hpsa.c 227.7 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46
#include <scsi/scsi_eh.h>
47 48 49
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
50
#include <linux/atomic.h>
51
#include <linux/jiffies.h>
D
Don Brace 已提交
52
#include <linux/percpu-defs.h>
53
#include <linux/percpu.h>
D
Don Brace 已提交
54
#include <asm/unaligned.h>
55
#include <asm/div64.h>
56 57 58 59
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
60
#define HPSA_DRIVER_VERSION "3.4.4-1"
61
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62
#define HPSA "hpsa"
63

64 65 66 67 68
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
86 87 88 89
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
90 91 92 93 94 95 96 97

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 99
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 102 103 104 105 106 107
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 109 110 111 112 113
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
114 115 116 117 118 119 120 121 122 123
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
124
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
125 126 127
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
128 129 130 131 132
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
133 134 135 136 137
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
138
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
139
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
155 156
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
157
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
158 159 160 161 162 163 164
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
165 166 167 168 169 170 171
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
172 173 174 175
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
176
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
177 178
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
179
	{0x21C4103C, "Smart Array", &SA5_access},
180 181 182 183
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
184
	{0x21C9103C, "Smart Array", &SA5_access},
185 186
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
187 188
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
189
	{0x21CE103C, "Smart HBA", &SA5_access},
190 191 192 193 194
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
195 196 197 198 199
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

200 201
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
202
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
203 204

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
205 206
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
207 208 209 210
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
211
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
213
	int cmd_type);
214
static void hpsa_free_cmd_pool(struct ctlr_info *h);
215
#define VPD_PAGE (1 << 8)
216

J
Jeff Garzik 已提交
217
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
218 219 220
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
221
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
222 223

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
224
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
225
static int hpsa_slave_alloc(struct scsi_device *sdev);
226
static int hpsa_slave_configure(struct scsi_device *sdev);
227 228 229 230 231 232 233
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
234 235
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
236
	int nsgs, int min_blocks, u32 *bucket_map);
237
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
238
static inline u32 next_command(struct ctlr_info *h, u8 q);
239 240 241 242 243 244 245 246
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
247
static inline void finish_cmd(struct CommandList *c);
248
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
249 250
#define BOARD_NOT_READY 0
#define BOARD_READY 1
251
static void hpsa_drain_accel_commands(struct ctlr_info *h);
252
static void hpsa_flush_cache(struct ctlr_info *h);
253 254
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
255
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
256
static void hpsa_command_resubmit_worker(struct work_struct *work);
257 258
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
259 260 261 262 263 264 265

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

266 267 268 269 270 271
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

294 295 296
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
297 298 299 300 301 302 303 304 305 306 307
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == -1)
308 309
		return 0;

310
	switch (asc) {
311
	case STATE_CHANGED:
312 313 314
		dev_warn(&h->pdev->dev,
			HPSA "%d: a state change detected, command retried\n",
			h->ctlr);
315 316
		break;
	case LUN_FAILED:
317 318
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
319 320
		break;
	case REPORT_LUNS_CHANGED:
321 322
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
323
	/*
324 325
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
326 327 328
	 */
		break;
	case POWER_OR_RESET:
329
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
330 331 332
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
333
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
334 335 336
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
337
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
338 339 340 341 342 343
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

344 345 346 347 348 349 350 351 352 353
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367
static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

417 418 419 420 421 422
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
423
	h = shost_to_hba(shost);
M
Mike Miller 已提交
424
	hpsa_scan_start(h->scsi_host);
425 426 427
	return count;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

443 444 445 446 447 448
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

449 450
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
451 452
}

453 454 455 456 457 458 459 460
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
461
		h->transMethod & CFGTBL_Trans_Performant ?
462 463 464
			"performant" : "simple");
}

465 466 467 468 469 470 471 472 473 474 475
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

476
/* List of controllers which cannot be hard reset on kexec with reset_devices */
477 478
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
479
	0x324b103C, /* Smart Array P711m */
480 481 482 483 484 485 486 487 488 489
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
490
	0x40800E11, /* Smart Array 5i */
491 492
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
493 494 495 496 497 498
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
499 500
};

501 502
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
503
	0x40800E11, /* Smart Array 5i */
504 505 506 507 508 509
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
510 511 512 513 514 515 516 517 518 519 520
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
521 522 523 524 525 526 527
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
528 529 530
{
	int i;

S
Stephen Cameron 已提交
531 532 533 534
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
535 536
}

S
Stephen Cameron 已提交
537
static int ctlr_is_hard_resettable(u32 board_id)
538
{
S
Stephen Cameron 已提交
539 540 541
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
542

S
Stephen Cameron 已提交
543 544 545 546
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
547 548
}

549 550 551 552 553 554
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
555 556 557 558 559 560
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

561 562 563 564 565 566 567
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
568
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
569 570
}

571 572 573 574 575
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

576 577
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
578
};
579 580 581 582 583 584 585
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
586 587 588 589 590 591
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
592
	unsigned char rlevel;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
616
	if (rlevel > RAID_UNKNOWN)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

696 697 698 699
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
700 701
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
702 703 704
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
705 706
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
707 708 709 710 711 712
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
713 714
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
715 716
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
717 718 719 720 721

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
722
	&dev_attr_hp_ssd_smart_path_enabled,
723
	&dev_attr_lockup_detected,
724 725 726 727 728 729 730 731
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
732
	&dev_attr_resettable,
733
	&dev_attr_hp_ssd_smart_path_status,
734
	&dev_attr_raid_offload_debug,
735 736 737
	NULL,
};

738 739 740
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

741 742
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
743 744
	.name			= HPSA,
	.proc_name		= HPSA,
745 746 747
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
748
	.change_queue_depth	= hpsa_change_queue_depth,
749 750
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
751
	.eh_abort_handler	= hpsa_eh_abort_handler,
752 753 754
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
755
	.slave_configure	= hpsa_slave_configure,
756 757 758 759 760 761
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
762
	.max_sectors = 8192,
763
	.no_write_same = 1,
764 765
};

766
static inline u32 next_command(struct ctlr_info *h, u8 q)
767 768
{
	u32 a;
769
	struct reply_queue_buffer *rq = &h->reply_queue[q];
770

771 772 773
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

774
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
775
		return h->access.command_completed(h, q);
776

777 778 779
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
780
		atomic_dec(&h->commands_outstanding);
781 782 783 784
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
785 786 787
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
788 789 790 791
	}
	return a;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

818 819
/*
 * set_performant_mode: Modify the tag for cciss performant
820 821 822
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
823 824 825
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
826
{
827
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
828
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
829 830 831
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
832
			c->Header.ReplyQueue =
833
				raw_smp_processor_id() % h->nreply_queues;
834 835
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
836
	}
837 838
}

839
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
840 841
						struct CommandList *c,
						int reply_queue)
842 843 844
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

845 846
	/*
	 * Tell the controller to post the reply to the queue for this
847 848
	 * processor.  This seems to give the best I/O throughput.
	 */
849 850 851 852 853 854
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
855 856 857 858 859 860 861 862 863
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
864 865
						struct CommandList *c,
						int reply_queue)
866 867 868
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

869 870
	/*
	 * Tell the controller to post the reply to the queue for this
871 872
	 * processor.  This seems to give the best I/O throughput.
	 */
873 874 875 876 877 878
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
879 880 881 882 883 884 885
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

915 916
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
917
{
918 919
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
920 921
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
922
		set_ioaccel1_performant_mode(h, c, reply_queue);
923
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
924 925
		break;
	case CMD_IOACCEL2:
926
		set_ioaccel2_performant_mode(h, c, reply_queue);
927
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
928 929
		break;
	default:
930
		set_performant_mode(h, c, reply_queue);
931
		h->access.submit_command(h, c);
932
	}
933 934
}

935 936 937 938 939 940
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
					struct CommandList *c)
{
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

955 956 957 958 959 960 961
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
962
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
963

964
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
965 966 967

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
968
			__set_bit(h->dev[i]->target, lun_taken);
969 970
	}

971 972 973 974 975 976
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
977 978 979 980
	}
	return !found;
}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

1009
	if (n >= HPSA_MAX_DEVICES) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
1022
	 * unit no, zero otherwise.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
1063 1064
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1065 1066
	added[*nadded] = device;
	(*nadded)++;
1067 1068
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1069 1070 1071
	return 0;
}

1072 1073 1074 1075 1076 1077 1078 1079 1080
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1095
	h->dev[entry]->offload_config = new_entry->offload_config;
1096
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1097
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1108
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1109 1110
}

1111 1112 1113 1114 1115 1116 1117
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1118
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1119 1120
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1131 1132
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1133 1134 1135
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1136
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1137 1138
}

1139 1140 1141 1142 1143 1144 1145 1146
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1147
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1148 1149 1150 1151 1152 1153 1154 1155

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1156
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1215 1216 1217 1218 1219 1220 1221 1222 1223
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1224 1225 1226 1227
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1228 1229
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1230 1231 1232
	return 0;
}

1233 1234 1235
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1236 1237 1238 1239
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1240 1241 1242 1243 1244 1245 1246 1247 1248
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1249
#define DEVICE_UPDATED 3
1250
	for (i = 0; i < haystack_size; i++) {
1251 1252
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1253 1254
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1255 1256 1257
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1258
				return DEVICE_SAME;
1259
			} else {
1260 1261 1262
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1263
				return DEVICE_CHANGED;
1264
			}
1265 1266 1267 1268 1269 1270
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1427 1428
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1461 1462 1463 1464
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1465
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1479 1480
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1494 1495
	 * If minor device attributes change, just update
	 * the existing device structure.
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1510 1511
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1512 1513 1514 1515
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1516 1517
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1529 1530 1531 1532 1533 1534 1535 1536

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1537
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1538 1539 1540
			continue;
		}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1557 1558 1559 1560 1561 1562 1563 1564
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1565 1566
	spin_unlock_irqrestore(&h->devlock, flags);

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1601 1602
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1603
			}
1604 1605 1606 1607 1608 1609 1610
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1611 1612
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1613 1614 1615
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1616 1617
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1630
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1657
	if (likely(sd)) {
1658
		atomic_set(&sd->ioaccel_cmds_out, 0);
1659 1660 1661
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1662 1663 1664 1665
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1686 1687
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1688
	/* nothing to do. */
1689 1690
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1714 1715
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1716
		return -ENOMEM;
1717
	}
1718 1719 1720
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1721 1722
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1723
			goto clean;
1724
		}
1725 1726 1727 1728 1729 1730 1731 1732
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1733
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1734 1735 1736 1737
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1738
	u32 chain_len;
1739 1740 1741

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1742 1743
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1744
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1745 1746
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1747
				PCI_DMA_TODEVICE);
1748 1749
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1750
		chain_sg->Addr = cpu_to_le64(0);
1751 1752
		return -1;
	}
1753
	chain_sg->Addr = cpu_to_le64(temp64);
1754
	return 0;
1755 1756 1757 1758 1759 1760 1761
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1762
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1763 1764 1765
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1766 1767
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1768 1769
}

1770 1771 1772 1773 1774 1775

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1776 1777 1778 1779 1780
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1781
	int retry = 0;
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
1792
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1793
			if (c2->error_data.data_present !=
1794 1795 1796
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1797
				break;
1798
			}
1799 1800 1801 1802 1803 1804 1805 1806 1807
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1808
			retry = 1;
1809 1810 1811 1812 1813
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
1814
			retry = 1;
1815 1816 1817 1818 1819
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
1820
			retry = 1;
1821 1822 1823 1824 1825 1826 1827 1828 1829
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
1830
			retry = 1;
1831 1832 1833 1834 1835
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
1836
			retry = 1;
1837 1838 1839 1840 1841 1842 1843 1844
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
1845
		retry = 1;
1846 1847 1848 1849 1850 1851 1852
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1853
		retry = 1;
1854 1855 1856 1857 1858 1859 1860
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
1861 1862 1863
			"HP SSD Smart Path",
			c2->error_data.serv_response);
		retry = 1;
1864 1865
		break;
	}
1866 1867

	return retry;	/* retry on raid path? */
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
1891 1892 1893 1894
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
		goto retry_cmd;
1895
	}
1896 1897 1898 1899

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
		goto retry_cmd;

1900 1901
	cmd_free(h, c);
	cmd->scsi_done(cmd);
1902 1903 1904 1905 1906
	return;

retry_cmd:
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1907 1908
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

1937
static void complete_scsi_command(struct CommandList *cp)
1938 1939 1940 1941
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1942
	struct hpsa_scsi_dev_t *dev;
1943

1944 1945 1946
	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
1947
	unsigned long sense_data_size;
1948 1949

	ei = cp->err_info;
1950
	cmd = cp->scsi_cmd;
1951
	h = cp->h;
1952
	dev = cmd->device->hostdata;
1953 1954

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1955
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
1956
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1957
		hpsa_unmap_sg_chain_block(h, cp);
1958 1959 1960

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1961

1962 1963 1964
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

1978 1979 1980
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1981 1982
	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0) {
1983 1984
		if (cp->cmd_type == CMD_IOACCEL1)
			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1985 1986 1987 1988 1989
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

1990 1991 1992 1993 1994
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
1995 1996 1997 1998
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1999
		cp->Header.tag = c->tag;
2000 2001
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2002 2003 2004 2005 2006 2007 2008 2009

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
2010 2011 2012
			INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
			queue_work_on(raw_smp_processor_id(),
					h->resubmit_wq, &cp->work);
2013 2014
			return;
		}
2015 2016
	}

2017 2018 2019 2020
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
2033
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2034
			if (sense_key == ABORTED_COMMAND) {
2035
				cmd->result |= DID_SOFT_ERROR << 16;
2036 2037
				break;
			}
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2073 2074
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2089
		cmd->result = DID_ERROR << 16;
2090 2091
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2092 2093 2094
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2095 2096
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2097 2098 2099
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2100 2101
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2102 2103 2104
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
2105 2106
		dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
				cp->Request.CDB, ei->ScsiStatus);
2107 2108 2109
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2110 2111
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2112 2113
		break;
	case CMD_UNSOLICITED_ABORT:
2114
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2115 2116
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2117 2118 2119
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2120 2121
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2122
		break;
2123 2124 2125 2126
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2127 2128 2129 2130
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
2131 2132 2133 2134 2135 2136 2137 2138
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2139 2140 2141 2142 2143 2144
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
2145
	cmd->scsi_done(cmd);
2146 2147 2148 2149 2150 2151 2152
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2153 2154 2155 2156
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2157 2158
}

2159
static int hpsa_map_one(struct pci_dev *pdev,
2160 2161 2162 2163 2164
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2165
	u64 addr64;
2166 2167 2168

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2169
		cp->Header.SGTotal = cpu_to_le16(0);
2170
		return 0;
2171 2172
	}

2173
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2174
	if (dma_mapping_error(&pdev->dev, addr64)) {
2175
		/* Prevent subsequent unmap of something never mapped */
2176
		cp->Header.SGList = 0;
2177
		cp->Header.SGTotal = cpu_to_le16(0);
2178
		return -1;
2179
	}
2180 2181 2182 2183 2184
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2185
	return 0;
2186 2187
}

2188 2189 2190 2191
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2192 2193 2194 2195
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2232
#define MAX_DRIVER_CMD_RETRIES 25
2233 2234
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2235
{
2236
	int backoff_time = 10, retry_count = 0;
2237
	int rc;
2238 2239

	do {
2240
		memset(c->err_info, 0, sizeof(*c->err_info));
2241 2242 2243 2244
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2245
		retry_count++;
2246 2247 2248 2249 2250
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2251
	} while ((check_for_unit_attention(h, c) ||
2252 2253
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2254
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2255 2256 2257
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2258 2259
}

2260 2261
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2262
{
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2280
	struct device *d = &cp->h->pdev->dev;
2281 2282
	u8 sense_key, asc, ascq;
	int sense_len;
2283 2284 2285

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2286 2287 2288 2289 2290 2291
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
2292 2293
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2294 2295
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
2296
		else
2297
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2298 2299 2300 2301 2302 2303 2304 2305 2306
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2307
		hpsa_print_cmd(h, "overrun condition", cp);
2308 2309 2310 2311 2312
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2313 2314
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2315 2316 2317
		}
		break;
	case CMD_PROTOCOL_ERR:
2318
		hpsa_print_cmd(h, "protocol error", cp);
2319 2320
		break;
	case CMD_HARDWARE_ERR:
2321
		hpsa_print_cmd(h, "hardware error", cp);
2322 2323
		break;
	case CMD_CONNECTION_LOST:
2324
		hpsa_print_cmd(h, "connection lost", cp);
2325 2326
		break;
	case CMD_ABORTED:
2327
		hpsa_print_cmd(h, "aborted", cp);
2328 2329
		break;
	case CMD_ABORT_FAILED:
2330
		hpsa_print_cmd(h, "abort failed", cp);
2331 2332
		break;
	case CMD_UNSOLICITED_ABORT:
2333
		hpsa_print_cmd(h, "unsolicited abort", cp);
2334 2335
		break;
	case CMD_TIMEOUT:
2336
		hpsa_print_cmd(h, "timed out", cp);
2337
		break;
2338
	case CMD_UNABORTABLE:
2339
		hpsa_print_cmd(h, "unabortable", cp);
2340
		break;
2341 2342 2343
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2344
	default:
2345 2346
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2347 2348 2349 2350 2351
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2352
			u16 page, unsigned char *buf,
2353 2354 2355 2356 2357 2358
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2359
	c = cmd_alloc(h);
2360

2361
	if (c == NULL) {
2362
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2363
		return -ENOMEM;
2364 2365
	}

2366 2367 2368 2369 2370
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2371 2372 2373 2374
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2375 2376
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2377
		hpsa_scsi_interpret_error(h, c);
2378 2379
		rc = -1;
	}
2380
out:
2381
	cmd_free(h, c);
2382 2383 2384
	return rc;
}

2385 2386 2387 2388 2389 2390 2391 2392
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2393
	c = cmd_alloc(h);
2394
	if (c == NULL) {			/* trouble... */
2395
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2396 2397 2398 2399 2400 2401 2402 2403
		return -ENOMEM;
	}

	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2404 2405 2406 2407
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2408 2409 2410 2411 2412 2413
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2414
	cmd_free(h, c);
2415 2416 2417
	return rc;
	}

2418
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2419
	u8 reset_type, int reply_queue)
2420 2421 2422 2423 2424
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2425
	c = cmd_alloc(h);
2426 2427

	if (c == NULL) {			/* trouble... */
2428
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2429
		return -ENOMEM;
2430 2431
	}

2432
	/* fill_cmd can't fail here, no data buffer to map. */
2433 2434 2435
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2436 2437 2438 2439 2440
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2441 2442 2443 2444
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2445
		hpsa_scsi_interpret_error(h, c);
2446 2447
		rc = -1;
	}
2448
out:
2449
	cmd_free(h, c);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2463
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2464 2465 2466 2467 2468 2469 2470 2471
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2484 2485 2486 2487
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2512
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2513
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2514 2515 2516
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2517 2518
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2557
	c = cmd_alloc(h);
2558
	if (c == NULL) {
2559
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2560 2561 2562 2563 2564 2565
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2566 2567
		rc = -ENOMEM;
		goto out;
2568
	}
2569 2570 2571 2572
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2573 2574
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2575
		hpsa_scsi_interpret_error(h, c);
2576 2577
		rc = -1;
		goto out;
2578
	}
2579
	cmd_free(h, c);
2580 2581 2582 2583 2584 2585 2586 2587 2588

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2589 2590 2591
out:
	cmd_free(h, c);
	return rc;
2592 2593
}

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2611 2612
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2666 2667 2668 2669 2670 2671 2672 2673 2674
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2675
	this_device->offload_to_be_enabled = 0;
2676 2677 2678 2679

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2680 2681
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2682
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2683
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2699
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2700 2701 2702 2703 2704
out:
	kfree(buf);
	return;
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2716
		return -ENOMEM;
2717
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2718 2719 2720 2721 2722 2723 2724
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2725
		void *buf, int bufsize,
2726 2727 2728 2729 2730 2731 2732
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2733
	c = cmd_alloc(h);
2734
	if (c == NULL) {			/* trouble... */
2735
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2736 2737
		return -1;
	}
2738 2739
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2740 2741 2742 2743 2744
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2745 2746
	if (extended_response)
		c->Request.CDB[1] = extended_response;
2747 2748 2749 2750
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2751 2752 2753
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2754
		hpsa_scsi_interpret_error(h, c);
2755
		rc = -1;
2756
	} else {
2757 2758 2759
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2760 2761 2762
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2763
				rld->extended_response_flag);
2764 2765
			rc = -1;
		}
2766
	}
2767
out:
2768
	cmd_free(h, c);
2769 2770 2771 2772
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2773
		struct ReportExtendedLUNdata *buf, int bufsize)
2774
{
2775 2776
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2807
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2808 2809 2810 2811 2812
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2813
	if (rc != 0)
2814 2815 2816 2817 2818 2819
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2820
	if (rc != 0)
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2834
 *  0xff (offline for unknown reasons)
2835 2836 2837
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2838
static int hpsa_volume_offline(struct ctlr_info *h,
2839 2840 2841
					unsigned char scsi3addr[])
{
	struct CommandList *c;
2842 2843 2844
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
2845
	int rc, ldstat = 0;
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
	if (!c)
		return 0;
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2856 2857 2858 2859 2860
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
2861
	sense = c->err_info->SenseInfo;
2862 2863 2864 2865 2866
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
2942 2943 2944
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
S
Stephen Cameron 已提交
2945 2946 2947 2948 2949 2950 2951 2952
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

2953
static int hpsa_update_device_info(struct ctlr_info *h,
2954 2955
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2956
{
2957 2958 2959 2960 2961 2962

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2963
	unsigned char *inq_buff;
2964
	unsigned char *obdr_sig;
2965

2966
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2991
		is_logical_dev_addr_mode(scsi3addr)) {
2992 2993
		int volume_offline;

2994
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2995 2996
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2997 2998 2999 3000
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
3001
	} else {
3002
		this_device->raid_level = RAID_UNKNOWN;
3003 3004
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
3005
		this_device->offload_to_be_enabled = 0;
3006
		this_device->volume_offline = 0;
3007
		this_device->queue_depth = h->nr_cmds;
3008
	}
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
3019 3020 3021 3022 3023 3024 3025 3026
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

3052
static unsigned char *ext_target_model[] = {
3053 3054 3055 3056
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
3057
	"P2000 G3 SAS",
3058
	"MSA 2040 SAS",
3059 3060 3061
	NULL,
};

3062
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3063 3064 3065
{
	int i;

3066 3067 3068
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
3069 3070 3071 3072 3073
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
3074
 * Puts non-external target logical volumes on bus 0, external target logical
3075 3076 3077 3078 3079 3080
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
3081
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3082
{
3083 3084 3085 3086
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
3087
		if (is_hba_lunid(lunaddrbytes))
3088
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3089
		else
3090 3091 3092 3093 3094
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3095 3096
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3097 3098 3099 3100 3101 3102
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3103
	}
3104
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3105 3106 3107 3108
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3109
 * For the external targets (arrays), we have to manually detect the enclosure
3110 3111 3112 3113 3114 3115 3116 3117
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3118
static int add_ext_target_dev(struct ctlr_info *h,
3119
	struct hpsa_scsi_dev_t *tmpdevice,
3120
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3121
	unsigned long lunzerobits[], int *n_ext_target_devs)
3122 3123 3124
{
	unsigned char scsi3addr[8];

3125
	if (test_bit(tmpdevice->target, lunzerobits))
3126 3127 3128 3129 3130
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3131 3132
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3133

3134
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3135 3136
		return 0;

3137
	memset(scsi3addr, 0, 8);
3138
	scsi3addr[3] = tmpdevice->target;
3139 3140 3141
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3142 3143 3144
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3145
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3146 3147
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3148 3149 3150 3151
			"configuration.");
		return 0;
	}

3152
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3153
		return 0;
3154
	(*n_ext_target_devs)++;
3155 3156
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3157
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3158
	set_bit(tmpdevice->target, lunzerobits);
3159 3160 3161
	return 1;
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3173 3174 3175
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3176 3177
	int i;

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3188
}
3189

3190 3191 3192 3193 3194 3195 3196
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3197
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3198
	struct ReportLUNdata *logdev, u32 *nlogicals)
3199
{
3200
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3201 3202 3203
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3204
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3205
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3206 3207
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3208 3209
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3210
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3211 3212 3213
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3214
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3233 3234
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3235
	struct ReportExtendedLUNdata *physdev_list,
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3250 3251
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3252 3253 3254 3255 3256 3257 3258 3259

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3260 3261 3262
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3263
	int hba_mode_enabled;
3264 3265 3266 3267 3268
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3269
		return -ENOMEM;
3270 3271
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3272
	if (rc) {
3273
		kfree(ctlr_params);
3274
		return rc;
3275
	}
3276 3277 3278 3279 3280

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3281 3282
}

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3322
	struct ReportExtendedLUNdata *physdev_list = NULL;
3323
	struct ReportLUNdata *logdev_list = NULL;
3324
	struct bmic_identify_physical_device *id_phys = NULL;
3325 3326 3327
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3328 3329
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3330
	int i, n_ext_target_devs, ndevs_to_allocate;
3331
	int raid_ctlr_position;
3332
	int rescan_hba_mode;
3333
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3334

3335
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3336 3337
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3338
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3339
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3340

3341 3342
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3343 3344 3345 3346 3347
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3348
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3349 3350
	if (rescan_hba_mode < 0)
		goto out;
3351 3352 3353 3354 3355 3356 3357 3358

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3359 3360
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3361 3362
		goto out;

3363 3364 3365
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3366
	 */
3367
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3368 3369 3370

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3371 3372 3373 3374 3375 3376 3377
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3378 3379 3380 3381 3382 3383 3384 3385 3386
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3387
	if (is_scsi_rev_5(h))
3388 3389 3390 3391
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3392
	/* adjust our table of devices */
3393
	n_ext_target_devs = 0;
3394
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3395
		u8 *lunaddrbytes, is_OBDR = 0;
3396 3397

		/* Figure out where the LUN ID info is coming from */
3398 3399
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3400 3401 3402 3403 3404 3405

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3406 3407

		/* Get device type, vendor, model, device id */
3408 3409
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3410
			continue; /* skip it if we can't talk to it. */
3411
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3412
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3413 3414 3415
		this_device = currentsd[ncurrent];

		/*
3416
		 * For external target devices, we have to insert a LUN 0 which
3417 3418 3419 3420 3421
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3422
		if (add_ext_target_dev(h, tmpdevice, this_device,
3423
				lunaddrbytes, lunzerobits,
3424
				&n_ext_target_devs)) {
3425 3426 3427 3428 3429 3430
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3443
		switch (this_device->devtype) {
3444
		case TYPE_ROM:
3445 3446 3447 3448 3449 3450 3451
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3452 3453
			if (is_OBDR)
				ncurrent++;
3454 3455
			break;
		case TYPE_DISK:
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
			if (h->hba_mode_enabled) {
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
				ncurrent++;
				break;
			} else if (h->acciopath_status) {
				if (i >= nphysicals) {
					ncurrent++;
					break;
				}
			} else {
				if (i < nphysicals)
					break;
3469
				ncurrent++;
3470
				break;
3471
			}
3472 3473 3474 3475 3476
			if (h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2) {
				hpsa_get_ioaccel_drive_info(h, this_device,
							lunaddrbytes, id_phys);
				atomic_set(&this_device->ioaccel_cmds_out, 0);
3477 3478
				ncurrent++;
			}
3479 3480 3481 3482 3483
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3484 3485 3486 3487
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3501
		if (ncurrent >= HPSA_MAX_DEVICES)
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3512
	kfree(id_phys);
3513 3514
}

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3526 3527
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3528 3529 3530
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3531
static int hpsa_scatter_gather(struct ctlr_info *h,
3532 3533 3534 3535
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3536 3537
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
3538

3539
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3540 3541 3542 3543 3544 3545 3546 3547

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3548 3549 3550
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
3551
	scsi_for_each_sg(cmd, sg, use_sg, i) {
3552 3553 3554 3555 3556 3557
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
3558
		hpsa_set_sg_descriptor(curr_sg, sg);
3559 3560
		curr_sg++;
	}
3561 3562

	/* Back the pointer up to the last entry and mark it as "last". */
3563
	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3564 3565 3566 3567 3568 3569

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3570
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3571 3572 3573 3574
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3575
		return 0;
3576 3577 3578 3579
	}

sglist_finished:

3580
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3581
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3582 3583 3584
	return 0;
}

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3633
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3634
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3635
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3647
	/* TODO: implement chaining support */
3648 3649
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3650
		return IO_ACCEL_INELIGIBLE;
3651
	}
3652

3653 3654
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3655 3656
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3657
		return IO_ACCEL_INELIGIBLE;
3658
	}
3659

3660 3661 3662 3663 3664 3665 3666 3667
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3668 3669
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3670
		return use_sg;
3671
	}
3672 3673 3674 3675 3676 3677 3678

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3679 3680 3681
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3682 3683
			curr_sg++;
		}
3684
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3706
	c->Header.SGList = use_sg;
3707
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3708 3709 3710 3711 3712
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3713 3714
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3715
	/* Tag was already set at init time. */
3716
	enqueue_cmd_and_start_io(h, c);
3717 3718
	return 0;
}
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3730 3731
	c->phys_disk = dev;

3732
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3733
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3734 3735
}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3748
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3764
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3765 3766 3767 3768 3769 3770
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3771
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3772 3773 3774
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3775
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3776 3777 3778
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3779 3780
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3781 3782 3783
		BUG();
		break;
	}
D
Don Brace 已提交
3784 3785 3786 3787 3788 3789 3790

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3791 3792
}

3793 3794
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3795
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3806 3807
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3808
		return IO_ACCEL_INELIGIBLE;
3809
	}
3810

3811 3812
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3813
		return IO_ACCEL_INELIGIBLE;
3814 3815
	}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3826 3827
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3828
		return use_sg;
3829
	}
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3849 3850
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3851 3852
			break;
		case DMA_FROM_DEVICE:
3853 3854
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3855 3856
			break;
		case DMA_NONE:
3857 3858
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3859 3860 3861 3862 3863 3864 3865 3866
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3867 3868
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3869
	}
3870 3871 3872 3873

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
3874
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3875
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3876 3877 3878 3879 3880 3881 3882 3883
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
3884
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3895
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3896
{
3897 3898 3899 3900 3901 3902
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
3903 3904
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3905 3906
						cdb, cdb_len, scsi3addr,
						phys_disk);
3907 3908
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3909 3910
						cdb, cdb_len, scsi3addr,
						phys_disk);
3911 3912
}

3913 3914 3915 3916 3917
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
3918
		*map_index %= le16_to_cpu(map->data_disks_per_row);
3919 3920 3921 3922
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
3923 3924
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
3925 3926
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
3927
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3928
			/* select map index from next group */
D
Don Brace 已提交
3929
			*map_index += le16_to_cpu(map->data_disks_per_row);
3930 3931 3932
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
3933
			*map_index %= le16_to_cpu(map->data_disks_per_row);
3934 3935 3936 3937 3938
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
3957 3958 3959 3960 3961 3962 3963 3964
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
3965 3966 3967 3968 3969 3970
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
3971
	u16 strip_size;
3972 3973 3974
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
3975
	int offload_to_mirror;
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
3986 3987
		if (block_cnt == 0)
			block_cnt = 256;
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
4043 4044
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
4045 4046 4047
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
4048 4049 4050
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
4061
	(void) do_div(tmpdiv, strip_size);
4062 4063
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
4064
	(void) do_div(tmpdiv, strip_size);
4065 4066 4067 4068 4069 4070
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
4071 4072
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
4073 4074 4075 4076 4077 4078 4079
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
4080 4081
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
4082
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4083
				le16_to_cpu(map->row_cnt);
4084 4085 4086 4087 4088 4089 4090 4091 4092
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4093
		 */
D
Don Brace 已提交
4094
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4095
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4096
			map_index += le16_to_cpu(map->data_disks_per_row);
4097
		dev->offload_to_mirror = !dev->offload_to_mirror;
4098 4099 4100 4101 4102
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4103
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4104 4105 4106 4107 4108 4109

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4110 4111
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4112 4113 4114 4115 4116 4117 4118 4119 4120
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4121
		if (le16_to_cpu(map->layout_map_count) <= 1)
4122 4123 4124 4125
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4126 4127
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4128
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4129 4130
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4146
		if (first_group != last_group)
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4193
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4194
		r5or6_last_column =
D
Don Brace 已提交
4195
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4196 4197 4198 4199 4200 4201
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4202
			le16_to_cpu(map->row_cnt);
4203 4204

		map_index = (first_group *
D
Don Brace 已提交
4205
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4206 4207 4208 4209
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4210
	}
4211

4212 4213 4214
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4215 4216
	c->phys_disk = dev->phys_disk[map_index];

4217
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4218 4219 4220 4221
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4264 4265
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4266 4267
}

4268 4269 4270 4271 4272
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4273 4274 4275
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4276 4277 4278 4279 4280 4281
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4282
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4293 4294
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4295 4296
		break;
	case DMA_FROM_DEVICE:
4297 4298
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4299 4300
		break;
	case DMA_NONE:
4301 4302
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4303 4304 4305 4306 4307 4308 4309
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4310 4311
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4329
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4330 4331 4332 4333 4334 4335 4336 4337
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *c =
			container_of(work, struct CommandList, work);

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return;
	}
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	if (unlikely(lockup_detected(h))) {
4383
		cmd->result = DID_NO_CONNECT << 16;
4384 4385 4386 4387 4388 4389 4390 4391
		cmd->scsi_done(cmd);
		return 0;
	}
	c = cmd_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}
4392
	if (unlikely(lockup_detected(h))) {
4393
		cmd->result = DID_NO_CONNECT << 16;
4394 4395 4396 4397
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return 0;
	}
4398

4399 4400
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {

		cmd->host_scribble = (unsigned char *) c;
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;

		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4432
static void hpsa_scan_complete(struct ctlr_info *h)
4433 4434 4435
{
	unsigned long flags;

4436 4437 4438 4439
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4440 4441
}

4442 4443 4444 4445 4446
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4447 4448 4449 4450 4451 4452 4453 4454
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4472 4473
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4474

4475 4476
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4477
	hpsa_scan_complete(h);
4478 4479
}

D
Don Brace 已提交
4480 4481
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4482 4483 4484 4485
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4486 4487 4488

	if (qdepth < 1)
		qdepth = 1;
4489 4490 4491 4492
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4493 4494
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4518 4519
	struct Scsi_Host *sh;
	int error;
4520

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4532
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4533
	sh->cmd_per_lun = sh->can_queue;
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4554 4555 4556 4557 4558
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
4559
	int rc;
4560 4561 4562 4563
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

4564
	c = cmd_alloc(h);
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;
4579
		rc = 0; /* Device ready. */
4580 4581 4582 4583 4584

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

4585 4586 4587
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
4588 4589 4590 4591
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						NO_TIMEOUT);
		if (rc)
			goto do_it_again;
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;
4602
do_it_again:
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4613
	cmd_free(h, c);
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4630 4631 4632 4633

	if (lockup_detected(h))
		return FAILED;

4634 4635 4636 4637 4638 4639
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		dev_warn(&h->pdev->dev,
			"scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
			h->scsi_host->host_no, dev->bus, dev->target,
			dev->lun);
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
		dev_warn(&h->pdev->dev,
			 "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
			 h->scsi_host->host_no, dev->bus, dev->target,
			 dev->lun);
		return FAILED;
	}

	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

4661
	/* send a reset to the SCSI LUN which the command was sent to */
4662 4663
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			     DEFAULT_REPLY_QUEUE);
4664 4665 4666
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

4667 4668 4669
	dev_warn(&h->pdev->dev,
		"scsi %d:%d:%d:%d reset failed\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4670 4671 4672
	return FAILED;
}

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4688
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
4689
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4690
{
D
Don Brace 已提交
4691
	u64 tag;
4692 4693 4694
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
4695 4696 4697
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
4698 4699 4700 4701 4702
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
4703 4704 4705
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
4706
		return;
4707
	}
D
Don Brace 已提交
4708 4709 4710
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
4711 4712
}

4713
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
4714
	struct CommandList *abort, int reply_queue)
4715 4716 4717 4718
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
4719
	__le32 tagupper, taglower;
4720

4721
	c = cmd_alloc(h);
4722
	if (c == NULL) {	/* trouble... */
4723
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4724 4725 4726
		return -ENOMEM;
	}

4727
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
4728
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
4729
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
4730
	if (h->needs_abort_tags_swizzled)
4731
		swizzle_abort_tag(&c->Request.CDB[4]);
4732
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4733
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4734
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
4735
		__func__, tagupper, taglower);
4736 4737 4738 4739 4740 4741
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
4742 4743 4744
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
4745 4746 4747 4748 4749
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4750
			__func__, tagupper, taglower);
4751
		hpsa_scsi_interpret_error(h, c);
4752 4753 4754
		rc = -1;
		break;
	}
4755
	cmd_free(h, c);
4756 4757
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4758 4759 4760
	return rc;
}

4761 4762 4763 4764 4765 4766 4767 4768
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4769
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4770 4771 4772 4773 4774 4775 4776 4777
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
4778
	scmd = abort->scsi_cmd;
4779 4780 4781 4782 4783 4784 4785
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

4786 4787
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
4788
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4789
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4790
			"Reset as abort",
4791 4792 4793
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
4807 4808 4809 4810 4811
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
4812
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

4839
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4840
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4841
{
4842 4843 4844 4845 4846 4847
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
4848 4849
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
							abort, reply_queue);
S
Stephen Cameron 已提交
4850
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
4851
}
4852

4853 4854 4855 4856 4857 4858 4859
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
4860 4861
}

S
Stephen Cameron 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
4888
	__le32 tagupper, taglower;
4889 4890 4891 4892
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
4893

S
Stephen Cameron 已提交
4894 4895 4896
	if (sc->device == NULL)
		return FAILED;

4897 4898
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
4899
	if (h == NULL)
4900 4901
		return FAILED;

4902 4903 4904 4905 4906
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
4907
		return FAILED;
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
4923

4924 4925 4926 4927 4928 4929
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
4930
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s",
4931
		h->scsi_host->host_no, sc->device->channel,
4932 4933
		sc->device->id, sc->device->lun,
		"Aborting command");
4934 4935 4936 4937

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
4938 4939 4940 4941 4942 4943 4944
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
4945
	}
S
Stephen Cameron 已提交
4946 4947 4948 4949 4950 4951 4952 4953

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

4954
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4955
	reply_queue = hpsa_extract_reply_queue(h, abort);
4956
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4957
	as  = abort->scsi_cmd;
4958 4959 4960 4961
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
4962
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4963 4964 4965 4966 4967
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
4968 4969 4970 4971 4972 4973
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
			"Timed out waiting for an abort command to become available.\n");
		cmd_free(h, abort);
		return FAILED;
	}
4974
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
4975 4976
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
4977
	if (rc != 0) {
4978 4979
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"FAILED to abort command");
4980
		cmd_free(h, abort);
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4992 4993 4994
		refcount = atomic_read(&abort->refcount);
		if (refcount < 2) {
			cmd_free(h, abort);
4995
			return SUCCESS;
4996 4997 4998
		} else {
			msleep(100);
		}
4999 5000 5001
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
5002
	cmd_free(h, abort);
5003 5004 5005
	return FAILED;
}

5006 5007 5008 5009 5010 5011
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
5012

5013 5014 5015 5016 5017 5018
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
5019
	int refcount;
5020
	unsigned long offset;
5021

5022 5023
	/*
	 * There is some *extremely* small but non-zero chance that that
5024 5025 5026 5027 5028 5029 5030 5031 5032
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 */
5033

5034
	offset = h->last_allocation; /* benignly racy */
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	for (;;) {
		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
		if (unlikely(i == h->nr_cmds)) {
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
			offset = (i + 1) % h->nr_cmds;
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
5052
	h->last_allocation = i; /* benignly racy */
5053 5054 5055 5056

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
5057
	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
5058 5059 5060 5061 5062 5063 5064
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

5065 5066
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
5067 5068
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5069 5070 5071 5072 5073 5074 5075

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
5076 5077
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
5078

5079 5080 5081 5082
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
5083 5084 5085 5086
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
5087 5088
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
5089 5090 5091 5092 5093 5094 5095 5096
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5097
	memset(&arg64, 0, sizeof(arg64));
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5113
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5124
	int cmd, void __user *arg)
5125 5126 5127 5128 5129 5130 5131 5132 5133
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5134
	memset(&arg64, 0, sizeof(arg64));
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5151
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5152 5153 5154 5155 5156 5157 5158 5159
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5160

D
Don Brace 已提交
5161
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5235
	u64 temp64;
5236
	int rc = 0;
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
5252
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5253 5254 5255
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5256 5257
				rc = -EFAULT;
				goto out_kfree;
5258 5259 5260
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5261
		}
5262
	}
5263
	c = cmd_alloc(h);
5264
	if (c == NULL) {
5265 5266
		rc = -ENOMEM;
		goto out_kfree;
5267 5268 5269 5270 5271 5272 5273
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5274
		c->Header.SGTotal = cpu_to_le16(1);
5275 5276
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5277
		c->Header.SGTotal = cpu_to_le16(0);
5278 5279 5280 5281 5282 5283 5284 5285 5286
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5287
		temp64 = pci_map_single(h->pdev, buff,
5288
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5289 5290 5291
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5292 5293 5294
			rc = -ENOMEM;
			goto out;
		}
5295 5296 5297
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5298
	}
5299
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5300 5301
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5302
	check_ioctl_unit_attention(h, c);
5303 5304 5305 5306
	if (rc) {
		rc = -EIO;
		goto out;
	}
5307 5308 5309 5310 5311

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5312 5313
		rc = -EFAULT;
		goto out;
5314
	}
5315
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5316
		iocommand.buf_size > 0) {
5317 5318
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5319 5320
			rc = -EFAULT;
			goto out;
5321 5322
		}
	}
5323
out:
5324
	cmd_free(h, c);
5325 5326 5327
out_kfree:
	kfree(buff);
	return rc;
5328 5329 5330 5331 5332 5333 5334 5335
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5336
	u64 temp64;
5337 5338
	BYTE sg_used = 0;
	int status = 0;
5339 5340
	u32 left;
	u32 sz;
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5367
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5368 5369 5370
		status = -EINVAL;
		goto cleanup1;
	}
5371
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5372 5373 5374 5375
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5376
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5391
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5392
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5393
				status = -EFAULT;
5394 5395 5396 5397 5398 5399 5400 5401
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5402
	c = cmd_alloc(h);
5403 5404 5405 5406 5407 5408
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
5409 5410
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5411 5412 5413 5414 5415
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5416
			temp64 = pci_map_single(h->pdev, buff[i],
5417
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5418 5419 5420 5421
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5422 5423 5424
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5425
				goto cleanup0;
5426
			}
5427 5428 5429
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5430
		}
5431
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5432
	}
5433
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5434 5435
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5436
	check_ioctl_unit_attention(h, c);
5437 5438 5439 5440 5441
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

5442 5443 5444 5445
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5446
		goto cleanup0;
5447
	}
5448
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5449 5450
		int i;

5451 5452 5453 5454 5455
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5456
				goto cleanup0;
5457 5458 5459 5460 5461
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5462
cleanup0:
5463
	cmd_free(h, c);
5464 5465
cleanup1:
	if (buff) {
D
Don Brace 已提交
5466 5467
		int i;

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5484

5485 5486 5487
/*
 * ioctl
 */
D
Don Brace 已提交
5488
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5489 5490 5491
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5492
	int rc;
5493 5494 5495 5496 5497 5498 5499

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5500
		hpsa_scan_start(h->scsi_host);
5501 5502 5503 5504 5505 5506
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5507
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5508 5509
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5510
		atomic_inc(&h->passthru_cmds_avail);
5511
		return rc;
5512
	case CCISS_BIG_PASSTHRU:
5513
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5514 5515
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5516
		atomic_inc(&h->passthru_cmds_avail);
5517
		return rc;
5518 5519 5520 5521 5522
	default:
		return -ENOTTY;
	}
}

5523 5524
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
5525 5526 5527 5528 5529 5530
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
5531 5532
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

5544
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5545
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5546 5547 5548
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
5549
	u64 tag; /* for commands to be aborted */
5550 5551 5552 5553 5554

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
5555
		c->Header.SGTotal = cpu_to_le16(1);
5556 5557
	} else {
		c->Header.SGList = 0;
5558
		c->Header.SGTotal = cpu_to_le16(0);
5559 5560 5561 5562 5563 5564 5565
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
5566
			if (page_code & VPD_PAGE) {
5567
				c->Request.CDB[1] = 0x01;
5568
				c->Request.CDB[2] = (page_code & 0xff);
5569 5570
			}
			c->Request.CDBLen = 6;
5571 5572
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
5583 5584
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5585 5586 5587 5588 5589 5590 5591 5592 5593
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
5594 5595 5596
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5597 5598 5599
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5600 5601
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5602 5603 5604
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
5605 5606
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5607 5608
			c->Request.Timeout = 0;
			break;
5609 5610
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
5611 5612
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5613 5614 5615 5616 5617 5618 5619 5620
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5621 5622
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
5623 5624
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5625 5626 5627 5628 5629 5630
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
5641 5642 5643
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
5644
			return -1;
5645 5646 5647 5648 5649 5650
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
5651 5652
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5653
			c->Request.Timeout = 0; /* Don't time out */
5654 5655
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
5656
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5657 5658 5659 5660 5661 5662
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
5663 5664
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
5665
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
5666
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
5667 5668
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
5669
			c->Request.CDBLen = 16;
5670 5671 5672
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5673 5674 5675 5676 5677 5678
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
5679
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
5680 5681 5682 5683
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

5695
	switch (GET_DIR(c->Request.type_attr_dir)) {
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5708 5709 5710
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5711 5712 5713 5714 5715 5716 5717 5718 5719
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5720 5721
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5722 5723 5724 5725

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

5726
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5727
{
5728
	return h->access.command_completed(h, q);
5729 5730
}

5731
static inline bool interrupt_pending(struct ctlr_info *h)
5732 5733 5734 5735 5736 5737
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5738 5739
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5740 5741
}

5742 5743
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5744 5745 5746 5747 5748 5749 5750 5751
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

5752
static inline void finish_cmd(struct CommandList *c)
5753
{
5754
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5755 5756
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
5757
		complete_scsi_command(c);
5758 5759
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
5760 5761
}

5762 5763

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5764
{
5765 5766
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
5767
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5768 5769
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
5770 5771
}

5772
/* process completion of an indexed ("direct lookup") command */
5773
static inline void process_indexed_cmd(struct ctlr_info *h,
5774 5775 5776 5777 5778
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

5779
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5780 5781 5782 5783
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
5784 5785
}

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

5805 5806 5807 5808 5809 5810
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
5811
{
5812 5813 5814 5815 5816 5817 5818
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
5819 5820 5821 5822 5823 5824 5825
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5826
	h->last_intr_timestamp = get_jiffies_64();
5827
	while (interrupt_pending(h)) {
5828
		raw_tag = get_next_completion(h, q);
5829
		while (raw_tag != FIFO_EMPTY)
5830
			raw_tag = next_command(h, q);
5831 5832 5833 5834
	}
	return IRQ_HANDLED;
}

5835
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5836
{
5837
	struct ctlr_info *h = queue_to_hba(queue);
5838
	u32 raw_tag;
5839
	u8 q = *(u8 *) queue;
5840 5841 5842 5843

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

5844
	h->last_intr_timestamp = get_jiffies_64();
5845
	raw_tag = get_next_completion(h, q);
5846
	while (raw_tag != FIFO_EMPTY)
5847
		raw_tag = next_command(h, q);
5848 5849 5850
	return IRQ_HANDLED;
}

5851
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5852
{
5853
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5854
	u32 raw_tag;
5855
	u8 q = *(u8 *) queue;
5856 5857 5858

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5859
	h->last_intr_timestamp = get_jiffies_64();
5860
	while (interrupt_pending(h)) {
5861
		raw_tag = get_next_completion(h, q);
5862
		while (raw_tag != FIFO_EMPTY) {
5863
			process_indexed_cmd(h, raw_tag);
5864
			raw_tag = next_command(h, q);
5865 5866 5867 5868 5869
		}
	}
	return IRQ_HANDLED;
}

5870
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5871
{
5872
	struct ctlr_info *h = queue_to_hba(queue);
5873
	u32 raw_tag;
5874
	u8 q = *(u8 *) queue;
5875

5876
	h->last_intr_timestamp = get_jiffies_64();
5877
	raw_tag = get_next_completion(h, q);
5878
	while (raw_tag != FIFO_EMPTY) {
5879
		process_indexed_cmd(h, raw_tag);
5880
		raw_tag = next_command(h, q);
5881 5882 5883 5884
	}
	return IRQ_HANDLED;
}

5885 5886 5887 5888
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
5889 5890
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
5901 5902
	__le32 paddr32;
	u32 tag;
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
5917
		return err;
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
5930
	paddr32 = cpu_to_le32(paddr64);
5931 5932 5933

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
5934
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
5935
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5936 5937 5938
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
5939 5940
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5941 5942 5943 5944
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5945
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
5946
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5947
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5948

D
Don Brace 已提交
5949
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5950 5951 5952

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
5953
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

5984
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
5985
	void __iomem *vaddr, u32 use_doorbell)
5986 5987 5988 5989 5990 5991 5992 5993
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5994
		writel(use_doorbell, vaddr + SA5_DOORBELL);
5995

5996
		/* PMC hardware guys tell us we need a 10 second delay after
5997 5998 5999 6000
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
6001
		msleep(10000);
6002 6003 6004 6005 6006 6007 6008 6009 6010
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
6011 6012 6013

		int rc = 0;

6014
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6015

6016
		/* enter the D3hot power management state */
6017 6018 6019
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
6020 6021 6022 6023

		msleep(500);

		/* enter the D0 power management state */
6024 6025 6026
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
6027 6028 6029 6030 6031 6032 6033

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
6034 6035 6036 6037
	}
	return 0;
}

6038
static void init_driver_version(char *driver_version, int len)
6039 6040
{
	memset(driver_version, 0, len);
6041
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6042 6043
}

6044
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

6060 6061
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
6062 6063 6064 6065 6066 6067 6068
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

6069
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
6089
/* This does a hard reset of the controller using PCI power management
6090
 * states or the using the doorbell register.
6091
 */
6092
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6093
{
6094 6095 6096 6097 6098
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6099
	u32 misc_fw_support;
6100
	int rc;
6101
	struct CfgTable __iomem *cfgtable;
6102
	u32 use_doorbell;
6103
	u16 command_register;
6104

6105 6106
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6107 6108 6109 6110 6111 6112
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6113 6114 6115
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6116
	 */
6117

6118 6119
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6120 6121
		return -ENODEV;
	}
6122 6123 6124 6125

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6126

6127 6128 6129
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6130

6131 6132 6133 6134 6135 6136 6137
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6138

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6150 6151
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6152
		goto unmap_cfgtable;
6153

6154 6155 6156
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6157
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6158 6159 6160 6161 6162 6163
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6164 6165
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6166
			rc = -ENOTSUPP; /* try soft reset */
6167 6168 6169
			goto unmap_cfgtable;
		}
	}
6170

6171 6172 6173
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6174

6175 6176
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6177

6178 6179 6180 6181
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6182 6183 6184
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6185
			"Failed waiting for board to become ready after hard reset\n");
6186 6187 6188
		goto unmap_cfgtable;
	}

6189 6190 6191 6192
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6193 6194 6195
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6196
	} else {
6197
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6198 6199 6200 6201 6202 6203 6204 6205
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6206 6207 6208 6209 6210 6211 6212
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6213
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6214
{
6215
#ifdef HPSA_DEBUG
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6236
	dev_info(dev, "   Max outstanding commands = %d\n",
6237 6238 6239 6240 6241 6242 6243 6244 6245
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6246
}
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6284
 * controllers that are capable. If not, we use legacy INTx mode.
6285 6286
 */

6287
static void hpsa_interrupt_mode(struct ctlr_info *h)
6288 6289
{
#ifdef CONFIG_PCI_MSI
6290 6291 6292 6293 6294 6295 6296
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6297 6298

	/* Some boards advertise MSI but don't really support it */
6299 6300
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6301
		goto default_int_mode;
6302
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6303
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6304
		h->msix_vector = MAX_REPLY_QUEUES;
6305 6306
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6307 6308 6309 6310 6311 6312 6313
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6314
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6315 6316
			       "available\n", err);
		}
6317 6318 6319 6320
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6321
	}
6322
single_msi_mode:
6323
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6324
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6325
		if (!pci_enable_msi(h->pdev))
6326 6327
			h->msi_vector = 1;
		else
6328
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6329 6330 6331 6332
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6333
	h->intr[h->intr_mode] = h->pdev->irq;
6334 6335
}

6336
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6350 6351 6352
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6353 6354 6355 6356 6357 6358 6359
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6360 6361
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6362 6363 6364 6365
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6366
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6367
			/* addressing mode bits already removed */
6368 6369
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6370 6371 6372
				*memory_bar);
			return 0;
		}
6373
	dev_warn(&pdev->dev, "no memory BAR found\n");
6374 6375 6376
	return -ENODEV;
}

6377 6378
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6379
{
6380
	int i, iterations;
6381
	u32 scratchpad;
6382 6383 6384 6385
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6386

6387 6388 6389 6390 6391 6392 6393 6394 6395
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6396 6397
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6398
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6399 6400 6401
	return -ENODEV;
}

6402 6403 6404
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

6417
static int hpsa_find_cfgtables(struct ctlr_info *h)
6418
{
6419 6420 6421
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6422
	u32 trans_offset;
6423
	int rc;
6424

6425 6426 6427 6428
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6429
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6430
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6431 6432
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6433
		return -ENOMEM;
6434
	}
6435 6436 6437
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6438
	/* Find performant mode table. */
6439
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6440 6441 6442 6443 6444 6445 6446 6447
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

6448
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6449
{
6450 6451 6452 6453
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6454 6455 6456 6457 6458

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6459 6460 6461 6462 6463 6464
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6465 6466 6467
	}
}

6468 6469 6470 6471 6472 6473 6474 6475 6476
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6477 6478 6479 6480
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6481
static void hpsa_find_board_params(struct ctlr_info *h)
6482
{
6483
	hpsa_get_max_perf_mode_cmds(h);
6484
	h->nr_cmds = h->max_commands;
6485
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6486
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6487 6488
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6489
		h->max_cmd_sg_entries = 32;
6490
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6491 6492
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6493 6494 6495 6496 6497 6498
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6499
		h->maxsgentries = 31; /* default to traditional values */
6500
		h->chainsize = 0;
6501
	}
6502 6503 6504

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6505 6506 6507 6508
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6509 6510
}

6511 6512
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
6513
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6514
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6515 6516 6517 6518 6519
		return false;
	}
	return true;
}

6520
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6521
{
6522
	u32 driver_support;
6523

6524
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
6525 6526
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
6527
	driver_support |= ENABLE_SCSI_PREFETCH;
6528
#endif
6529 6530
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
6531 6532
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

6547
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6548 6549 6550 6551 6552
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6553
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6554 6555 6556 6557
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6558
			goto done;
6559
		/* delay and try again */
6560
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
6561
	}
6562 6563 6564
	return -ENODEV;
done:
	return 0;
6565 6566
}

6567
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6568 6569
{
	int i;
6570 6571
	u32 doorbell_value;
	unsigned long flags;
6572 6573 6574 6575 6576

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
6577
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6578 6579
		if (h->remove_in_progress)
			goto done;
6580 6581 6582
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6583
		if (!(doorbell_value & CFGTBL_ChangeReq))
6584
			goto done;
6585
		/* delay and try again */
6586
		msleep(MODE_CHANGE_WAIT_INTERVAL);
6587
	}
6588 6589 6590
	return -ENODEV;
done:
	return 0;
6591 6592
}

6593
/* return -ENODEV or other reason on error, 0 on success */
6594
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6595 6596 6597 6598 6599 6600 6601 6602
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6603

6604 6605
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6606
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6607
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6608 6609
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
6610
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6611 6612
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6613
	h->transMethod = CFGTBL_Trans_Simple;
6614
	return 0;
6615
error:
6616
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6617
	return -ENODEV;
6618 6619
}

6620
static int hpsa_pci_init(struct ctlr_info *h)
6621
{
6622
	int prod_index, err;
6623

6624 6625
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
6626
		return prod_index;
6627 6628
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6629

S
Stephen Cameron 已提交
6630 6631 6632
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
6633 6634 6635
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6636
	err = pci_enable_device(h->pdev);
6637
	if (err) {
6638
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6639 6640 6641
		return err;
	}

6642
	err = pci_request_regions(h->pdev, HPSA);
6643
	if (err) {
6644 6645
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
6646 6647
		return err;
	}
6648 6649 6650

	pci_set_master(h->pdev);

6651
	hpsa_interrupt_mode(h);
6652
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6653
	if (err)
6654 6655
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6656 6657 6658 6659
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
6660
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6661
	if (err)
6662
		goto err_out_free_res;
6663 6664
	err = hpsa_find_cfgtables(h);
	if (err)
6665
		goto err_out_free_res;
6666
	hpsa_find_board_params(h);
6667

6668
	if (!hpsa_CISS_signature_present(h)) {
6669 6670 6671
		err = -ENODEV;
		goto err_out_free_res;
	}
6672
	hpsa_set_driver_support_bits(h);
6673
	hpsa_p600_dma_prefetch_quirk(h);
6674 6675
	err = hpsa_enter_simple_mode(h);
	if (err)
6676 6677 6678 6679
		goto err_out_free_res;
	return 0;

err_out_free_res:
6680 6681 6682 6683 6684 6685
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
6686
	pci_disable_device(h->pdev);
6687
	pci_release_regions(h->pdev);
6688 6689 6690
	return err;
}

6691
static void hpsa_hba_inquiry(struct ctlr_info *h)
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

6707
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
6708
{
6709
	int rc, i;
6710
	void __iomem *vaddr;
6711 6712 6713 6714

	if (!reset_devices)
		return 0;

6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
6731

6732
	pci_set_master(pdev);
6733

6734 6735 6736 6737 6738 6739 6740 6741
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

6742
	/* Reset the controller with a PCI power-cycle or via doorbell */
6743
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
6744

6745 6746
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
6747 6748
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
6749
	 */
6750
	if (rc)
6751
		goto out_disable;
6752 6753

	/* Now try to get the controller to respond to a no-op */
6754
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6755 6756 6757 6758 6759 6760 6761
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
6762 6763 6764 6765 6766

out_disable:

	pci_disable_device(pdev);
	return rc;
6767 6768
}

6769
static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6784
		goto clean_up;
6785 6786
	}
	return 0;
6787 6788 6789
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
6790 6791 6792 6793 6794 6795 6796 6797 6798
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
6799 6800 6801 6802
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6803 6804 6805 6806 6807
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
6808 6809 6810 6811
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6812 6813
}

6814 6815
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
6816
	int i, cpu;
6817 6818 6819

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
6820
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6821 6822 6823 6824
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
	}
6842 6843
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
6844 6845
}

6846 6847
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
6848 6849 6850
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
6851
	int rc, i;
6852

6853 6854 6855 6856 6857 6858 6859
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

6860
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6861
		/* If performant mode and MSI-X, use multiple reply queues */
6862
		for (i = 0; i < h->msix_vector; i++) {
6863 6864 6865
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
6881
		hpsa_irq_affinity_hints(h);
6882 6883
	} else {
		/* Use single reply pool */
6884
		if (h->msix_vector > 0 || h->msi_vector) {
6885 6886 6887 6888 6889 6890 6891 6892 6893
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
6894 6895 6896 6897 6898 6899 6900 6901
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

6902
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

6926
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6927
{
6928
	hpsa_free_irqs(h);
6929
#ifdef CONFIG_PCI_MSI
6930 6931 6932 6933 6934 6935 6936
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
6937
#endif /* CONFIG_PCI_MSI */
6938 6939
}

6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
		pci_free_consistent(h->pdev, h->reply_queue_size,
			h->reply_queue[i].head, h->reply_queue[i].busaddr);
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
}

6954 6955 6956
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
6957 6958
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
6959
	kfree(h->ioaccel1_blockFetchTable);
6960
	kfree(h->blockFetchTable);
6961
	hpsa_free_reply_queues(h);
6962 6963 6964 6965 6966 6967
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
6968
	pci_disable_device(h->pdev);
6969 6970 6971 6972
	pci_release_regions(h->pdev);
	kfree(h);
}

6973
/* Called when controller lockup detected. */
6974
static void fail_all_outstanding_cmds(struct ctlr_info *h)
6975
{
6976 6977
	int i, refcount;
	struct CommandList *c;
6978
	int failcount = 0;
6979

6980
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6981 6982
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
6983 6984
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
6985
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
6986
			finish_cmd(c);
6987
			atomic_dec(&h->commands_outstanding);
6988
			failcount++;
6989 6990
		}
		cmd_free(h, c);
6991
	}
6992 6993
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
6994 6995
}

6996 6997
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
6998
	int cpu;
6999

7000
	for_each_online_cpu(cpu) {
7001 7002 7003 7004 7005 7006 7007
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

7008 7009 7010
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
7011
	u32 lockup_detected;
7012 7013 7014

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
7015 7016 7017 7018
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
7019 7020
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
7021 7022 7023
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
7024
	spin_unlock_irqrestore(&h->lock, flags);
7025 7026
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
7027
	pci_disable_device(h->pdev);
7028
	fail_all_outstanding_cmds(h);
7029 7030
}

7031
static int detect_controller_lockup(struct ctlr_info *h)
7032 7033 7034 7035 7036 7037 7038 7039
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
7040
				(h->heartbeat_sample_interval), now))
7041
		return false;
7042 7043 7044 7045 7046 7047 7048

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
7049
				(h->heartbeat_sample_interval), now))
7050
		return false;
7051 7052 7053 7054 7055 7056 7057

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
7058
		return true;
7059 7060 7061 7062 7063
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
7064
	return false;
7065 7066
}

7067
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7068 7069 7070 7071
{
	int i;
	char *event_type;

7072 7073 7074
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

7075
	/* Ask the controller to clear the events we're handling. */
7076 7077
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
7089
		hpsa_drain_accel_commands(h);
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7110
	return;
7111 7112 7113 7114
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7115 7116
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7117
 */
7118
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7119 7120
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7121
		return 0;
7122 7123

	h->events = readl(&(h->cfgtable->event_notify));
7124 7125
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7126

7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7141 7142 7143 7144
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7145
			return 1;
7146
		}
7147 7148 7149 7150
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7151 7152
}

7153
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7154 7155
{
	unsigned long flags;
7156
	struct ctlr_info *h = container_of(to_delayed_work(work),
7157 7158 7159 7160
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7161
		return;
7162 7163 7164 7165 7166 7167 7168

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7169
	spin_lock_irqsave(&h->lock, flags);
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7184
		return;
7185 7186 7187 7188

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7189 7190
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7191 7192
}

7193 7194 7195 7196 7197
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7198
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7199 7200 7201 7202 7203 7204
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7205
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7206
{
7207
	int dac, rc;
7208
	struct ctlr_info *h;
7209 7210
	int try_soft_reset = 0;
	unsigned long flags;
7211
	u32 board_id;
7212 7213 7214 7215

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7216 7217 7218 7219 7220 7221 7222
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7236

7237 7238 7239 7240 7241
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7242 7243
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
7244
		return -ENOMEM;
7245

7246
	h->pdev = pdev;
7247
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7248
	INIT_LIST_HEAD(&h->offline_device_list);
7249
	spin_lock_init(&h->lock);
7250
	spin_lock_init(&h->offline_device_lock);
7251
	spin_lock_init(&h->scan_lock);
7252
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7253
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7254

7255 7256 7257 7258 7259 7260 7261
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean1;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
7262 7263 7264 7265
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean1;
	}
7266

7267 7268
	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7269 7270
	if (!h->lockup_detected) {
		rc = -ENOMEM;
7271
		goto clean1;
7272
	}
7273 7274
	set_lockup_detected_for_all_cpus(h, 0);

7275
	rc = hpsa_pci_init(h);
7276
	if (rc != 0)
7277 7278
		goto clean1;

7279
	sprintf(h->devname, HPSA "%d", number_of_controllers);
7280 7281 7282 7283
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7284 7285
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7286
		dac = 1;
7287 7288 7289 7290 7291 7292 7293 7294
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
7295 7296 7297 7298
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7299

7300
	if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7301
		goto clean2;
7302 7303
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
7304
	       h->intr[h->intr_mode], dac ? "" : " not");
7305
	rc = hpsa_alloc_cmd_pool(h);
7306 7307
	if (rc)
		goto clean2_and_free_irqs;
7308 7309
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
7310
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7311
	init_waitqueue_head(&h->abort_cmd_wait_queue);
7312
	h->scan_finished = 1; /* no scan currently in progress */
7313 7314

	pci_set_drvdata(pdev, h);
7315
	h->ndevices = 0;
7316
	h->hba_mode_enabled = 0;
7317 7318
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7337
		hpsa_free_irqs(h);
7338
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7339 7340
					hpsa_intx_discard_completions);
		if (rc) {
7341 7342
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7375

7376 7377
		/* Enable Accelerated IO path at driver layer */
		h->acciopath_status = 1;
7378

7379

7380 7381 7382
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7383
	hpsa_hba_inquiry(h);
7384
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7385 7386 7387 7388 7389 7390

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7391 7392 7393
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7394
	return 0;
7395 7396

clean4:
7397
	hpsa_free_sg_chain_blocks(h);
7398
	hpsa_free_cmd_pool(h);
7399
clean2_and_free_irqs:
7400
	hpsa_free_irqs(h);
7401 7402
clean2:
clean1:
7403 7404
	if (h->resubmit_wq)
		destroy_workqueue(h->resubmit_wq);
7405 7406
	if (h->rescan_ctlr_wq)
		destroy_workqueue(h->rescan_ctlr_wq);
7407 7408
	if (h->lockup_detected)
		free_percpu(h->lockup_detected);
7409
	kfree(h);
7410
	return rc;
7411 7412 7413 7414 7415 7416
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7417
	int rc;
7418 7419

	/* Don't bother trying to flush the cache if locked up */
7420
	/* FIXME not necessary if do_simple_cmd does the check */
7421
	if (unlikely(lockup_detected(h)))
7422
		return;
7423 7424 7425 7426
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7427
	c = cmd_alloc(h);
7428
	if (!c) {
7429
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7430 7431
		goto out_of_memory;
	}
7432 7433 7434 7435
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7436 7437 7438 7439
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
7440
	if (c->err_info->CommandStatus != 0)
7441
out:
7442 7443
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
7444
	cmd_free(h, c);
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7460
	hpsa_free_irqs_and_disable_msix(h);
7461 7462
}

7463
static void hpsa_free_device_info(struct ctlr_info *h)
7464 7465 7466 7467 7468 7469 7470
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

7471
static void hpsa_remove_one(struct pci_dev *pdev)
7472 7473
{
	struct ctlr_info *h;
7474
	unsigned long flags;
7475 7476

	if (pci_get_drvdata(pdev) == NULL) {
7477
		dev_err(&pdev->dev, "unable to remove device\n");
7478 7479 7480
		return;
	}
	h = pci_get_drvdata(pdev);
7481 7482 7483 7484 7485

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
7486 7487 7488 7489
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
7490 7491 7492
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
7493 7494
	iounmap(h->transtable);
	iounmap(h->cfgtable);
7495
	hpsa_free_device_info(h);
7496
	hpsa_free_sg_chain_blocks(h);
7497 7498 7499 7500 7501 7502
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
7503
	hpsa_free_reply_queues(h);
7504
	kfree(h->cmd_pool_bits);
7505
	kfree(h->blockFetchTable);
7506
	kfree(h->ioaccel1_blockFetchTable);
7507
	kfree(h->ioaccel2_blockFetchTable);
7508
	kfree(h->hba_inquiry_data);
7509
	pci_disable_device(pdev);
7510
	pci_release_regions(pdev);
7511
	free_percpu(h->lockup_detected);
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
7527
	.name = HPSA,
7528
	.probe = hpsa_init_one,
7529
	.remove = hpsa_remove_one,
7530 7531 7532 7533 7534 7535
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
7549
	int nsgs, int min_blocks, u32 *bucket_map)
7550 7551 7552 7553 7554 7555
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
7556
		size = i + min_blocks;
7557 7558
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
7559
		for (j = 0; j < num_buckets; j++) {
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

7570 7571
/* return -ENODEV or other reason on error, 0 on success */
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7572
{
7573 7574
	int i;
	unsigned long register_value;
7575 7576
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
7577 7578 7579
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
7580
	struct access_method access = SA5_performant_access;
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
7592
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7593 7594 7595 7596 7597 7598
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
7599
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7610
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7611 7612 7613 7614 7615 7616
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

7617 7618 7619 7620 7621 7622 7623
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

7624
	/* Controller spec: zero out this buffer. */
7625 7626
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7627

7628 7629
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
7630
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7631 7632 7633 7634 7635
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
7636
	writel(h->nreply_queues, &h->transtable->RepQCount);
7637 7638
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
7639 7640 7641

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
7642
		writel(h->reply_queue[i].busaddr,
7643 7644 7645
			&h->transtable->RepQAddr[i].lower);
	}

7646
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7647 7648 7649 7650 7651 7652 7653 7654
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7655 7656 7657 7658 7659 7660
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
7661
	}
7662
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7663 7664 7665 7666 7667
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
7668 7669
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
7670 7671
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
7672
		return -ENODEV;
7673
	}
7674
	/* Change the access methods to the performant access methods */
7675 7676 7677
	h->access = access;
	h->transMethod = transMethod;

7678 7679
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
7680
		return 0;
7681

7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
7692

7693
		/* initialize all reply queue entries to unused */
7694 7695 7696 7697
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
7698

7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
7710 7711
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7712 7713
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
7714
			cp->tag =
7715
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7716 7717
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7742
	}
7743
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7744 7745 7746 7747 7748 7749
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
7750 7751
}

7752 7753
/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
7754
{
7755 7756 7757 7758 7759
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
7772
		kmalloc(((h->ioaccel_maxsg + 1) *
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
7790 7791
}

7792 7793
/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

7830
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7831 7832
{
	u32 trans_support;
7833 7834
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
7835
	int i;
7836

7837 7838 7839
	if (hpsa_simple_mode)
		return;

7840 7841 7842 7843
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

7844 7845 7846 7847
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
7848
		if (hpsa_alloc_ioaccel1_cmd_and_bft(h))
7849
			goto clean_up;
7850 7851 7852 7853
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
7854
		if (hpsa_alloc_ioaccel2_cmd_and_bft(h))
7855 7856
			goto clean_up;
		}
7857 7858
	}

7859
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7860
	hpsa_get_max_perf_mode_cmds(h);
7861
	/* Performant mode ring buffer and supporting data structures */
7862
	h->reply_queue_size = h->max_commands * sizeof(u64);
7863

7864
	for (i = 0; i < h->nreply_queues; i++) {
7865 7866 7867 7868 7869
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
		if (!h->reply_queue[i].head)
			goto clean_up;
7870 7871 7872 7873 7874
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

7875
	/* Need a block fetch table for performant mode */
7876
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7877
				sizeof(u32)), GFP_KERNEL);
7878
	if (!h->blockFetchTable)
7879 7880
		goto clean_up;

7881
	hpsa_enter_performant_mode(h, trans_support);
7882 7883 7884
	return;

clean_up:
7885
	hpsa_free_reply_queues(h);
7886 7887 7888
	kfree(h->blockFetchTable);
}

7889
static int is_accelerated_cmd(struct CommandList *c)
7890
{
7891 7892 7893 7894 7895 7896
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
7897
	int i, accel_cmds_out;
7898
	int refcount;
7899

7900
	do { /* wait for all outstanding ioaccel commands to drain out */
7901
		accel_cmds_out = 0;
7902 7903
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
7904 7905 7906 7907
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
7908
		}
7909
		if (accel_cmds_out <= 0)
7910
			break;
7911 7912 7913 7914
		msleep(100);
	} while (1);
}

7915 7916 7917 7918 7919 7920
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
7921
	return pci_register_driver(&hpsa_pci_driver);
7922 7923 7924 7925 7926 7927 7928
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

7929 7930
static void __attribute__((unused)) verify_offsets(void)
{
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
8000
	VERIFY_OFFSET(tag, 0x68);
8001 8002 8003 8004 8005 8006
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

8007 8008
module_init(hpsa_init);
module_exit(hpsa_cleanup);