the SCSI host structure
	 * is initialized.  Since the search starts at bit zero, this
	 * all works, since we have at least one command structure available;
	 * however, it means that the structures with the low indexes have to be
	 * reserved for driver-initiated requests, while requests from the block
	 * layer will use the higher indexes.
5513
	 */
5514

5515
	for (;;) {
5516 5517 5518 5519
		i = find_next_zero_bit(h->cmd_pool_bits,
					HPSA_NRESERVED_CMDS,
					offset);
		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5520 5521 5522 5523 5524 5525 5526
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
5527
			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5528 5529 5530 5531 5532 5533
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
5534
	hpsa_cmd_partial_init(h, i, c);
5535 5536 5537
	return c;
}

5538 5539 5540 5541 5542 5543
/*
 * This is the complementary operation to cmd_alloc().  Note, however, in some
 * corner cases it may also be used to free blocks allocated by
 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 * the clear-bit is harmless.
 */
5544 5545
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
5546 5547
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
5548

5549 5550 5551 5552
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
5553 5554 5555 5556
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
5557 5558
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
5559 5560 5561 5562 5563 5564 5565 5566
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5567
	memset(&arg64, 0, sizeof(arg64));
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5583
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5594
	int cmd, void __user *arg)
5595 5596 5597 5598 5599 5600 5601 5602 5603
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5604
	memset(&arg64, 0, sizeof(arg64));
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5621
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5622 5623 5624 5625 5626 5627 5628 5629
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5630

D
Don Brace 已提交
5631
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5705
	u64 temp64;
5706
	int rc = 0;
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
5721
			return -ENOMEM;
5722
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5723 5724 5725
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5726 5727
				rc = -EFAULT;
				goto out_kfree;
5728 5729 5730
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5731
		}
5732
	}
5733
	c = cmd_alloc(h);
5734

5735 5736
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
5737
	c->scsi_cmd = SCSI_CMD_BUSY;
5738 5739 5740 5741
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5742
		c->Header.SGTotal = cpu_to_le16(1);
5743 5744
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5745
		c->Header.SGTotal = cpu_to_le16(0);
5746 5747 5748 5749 5750 5751 5752 5753 5754
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5755
		temp64 = pci_map_single(h->pdev, buff,
5756
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5757 5758 5759
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5760 5761 5762
			rc = -ENOMEM;
			goto out;
		}
5763 5764 5765
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5766
	}
5767
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5768 5769
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5770
	check_ioctl_unit_attention(h, c);
5771 5772 5773 5774
	if (rc) {
		rc = -EIO;
		goto out;
	}
5775 5776 5777 5778 5779

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5780 5781
		rc = -EFAULT;
		goto out;
5782
	}
5783
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5784
		iocommand.buf_size > 0) {
5785 5786
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5787 5788
			rc = -EFAULT;
			goto out;
5789 5790
		}
	}
5791
out:
5792
	cmd_free(h, c);
5793 5794 5795
out_kfree:
	kfree(buff);
	return rc;
5796 5797 5798 5799 5800 5801 5802 5803
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5804
	u64 temp64;
5805 5806
	BYTE sg_used = 0;
	int status = 0;
5807 5808
	u32 left;
	u32 sz;
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5835
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5836 5837 5838
		status = -EINVAL;
		goto cleanup1;
	}
5839
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5840 5841 5842 5843
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5844
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5859
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5860
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5861
				status = -EFAULT;
5862 5863 5864 5865 5866 5867 5868 5869
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5870
	c = cmd_alloc(h);
5871

5872
	c->cmd_type = CMD_IOCTL_PEND;
5873
	c->scsi_cmd = SCSI_CMD_BUSY;
5874
	c->Header.ReplyQueue = 0;
5875 5876
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5877 5878 5879 5880 5881
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5882
			temp64 = pci_map_single(h->pdev, buff[i],
5883
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5884 5885 5886 5887
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5888 5889 5890
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5891
				goto cleanup0;
5892
			}
5893 5894 5895
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5896
		}
5897
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5898
	}
5899
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5900 5901
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5902
	check_ioctl_unit_attention(h, c);
5903 5904 5905 5906 5907
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

5908 5909 5910 5911
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5912
		goto cleanup0;
5913
	}
5914
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5915 5916
		int i;

5917 5918 5919 5920 5921
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5922
				goto cleanup0;
5923 5924 5925 5926 5927
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5928
cleanup0:
5929
	cmd_free(h, c);
5930 5931
cleanup1:
	if (buff) {
D
Don Brace 已提交
5932 5933
		int i;

5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5950

5951 5952 5953
/*
 * ioctl
 */
D
Don Brace 已提交
5954
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5955 5956 5957
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5958
	int rc;
5959 5960 5961 5962 5963 5964 5965

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5966
		hpsa_scan_start(h->scsi_host);
5967 5968 5969 5970 5971 5972
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5973
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5974 5975
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5976
		atomic_inc(&h->passthru_cmds_avail);
5977
		return rc;
5978
	case CCISS_BIG_PASSTHRU:
5979
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5980 5981
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5982
		atomic_inc(&h->passthru_cmds_avail);
5983
		return rc;
5984 5985 5986 5987 5988
	default:
		return -ENOTTY;
	}
}

5989
static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5990
				u8 reset_type)
5991 5992 5993 5994
{
	struct CommandList *c;

	c = cmd_alloc(h);
5995

5996 5997
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5998 5999 6000 6001 6002 6003 6004 6005
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
6006
	return;
6007 6008
}

6009
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6010
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6011 6012 6013
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
6014
	u64 tag; /* for commands to be aborted */
6015 6016

	c->cmd_type = CMD_IOCTL_PEND;
6017
	c->scsi_cmd = SCSI_CMD_BUSY;
6018 6019 6020
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
6021
		c->Header.SGTotal = cpu_to_le16(1);
6022 6023
	} else {
		c->Header.SGList = 0;
6024
		c->Header.SGTotal = cpu_to_le16(0);
6025 6026 6027 6028 6029 6030 6031
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
6032
			if (page_code & VPD_PAGE) {
6033
				c->Request.CDB[1] = 0x01;
6034
				c->Request.CDB[2] = (page_code & 0xff);
6035 6036
			}
			c->Request.CDBLen = 6;
6037 6038
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
6049 6050
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6051 6052 6053 6054 6055 6056 6057 6058 6059
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
6060 6061 6062
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6063 6064 6065
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6066 6067
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
6068 6069 6070
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
6071 6072
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6073 6074
			c->Request.Timeout = 0;
			break;
6075 6076
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
6077 6078
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6079 6080 6081 6082 6083 6084 6085 6086
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
6087 6088
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
6089 6090
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6091 6092 6093 6094 6095 6096
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
6107 6108 6109
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
6110
			return -1;
6111 6112 6113 6114 6115 6116
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
6117 6118
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6119
			c->Request.Timeout = 0; /* Don't time out */
6120 6121
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
6122
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6123 6124 6125 6126 6127 6128
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
6129 6130
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
6131
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
6132
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
6133 6134
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
6135
			c->Request.CDBLen = 16;
6136 6137 6138
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6139 6140 6141 6142 6143 6144
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
6145
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6146 6147 6148 6149
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

6161
	switch (GET_DIR(c->Request.type_attr_dir)) {
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
6174 6175 6176
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
6177 6178 6179 6180 6181 6182 6183 6184 6185
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
6186 6187
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
6188 6189 6190 6191

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

6192
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6193
{
6194
	return h->access.command_completed(h, q);
6195 6196
}

6197
static inline bool interrupt_pending(struct ctlr_info *h)
6198 6199 6200 6201 6202 6203
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
6204 6205
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
6206 6207
}

6208 6209
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
6210 6211 6212 6213 6214 6215 6216 6217
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

6218
static inline void finish_cmd(struct CommandList *c)
6219
{
6220
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6221 6222
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
6223
		complete_scsi_command(c);
6224
	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6225
		complete(c->waiting);
6226 6227
}

6228 6229

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6230
{
6231 6232
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
6233
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6234 6235
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
6236 6237
}

6238
/* process completion of an indexed ("direct lookup") command */
6239
static inline void process_indexed_cmd(struct ctlr_info *h,
6240 6241 6242 6243 6244
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

6245
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6246 6247 6248 6249
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
6250 6251
}

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

6271 6272 6273 6274 6275 6276
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
6277
{
6278 6279 6280 6281 6282 6283 6284
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
6285 6286 6287 6288 6289 6290 6291
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6292
	h->last_intr_timestamp = get_jiffies_64();
6293
	while (interrupt_pending(h)) {
6294
		raw_tag = get_next_completion(h, q);
6295
		while (raw_tag != FIFO_EMPTY)
6296
			raw_tag = next_command(h, q);
6297 6298 6299 6300
	}
	return IRQ_HANDLED;
}

6301
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6302
{
6303
	struct ctlr_info *h = queue_to_hba(queue);
6304
	u32 raw_tag;
6305
	u8 q = *(u8 *) queue;
6306 6307 6308 6309

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

6310
	h->last_intr_timestamp = get_jiffies_64();
6311
	raw_tag = get_next_completion(h, q);
6312
	while (raw_tag != FIFO_EMPTY)
6313
		raw_tag = next_command(h, q);
6314 6315 6316
	return IRQ_HANDLED;
}

6317
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6318
{
6319
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6320
	u32 raw_tag;
6321
	u8 q = *(u8 *) queue;
6322 6323 6324

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6325
	h->last_intr_timestamp = get_jiffies_64();
6326
	while (interrupt_pending(h)) {
6327
		raw_tag = get_next_completion(h, q);
6328
		while (raw_tag != FIFO_EMPTY) {
6329
			process_indexed_cmd(h, raw_tag);
6330
			raw_tag = next_command(h, q);
6331 6332 6333 6334 6335
		}
	}
	return IRQ_HANDLED;
}

6336
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6337
{
6338
	struct ctlr_info *h = queue_to_hba(queue);
6339
	u32 raw_tag;
6340
	u8 q = *(u8 *) queue;
6341

6342
	h->last_intr_timestamp = get_jiffies_64();
6343
	raw_tag = get_next_completion(h, q);
6344
	while (raw_tag != FIFO_EMPTY) {
6345
		process_indexed_cmd(h, raw_tag);
6346
		raw_tag = next_command(h, q);
6347 6348 6349 6350
	}
	return IRQ_HANDLED;
}

6351 6352 6353 6354
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
6355 6356
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
6367 6368
	__le32 paddr32;
	u32 tag;
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
6383
		return err;
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
6396
	paddr32 = cpu_to_le32(paddr64);
6397 6398 6399

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
6400
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
6401
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6402 6403 6404
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
6405 6406
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6407 6408 6409 6410
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6411
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
6412
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6413
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6414

D
Don Brace 已提交
6415
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6416 6417 6418

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
6419
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

6450
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
6451
	void __iomem *vaddr, u32 use_doorbell)
6452 6453 6454 6455 6456 6457 6458 6459
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6460
		writel(use_doorbell, vaddr + SA5_DOORBELL);
6461

6462
		/* PMC hardware guys tell us we need a 10 second delay after
6463 6464 6465 6466
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
6467
		msleep(10000);
6468 6469 6470 6471 6472 6473 6474 6475 6476
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
6477 6478 6479

		int rc = 0;

6480
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6481

6482
		/* enter the D3hot power management state */
6483 6484 6485
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
6486 6487 6488 6489

		msleep(500);

		/* enter the D0 power management state */
6490 6491 6492
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
6493 6494 6495 6496 6497 6498 6499

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
6500 6501 6502 6503
	}
	return 0;
}

6504
static void init_driver_version(char *driver_version, int len)
6505 6506
{
	memset(driver_version, 0, len);
6507
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6508 6509
}

6510
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

6526 6527
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
6528 6529 6530 6531 6532 6533 6534
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

6535
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
6555
/* This does a hard reset of the controller using PCI power management
6556
 * states or the using the doorbell register.
6557
 */
6558
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6559
{
6560 6561 6562 6563 6564
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6565
	u32 misc_fw_support;
6566
	int rc;
6567
	struct CfgTable __iomem *cfgtable;
6568
	u32 use_doorbell;
6569
	u16 command_register;
6570

6571 6572
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6573 6574 6575 6576 6577 6578
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6579 6580 6581
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6582
	 */
6583

6584 6585
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6586 6587
		return -ENODEV;
	}
6588 6589 6590 6591

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6592

6593 6594 6595
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6596

6597 6598 6599 6600 6601 6602 6603
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6604

6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6616 6617
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6618
		goto unmap_cfgtable;
6619

6620 6621 6622
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6623
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6624 6625 6626 6627 6628 6629
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6630 6631
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6632
			rc = -ENOTSUPP; /* try soft reset */
6633 6634 6635
			goto unmap_cfgtable;
		}
	}
6636

6637 6638 6639
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6640

6641 6642
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6643

6644 6645 6646 6647
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6648 6649 6650
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6651
			"Failed waiting for board to become ready after hard reset\n");
6652 6653 6654
		goto unmap_cfgtable;
	}

6655 6656 6657 6658
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6659 6660 6661
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6662
	} else {
6663
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6664 6665 6666 6667 6668 6669 6670 6671
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6672 6673 6674 6675 6676 6677 6678
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6679
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6680
{
6681
#ifdef HPSA_DEBUG
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6702
	dev_info(dev, "   Max outstanding commands = %d\n",
6703 6704 6705 6706 6707 6708 6709 6710 6711
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6712
}
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

6749 6750 6751 6752 6753
static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
{
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
R
Robert Elliott 已提交
6754
		h->msix_vector = 0;
6755 6756 6757
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
R
Robert Elliott 已提交
6758
		h->msi_vector = 0;
6759 6760 6761
	}
}

6762
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6763
 * controllers that are capable. If not, we use legacy INTx mode.
6764
 */
6765
static void hpsa_interrupt_mode(struct ctlr_info *h)
6766 6767
{
#ifdef CONFIG_PCI_MSI
6768 6769 6770 6771 6772 6773 6774
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6775 6776

	/* Some boards advertise MSI but don't really support it */
6777 6778
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6779
		goto default_int_mode;
6780
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6781
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6782
		h->msix_vector = MAX_REPLY_QUEUES;
6783 6784
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6785 6786 6787 6788 6789 6790 6791
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6792
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6793 6794
			       "available\n", err);
		}
6795 6796 6797 6798
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6799
	}
6800
single_msi_mode:
6801
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6802
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6803
		if (!pci_enable_msi(h->pdev))
6804 6805
			h->msi_vector = 1;
		else
6806
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6807 6808 6809 6810
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6811
	h->intr[h->intr_mode] = h->pdev->irq;
6812 6813
}

6814
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6828 6829 6830
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6831 6832 6833 6834 6835 6836 6837
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6838 6839
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6840 6841 6842 6843
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6844
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6845
			/* addressing mode bits already removed */
6846 6847
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6848 6849 6850
				*memory_bar);
			return 0;
		}
6851
	dev_warn(&pdev->dev, "no memory BAR found\n");
6852 6853 6854
	return -ENODEV;
}

6855 6856
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6857
{
6858
	int i, iterations;
6859
	u32 scratchpad;
6860 6861 6862 6863
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6864

6865 6866 6867 6868 6869 6870 6871 6872 6873
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6874 6875
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6876
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6877 6878 6879
	return -ENODEV;
}

6880 6881 6882
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

R
Robert Elliott 已提交
6895 6896
static void hpsa_free_cfgtables(struct ctlr_info *h)
{
R
Robert Elliott 已提交
6897
	if (h->transtable) {
R
Robert Elliott 已提交
6898
		iounmap(h->transtable);
R
Robert Elliott 已提交
6899 6900 6901
		h->transtable = NULL;
	}
	if (h->cfgtable) {
R
Robert Elliott 已提交
6902
		iounmap(h->cfgtable);
R
Robert Elliott 已提交
6903 6904
		h->cfgtable = NULL;
	}
R
Robert Elliott 已提交
6905 6906 6907 6908 6909
}

/* Find and map CISS config table and transfer table
+ * several items must be unmapped (freed) later
+ * */
6910
static int hpsa_find_cfgtables(struct ctlr_info *h)
6911
{
6912 6913 6914
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6915
	u32 trans_offset;
6916
	int rc;
6917

6918 6919 6920 6921
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6922
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6923
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6924 6925
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6926
		return -ENOMEM;
6927
	}
6928 6929 6930
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6931
	/* Find performant mode table. */
6932
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6933 6934 6935
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
R
Robert Elliott 已提交
6936 6937 6938
	if (!h->transtable) {
		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
		hpsa_free_cfgtables(h);
6939
		return -ENOMEM;
R
Robert Elliott 已提交
6940
	}
6941 6942 6943
	return 0;
}

6944
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6945
{
6946 6947 6948 6949
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6950 6951 6952 6953 6954

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6955 6956 6957 6958 6959 6960
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6961 6962 6963
	}
}

6964 6965 6966 6967 6968 6969 6970 6971 6972
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6973 6974 6975 6976
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6977
static void hpsa_find_board_params(struct ctlr_info *h)
6978
{
6979
	hpsa_get_max_perf_mode_cmds(h);
6980
	h->nr_cmds = h->max_commands;
6981
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6982
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6983 6984
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6985
		h->max_cmd_sg_entries = 32;
6986
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6987 6988
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6989 6990 6991 6992 6993 6994
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6995
		h->maxsgentries = 31; /* default to traditional values */
6996
		h->chainsize = 0;
6997
	}
6998 6999 7000

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7001 7002 7003 7004
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7005 7006
	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7007 7008
}

7009 7010
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
7011
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7012
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7013 7014 7015 7016 7017
		return false;
	}
	return true;
}

7018
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7019
{
7020
	u32 driver_support;
7021

7022
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
7023 7024
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
7025
	driver_support |= ENABLE_SCSI_PREFETCH;
7026
#endif
7027 7028
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
7029 7030
}

7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

7045
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7046 7047 7048 7049 7050
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7051
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7052 7053 7054 7055
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7056
			goto done;
7057
		/* delay and try again */
7058
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7059
	}
7060 7061 7062
	return -ENODEV;
done:
	return 0;
7063 7064
}

7065
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7066 7067
{
	int i;
7068 7069
	u32 doorbell_value;
	unsigned long flags;
7070 7071 7072 7073 7074

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
7075
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7076 7077
		if (h->remove_in_progress)
			goto done;
7078 7079 7080
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
7081
		if (!(doorbell_value & CFGTBL_ChangeReq))
7082
			goto done;
7083
		/* delay and try again */
7084
		msleep(MODE_CHANGE_WAIT_INTERVAL);
7085
	}
7086 7087 7088
	return -ENODEV;
done:
	return 0;
7089 7090
}

7091
/* return -ENODEV or other reason on error, 0 on success */
7092
static int hpsa_enter_simple_mode(struct ctlr_info *h)
7093 7094 7095 7096 7097 7098 7099 7100
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7101

7102 7103
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7104
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7105
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7106 7107
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
7108
	print_cfg_table(&h->pdev->dev, h->cfgtable);
7109 7110
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
7111
	h->transMethod = CFGTBL_Trans_Simple;
7112
	return 0;
7113
error:
7114
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7115
	return -ENODEV;
7116 7117
}

R
Robert Elliott 已提交
7118 7119 7120 7121 7122
/* free items allocated or mapped by hpsa_pci_init */
static void hpsa_free_pci_init(struct ctlr_info *h)
{
	hpsa_free_cfgtables(h);			/* pci_init 4 */
	iounmap(h->vaddr);			/* pci_init 3 */
R
Robert Elliott 已提交
7123
	h->vaddr = NULL;
R
Robert Elliott 已提交
7124
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7125 7126 7127 7128
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7129
	pci_disable_device(h->pdev);		/* pci_init 1 */
7130
	pci_release_regions(h->pdev);		/* pci_init 2 */
R
Robert Elliott 已提交
7131 7132 7133
}

/* several items must be freed later */
7134
static int hpsa_pci_init(struct ctlr_info *h)
7135
{
7136
	int prod_index, err;
7137

7138 7139
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
7140
		return prod_index;
7141 7142
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
7143

S
Stephen Cameron 已提交
7144 7145 7146
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
7147 7148 7149
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

7150
	err = pci_enable_device(h->pdev);
7151
	if (err) {
R
Robert Elliott 已提交
7152
		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7153
		pci_disable_device(h->pdev);
7154 7155 7156
		return err;
	}

7157
	err = pci_request_regions(h->pdev, HPSA);
7158
	if (err) {
7159
		dev_err(&h->pdev->dev,
R
Robert Elliott 已提交
7160
			"failed to obtain PCI resources\n");
7161 7162
		pci_disable_device(h->pdev);
		return err;
7163
	}
7164 7165 7166

	pci_set_master(h->pdev);

7167
	hpsa_interrupt_mode(h);
7168
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7169
	if (err)
R
Robert Elliott 已提交
7170
		goto clean2;	/* intmode+region, pci */
7171
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7172
	if (!h->vaddr) {
R
Robert Elliott 已提交
7173
		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7174
		err = -ENOMEM;
R
Robert Elliott 已提交
7175
		goto clean2;	/* intmode+region, pci */
7176
	}
7177
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7178
	if (err)
R
Robert Elliott 已提交
7179
		goto clean3;	/* vaddr, intmode+region, pci */
7180 7181
	err = hpsa_find_cfgtables(h);
	if (err)
R
Robert Elliott 已提交
7182
		goto clean3;	/* vaddr, intmode+region, pci */
7183
	hpsa_find_board_params(h);
7184

7185
	if (!hpsa_CISS_signature_present(h)) {
7186
		err = -ENODEV;
R
Robert Elliott 已提交
7187
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7188
	}
7189
	hpsa_set_driver_support_bits(h);
7190
	hpsa_p600_dma_prefetch_quirk(h);
7191 7192
	err = hpsa_enter_simple_mode(h);
	if (err)
R
Robert Elliott 已提交
7193
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7194 7195
	return 0;

R
Robert Elliott 已提交
7196 7197 7198 7199
clean4:	/* cfgtables, vaddr, intmode+region, pci */
	hpsa_free_cfgtables(h);
clean3:	/* vaddr, intmode+region, pci */
	iounmap(h->vaddr);
R
Robert Elliott 已提交
7200
	h->vaddr = NULL;
R
Robert Elliott 已提交
7201 7202
clean2:	/* intmode+region, pci */
	hpsa_disable_interrupt_mode(h);
7203 7204 7205 7206
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7207
	pci_disable_device(h->pdev);
7208
	pci_release_regions(h->pdev);
7209 7210 7211
	return err;
}

7212
static void hpsa_hba_inquiry(struct ctlr_info *h)
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

7228
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7229
{
7230
	int rc, i;
7231
	void __iomem *vaddr;
7232 7233 7234 7235

	if (!reset_devices)
		return 0;

7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
7252

7253
	pci_set_master(pdev);
7254

7255 7256 7257 7258 7259 7260 7261 7262
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

7263
	/* Reset the controller with a PCI power-cycle or via doorbell */
7264
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7265

7266 7267
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
7268 7269
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
7270
	 */
7271
	if (rc)
7272
		goto out_disable;
7273 7274

	/* Now try to get the controller to respond to a no-op */
7275
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7276 7277 7278 7279 7280 7281 7282
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
7283 7284 7285 7286 7287

out_disable:

	pci_disable_device(pdev);
	return rc;
7288 7289
}

7290 7291 7292
static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
R
Robert Elliott 已提交
7293 7294
	h->cmd_pool_bits = NULL;
	if (h->cmd_pool) {
7295 7296 7297 7298
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct CommandList),
				h->cmd_pool,
				h->cmd_pool_dhandle);
R
Robert Elliott 已提交
7299 7300 7301 7302
		h->cmd_pool = NULL;
		h->cmd_pool_dhandle = 0;
	}
	if (h->errinfo_pool) {
7303 7304 7305 7306
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct ErrorInfo),
				h->errinfo_pool,
				h->errinfo_pool_dhandle);
R
Robert Elliott 已提交
7307 7308 7309
		h->errinfo_pool = NULL;
		h->errinfo_pool_dhandle = 0;
	}
7310 7311
}

7312
static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7327
		goto clean_up;
7328
	}
7329
	hpsa_preinitialize_commands(h);
7330
	return 0;
7331 7332 7333
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
7334 7335
}

7336 7337
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
7338
	int i, cpu;
7339 7340 7341

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
7342
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7343 7344 7345 7346
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7357
		h->q[i] = 0;
7358 7359 7360 7361 7362 7363
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7364
		h->q[i] = 0;
7365
	}
7366 7367
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
7368 7369
}

7370 7371
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
7372 7373 7374
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
7375
	int rc, i;
7376

7377 7378 7379 7380 7381 7382 7383
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

7384
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7385
		/* If performant mode and MSI-X, use multiple reply queues */
7386
		for (i = 0; i < h->msix_vector; i++) {
7387
			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7388
			rc = request_irq(h->intr[i], msixhandler,
7389
					0, h->intrname[i],
7390
					&h->q[i]);
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
7406
		hpsa_irq_affinity_hints(h);
7407 7408
	} else {
		/* Use single reply pool */
7409
		if (h->msix_vector > 0 || h->msi_vector) {
7410 7411 7412 7413 7414 7415
			if (h->msix_vector)
				sprintf(h->intrname[h->intr_mode],
					"%s-msix", h->devname);
			else
				sprintf(h->intrname[h->intr_mode],
					"%s-msi", h->devname);
7416
			rc = request_irq(h->intr[h->intr_mode],
7417 7418
				msixhandler, 0,
				h->intrname[h->intr_mode],
7419 7420
				&h->q[h->intr_mode]);
		} else {
7421 7422
			sprintf(h->intrname[h->intr_mode],
				"%s-intx", h->devname);
7423
			rc = request_irq(h->intr[h->intr_mode],
7424 7425
				intxhandler, IRQF_SHARED,
				h->intrname[h->intr_mode],
7426 7427
				&h->q[h->intr_mode]);
		}
R
Robert Elliott 已提交
7428
		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7429
	}
7430
	if (rc) {
R
Robert Elliott 已提交
7431
		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7432
		       h->intr[h->intr_mode], h->devname);
R
Robert Elliott 已提交
7433
		hpsa_free_irqs(h);
7434 7435 7436 7437 7438
		return -ENODEV;
	}
	return 0;
}

7439
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7440
{
7441
	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

7459 7460 7461 7462 7463 7464 7465
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
7466 7467 7468 7469
		pci_free_consistent(h->pdev,
					h->reply_queue_size,
					h->reply_queue[i].head,
					h->reply_queue[i].busaddr);
7470 7471 7472
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
R
Robert Elliott 已提交
7473
	h->reply_queue_size = 0;
7474 7475
}

7476 7477
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
R
Robert Elliott 已提交
7478 7479 7480 7481
	hpsa_free_performant_mode(h);		/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
	hpsa_free_cmd_pool(h);			/* init_one 5 */
	hpsa_free_irqs(h);			/* init_one 4 */
7482 7483 7484
	scsi_host_put(h->scsi_host);		/* init_one 3 */
	h->scsi_host = NULL;			/* init_one 3 */
	hpsa_free_pci_init(h);			/* init_one 2_5 */
7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
	free_percpu(h->lockup_detected);	/* init_one 2 */
	h->lockup_detected = NULL;		/* init_one 2 */
	if (h->resubmit_wq) {
		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
		destroy_workqueue(h->rescan_ctlr_wq);
		h->rescan_ctlr_wq = NULL;
	}
R
Robert Elliott 已提交
7495
	kfree(h);				/* init_one 1 */
7496 7497
}

7498
/* Called when controller lockup detected. */
7499
static void fail_all_outstanding_cmds(struct ctlr_info *h)
7500
{
7501 7502
	int i, refcount;
	struct CommandList *c;
7503
	int failcount = 0;
7504

7505
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7506 7507
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
7508 7509
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
7510
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7511
			finish_cmd(c);
7512
			atomic_dec(&h->commands_outstanding);
7513
			failcount++;
7514 7515
		}
		cmd_free(h, c);
7516
	}
7517 7518
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
7519 7520
}

7521 7522
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
7523
	int cpu;
7524

7525
	for_each_online_cpu(cpu) {
7526 7527 7528 7529 7530 7531 7532
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

7533 7534 7535
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
7536
	u32 lockup_detected;
7537 7538 7539

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
7540 7541 7542 7543
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
7544 7545
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
7546 7547 7548
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
7549
	spin_unlock_irqrestore(&h->lock, flags);
7550 7551
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
7552
	pci_disable_device(h->pdev);
7553
	fail_all_outstanding_cmds(h);
7554 7555
}

7556
static int detect_controller_lockup(struct ctlr_info *h)
7557 7558 7559 7560 7561 7562 7563 7564
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
7565
				(h->heartbeat_sample_interval), now))
7566
		return false;
7567 7568 7569 7570 7571 7572 7573

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
7574
				(h->heartbeat_sample_interval), now))
7575
		return false;
7576 7577 7578 7579 7580 7581 7582

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
7583
		return true;
7584 7585 7586 7587 7588
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
7589
	return false;
7590 7591
}

7592
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7593 7594 7595 7596
{
	int i;
	char *event_type;

7597 7598 7599
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

7600
	/* Ask the controller to clear the events we're handling. */
7601 7602
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
7614
		hpsa_drain_accel_commands(h);
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7635
	return;
7636 7637 7638 7639
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7640 7641
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7642
 */
7643
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7644 7645
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7646
		return 0;
7647 7648

	h->events = readl(&(h->cfgtable->event_notify));
7649 7650
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7651

7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7666 7667 7668 7669
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7670
			return 1;
7671
		}
7672 7673 7674 7675
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7676 7677
}

7678
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7679 7680
{
	unsigned long flags;
7681
	struct ctlr_info *h = container_of(to_delayed_work(work),
7682 7683 7684 7685
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7686
		return;
7687 7688 7689 7690 7691 7692 7693

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7694
	spin_lock_irqsave(&h->lock, flags);
7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7709
		return;
7710 7711 7712 7713

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7714 7715
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7716 7717
}

7718 7719 7720 7721 7722
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7723
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7724 7725 7726 7727 7728 7729
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7730
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7731
{
7732
	int dac, rc;
7733
	struct ctlr_info *h;
7734 7735
	int try_soft_reset = 0;
	unsigned long flags;
7736
	u32 board_id;
7737 7738 7739 7740

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7741 7742 7743 7744 7745 7746 7747
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7761

7762 7763 7764 7765 7766
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7767
	h = kzalloc(sizeof(*h), GFP_KERNEL);
R
Robert Elliott 已提交
7768 7769
	if (!h) {
		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7770
		return -ENOMEM;
R
Robert Elliott 已提交
7771
	}
7772

7773
	h->pdev = pdev;
R
Robert Elliott 已提交
7774

7775
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7776
	INIT_LIST_HEAD(&h->offline_device_list);
7777
	spin_lock_init(&h->lock);
7778
	spin_lock_init(&h->offline_device_lock);
7779
	spin_lock_init(&h->scan_lock);
7780
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7781
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7782 7783 7784

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7785
	if (!h->lockup_detected) {
R
Robert Elliott 已提交
7786
		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7787
		rc = -ENOMEM;
7788
		goto clean1;	/* aer/h */
7789
	}
7790 7791
	set_lockup_detected_for_all_cpus(h, 0);

7792
	rc = hpsa_pci_init(h);
R
Robert Elliott 已提交
7793
	if (rc)
7794 7795 7796 7797 7798 7799 7800
		goto clean2;	/* lu, aer/h */

	/* relies on h-> settings made by hpsa_pci_init, including
	 * interrupt_mode h->intr */
	rc = hpsa_scsi_host_alloc(h);
	if (rc)
		goto clean2_5;	/* pci, lu, aer/h */
7801

7802
	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
7803 7804 7805 7806
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7807 7808
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7809
		dac = 1;
7810 7811 7812 7813 7814 7815
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
7816
			goto clean3;	/* shost, pci, lu, aer/h */
7817
		}
7818 7819 7820 7821
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7822

R
Robert Elliott 已提交
7823 7824
	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
	if (rc)
7825
		goto clean3;	/* shost, pci, lu, aer/h */
7826
	rc = hpsa_alloc_cmd_pool(h);
7827
	if (rc)
7828
		goto clean4;	/* irq, shost, pci, lu, aer/h */
R
Robert Elliott 已提交
7829 7830
	rc = hpsa_alloc_sg_chain_blocks(h);
	if (rc)
7831
		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
7832
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7833
	init_waitqueue_head(&h->abort_cmd_wait_queue);
7834
	init_waitqueue_head(&h->abort_sync_wait_queue);
7835
	h->scan_finished = 1; /* no scan currently in progress */
7836 7837

	pci_set_drvdata(pdev, h);
7838
	h->ndevices = 0;
7839
	h->hba_mode_enabled = 0;
7840

7841
	spin_lock_init(&h->devlock);
R
Robert Elliott 已提交
7842 7843
	rc = hpsa_put_ctlr_into_performant_mode(h);
	if (rc)
7844 7845 7846 7847 7848 7849
		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */

	/* hook into SCSI subsystem */
	rc = hpsa_scsi_add_host(h);
	if (rc)
		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862

	/* create the resubmit workqueue */
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean7;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean7;	/* aer/h */
	}
7863

R
Robert Elliott 已提交
7864 7865
	/*
	 * At this point, the controller is ready to take commands.
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7881
		hpsa_free_irqs(h);
7882
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7883 7884
					hpsa_intx_discard_completions);
		if (rc) {
7885 7886
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
7887
			/*
7888 7889 7890 7891 7892 7893 7894 7895 7896
			 * cannot goto clean7 or free_irqs will be called
			 * again. Instead, do its work
			 */
			hpsa_free_performant_mode(h);	/* clean7 */
			hpsa_free_sg_chain_blocks(h);	/* clean6 */
			hpsa_free_cmd_pool(h);		/* clean5 */
			/*
			 * skip hpsa_free_irqs(h) clean4 since that
			 * was just called before request_irqs failed
7897 7898
			 */
			goto clean3;
7899 7900 7901 7902 7903
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
7904
			goto clean9;
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
7925
			/* don't goto clean, we already unallocated */
7926 7927 7928 7929
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7930

R
Robert Elliott 已提交
7931 7932
	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;
7933

7934

7935 7936 7937
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7938
	hpsa_hba_inquiry(h);
7939 7940 7941 7942 7943 7944

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7945 7946 7947
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7948
	return 0;
7949

7950
clean9: /* wq, sh, perf, sg, cmd, irq, shost, pci, lu, aer/h */
R
Robert Elliott 已提交
7951
	kfree(h->hba_inquiry_data);
7952
clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
R
Robert Elliott 已提交
7953 7954 7955
	hpsa_free_performant_mode(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
7956
	hpsa_free_sg_chain_blocks(h);
7957
clean5: /* cmd, irq, shost, pci, lu, aer/h */
7958
	hpsa_free_cmd_pool(h);
7959
clean4: /* irq, shost, pci, lu, aer/h */
7960
	hpsa_free_irqs(h);
7961 7962 7963 7964
clean3: /* shost, pci, lu, aer/h */
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
clean2_5: /* pci, lu, aer/h */
R
Robert Elliott 已提交
7965
	hpsa_free_pci_init(h);
7966
clean2: /* lu, aer/h */
R
Robert Elliott 已提交
7967 7968 7969 7970 7971 7972
	if (h->lockup_detected) {
		free_percpu(h->lockup_detected);
		h->lockup_detected = NULL;
	}
clean1:	/* wq/aer/h */
	if (h->resubmit_wq) {
7973
		destroy_workqueue(h->resubmit_wq);
R
Robert Elliott 已提交
7974 7975 7976
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
7977
		destroy_workqueue(h->rescan_ctlr_wq);
R
Robert Elliott 已提交
7978 7979
		h->rescan_ctlr_wq = NULL;
	}
7980
	kfree(h);
7981
	return rc;
7982 7983 7984 7985 7986 7987
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7988
	int rc;
7989

7990
	if (unlikely(lockup_detected(h)))
7991
		return;
7992 7993 7994 7995
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7996
	c = cmd_alloc(h);
7997

7998 7999 8000 8001
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
8002 8003 8004 8005
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
8006
	if (c->err_info->CommandStatus != 0)
8007
out:
8008 8009
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
8010
	cmd_free(h, c);
8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
R
Robert Elliott 已提交
8025
	hpsa_free_irqs(h);			/* init_one 4 */
8026
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8027 8028
}

8029
static void hpsa_free_device_info(struct ctlr_info *h)
8030 8031 8032
{
	int i;

R
Robert Elliott 已提交
8033
	for (i = 0; i < h->ndevices; i++) {
8034
		kfree(h->dev[i]);
R
Robert Elliott 已提交
8035 8036
		h->dev[i] = NULL;
	}
8037 8038
}

8039
static void hpsa_remove_one(struct pci_dev *pdev)
8040 8041
{
	struct ctlr_info *h;
8042
	unsigned long flags;
8043 8044

	if (pci_get_drvdata(pdev) == NULL) {
8045
		dev_err(&pdev->dev, "unable to remove device\n");
8046 8047 8048
		return;
	}
	h = pci_get_drvdata(pdev);
8049 8050 8051 8052 8053

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
8054 8055 8056 8057
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
8058

R
Robert Elliott 已提交
8059
	/* includes hpsa_free_irqs - init_one 4 */
R
Robert Elliott 已提交
8060
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8061
	hpsa_shutdown(pdev);
8062

R
Robert Elliott 已提交
8063 8064
	hpsa_free_device_info(h);		/* scan */

8065 8066 8067 8068 8069
	kfree(h->hba_inquiry_data);			/* init_one 10 */
	h->hba_inquiry_data = NULL;			/* init_one 10 */
	if (h->scsi_host)
		scsi_remove_host(h->scsi_host);		/* init_one 8 */
	hpsa_free_ioaccel2_sg_chain_blocks(h);
R
Robert Elliott 已提交
8070 8071 8072 8073 8074
	hpsa_free_performant_mode(h);			/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
	hpsa_free_cmd_pool(h);				/* init_one 5 */

	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
R
Robert Elliott 已提交
8075

8076 8077 8078
	scsi_host_put(h->scsi_host);			/* init_one 3 */
	h->scsi_host = NULL;				/* init_one 3 */

R
Robert Elliott 已提交
8079
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8080
	hpsa_free_pci_init(h);				/* init_one 2.5 */
R
Robert Elliott 已提交
8081

R
Robert Elliott 已提交
8082 8083 8084 8085
	free_percpu(h->lockup_detected);		/* init_one 2 */
	h->lockup_detected = NULL;			/* init_one 2 */
	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
	kfree(h);					/* init_one 1 */
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
8100
	.name = HPSA,
8101
	.probe = hpsa_init_one,
8102
	.remove = hpsa_remove_one,
8103 8104 8105 8106 8107 8108
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
8122
	int nsgs, int min_blocks, u32 *bucket_map)
8123 8124 8125 8126 8127 8128
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
8129
		size = i + min_blocks;
8130 8131
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
8132
		for (j = 0; j < num_buckets; j++) {
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

R
Robert Elliott 已提交
8143 8144 8145 8146
/*
 * return -ENODEV on err, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
8147
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8148
{
8149 8150
	int i;
	unsigned long register_value;
8151 8152
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
8153 8154 8155
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
8156
	struct access_method access = SA5_performant_access;
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
8168
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8169 8170 8171 8172 8173 8174
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
8175
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8186
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8187 8188 8189 8190 8191 8192
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

8193 8194 8195 8196 8197 8198 8199
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

8200
	/* Controller spec: zero out this buffer. */
8201 8202
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8203

8204 8205
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
8206
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8207 8208 8209 8210 8211
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
8212
	writel(h->nreply_queues, &h->transtable->RepQCount);
8213 8214
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
8215 8216 8217

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
8218
		writel(h->reply_queue[i].busaddr,
8219 8220 8221
			&h->transtable->RepQAddr[i].lower);
	}

8222
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8223 8224 8225 8226 8227 8228 8229 8230
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8231 8232 8233 8234 8235 8236
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
8237
	}
8238
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8239 8240 8241 8242 8243
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
8244 8245
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
8246 8247
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
8248
		return -ENODEV;
8249
	}
8250
	/* Change the access methods to the performant access methods */
8251 8252 8253
	h->access = access;
	h->transMethod = transMethod;

8254 8255
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
8256
		return 0;
8257

8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
8268

8269
		/* initialize all reply queue entries to unused */
8270 8271 8272 8273
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
8274

8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
8286 8287
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8288 8289
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
8290
			cp->tag =
8291
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8292 8293
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8318
	}
8319
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8320 8321 8322 8323 8324 8325
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
8326 8327
}

8328 8329 8330
/* Free ioaccel1 mode command blocks and block fetch table */
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
R
Robert Elliott 已提交
8331
	if (h->ioaccel_cmd_pool) {
8332 8333 8334 8335
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool,
			h->ioaccel_cmd_pool_dhandle);
R
Robert Elliott 已提交
8336 8337 8338
		h->ioaccel_cmd_pool = NULL;
		h->ioaccel_cmd_pool_dhandle = 0;
	}
8339
	kfree(h->ioaccel1_blockFetchTable);
R
Robert Elliott 已提交
8340
	h->ioaccel1_blockFetchTable = NULL;
8341 8342
}

8343 8344
/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8345
{
8346 8347 8348 8349 8350
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
8363
		kmalloc(((h->ioaccel_maxsg + 1) *
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
8375
	hpsa_free_ioaccel1_cmd_and_bft(h);
8376
	return -ENOMEM;
8377 8378
}

8379 8380 8381
/* Free ioaccel2 mode command blocks and block fetch table */
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
8382 8383
	hpsa_free_ioaccel2_sg_chain_blocks(h);

R
Robert Elliott 已提交
8384
	if (h->ioaccel2_cmd_pool) {
8385 8386 8387 8388
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool,
			h->ioaccel2_cmd_pool_dhandle);
R
Robert Elliott 已提交
8389 8390 8391
		h->ioaccel2_cmd_pool = NULL;
		h->ioaccel2_cmd_pool_dhandle = 0;
	}
8392
	kfree(h->ioaccel2_blockFetchTable);
R
Robert Elliott 已提交
8393
	h->ioaccel2_blockFetchTable = NULL;
8394 8395
}

8396 8397
/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8398
{
8399 8400
	int rc;

8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
8420 8421 8422 8423 8424 8425 8426
		(h->ioaccel2_blockFetchTable == NULL)) {
		rc = -ENOMEM;
		goto clean_up;
	}

	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
	if (rc)
8427 8428 8429 8430 8431 8432 8433
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
8434
	hpsa_free_ioaccel2_cmd_and_bft(h);
8435
	return rc;
8436 8437
}

R
Robert Elliott 已提交
8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
static void hpsa_free_performant_mode(struct ctlr_info *h)
{
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
}

/* return -ENODEV on error, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8452 8453
{
	u32 trans_support;
8454 8455
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
R
Robert Elliott 已提交
8456
	int i, rc;
8457

8458
	if (hpsa_simple_mode)
R
Robert Elliott 已提交
8459
		return 0;
8460

8461 8462
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
R
Robert Elliott 已提交
8463
		return 0;
8464

8465 8466 8467 8468
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8469 8470 8471 8472 8473
		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
		if (rc)
			return rc;
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		transMethod |= CFGTBL_Trans_io_accel2 |
8474
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8475 8476 8477
		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
		if (rc)
			return rc;
8478 8479
	}

8480
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8481
	hpsa_get_max_perf_mode_cmds(h);
8482
	/* Performant mode ring buffer and supporting data structures */
8483
	h->reply_queue_size = h->max_commands * sizeof(u64);
8484

8485
	for (i = 0; i < h->nreply_queues; i++) {
8486 8487 8488
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
R
Robert Elliott 已提交
8489 8490 8491 8492
		if (!h->reply_queue[i].head) {
			rc = -ENOMEM;
			goto clean1;	/* rq, ioaccel */
		}
8493 8494 8495 8496 8497
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

8498
	/* Need a block fetch table for performant mode */
8499
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8500
				sizeof(u32)), GFP_KERNEL);
R
Robert Elliott 已提交
8501 8502 8503 8504
	if (!h->blockFetchTable) {
		rc = -ENOMEM;
		goto clean1;	/* rq, ioaccel */
	}
8505

R
Robert Elliott 已提交
8506 8507 8508 8509
	rc = hpsa_enter_performant_mode(h, trans_support);
	if (rc)
		goto clean2;	/* bft, rq, ioaccel */
	return 0;
8510

R
Robert Elliott 已提交
8511
clean2:	/* bft, rq, ioaccel */
8512
	kfree(h->blockFetchTable);
R
Robert Elliott 已提交
8513 8514 8515 8516 8517 8518
	h->blockFetchTable = NULL;
clean1:	/* rq, ioaccel */
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
8519 8520
}

8521
static int is_accelerated_cmd(struct CommandList *c)
8522
{
8523 8524 8525 8526 8527 8528
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
8529
	int i, accel_cmds_out;
8530
	int refcount;
8531

8532
	do { /* wait for all outstanding ioaccel commands to drain out */
8533
		accel_cmds_out = 0;
8534 8535
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
8536 8537 8538 8539
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
8540
		}
8541
		if (accel_cmds_out <= 0)
8542
			break;
8543 8544 8545 8546
		msleep(100);
	} while (1);
}

8547 8548 8549 8550 8551 8552
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
8553
	return pci_register_driver(&hpsa_pci_driver);
8554 8555 8556 8557 8558 8559 8560
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

8561 8562
static void __attribute__((unused)) verify_offsets(void)
{
8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
8632
	VERIFY_OFFSET(tag, 0x68);
8633 8634 8635 8636 8637 8638
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

8639 8640
module_init(hpsa_init);
module_exit(hpsa_cleanup);