hpsa.c 218.1 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/jiffies.h>
D
Don Brace 已提交
51
#include <linux/percpu-defs.h>
52
#include <linux/percpu.h>
D
Don Brace 已提交
53
#include <asm/unaligned.h>
54
#include <asm/div64.h>
55 56 57 58
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59
#define HPSA_DRIVER_VERSION "3.4.4-1"
60
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61
#define HPSA "hpsa"
62

63 64 65 66 67
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
85 86 87 88
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
89 90 91 92 93 94 95 96

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
97 98
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
99
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
100 101 102 103 104 105 106
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
107 108 109 110 111 112
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
113 114 115 116 117 118 119 120 121 122
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
123
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
124 125 126
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
127 128 129 130 131
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
132 133 134 135 136
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
137
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
138
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
154 155
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
156
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
157 158 159 160 161 162 163
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
164 165 166 167 168 169 170
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
171 172 173 174
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
175
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
176 177
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
178
	{0x21C4103C, "Smart Array", &SA5_access},
179 180 181 182
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
183
	{0x21C9103C, "Smart Array", &SA5_access},
184 185
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
186 187
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
188
	{0x21CE103C, "Smart HBA", &SA5_access},
189 190 191 192 193
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
194 195 196 197 198
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

199 200
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
201
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
202 203

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
204 205
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
206 207 208 209
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
210
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212
	int cmd_type);
213
static void hpsa_free_cmd_pool(struct ctlr_info *h);
214
#define VPD_PAGE (1 << 8)
215

J
Jeff Garzik 已提交
216
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 218 219
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
220
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221 222

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224
static int hpsa_slave_alloc(struct scsi_device *sdev);
225
static int hpsa_slave_configure(struct scsi_device *sdev);
226 227 228 229 230 231 232
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
233 234
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
235
	int nsgs, int min_blocks, u32 *bucket_map);
236
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
237
static inline u32 next_command(struct ctlr_info *h, u8 q);
238 239 240 241 242 243 244 245
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
246
static inline void finish_cmd(struct CommandList *c);
247
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
248 249
#define BOARD_NOT_READY 0
#define BOARD_READY 1
250
static void hpsa_drain_accel_commands(struct ctlr_info *h);
251
static void hpsa_flush_cache(struct ctlr_info *h);
252 253
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
254
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
255
static void hpsa_command_resubmit_worker(struct work_struct *work);
256 257 258 259 260 261 262

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

263 264 265 266 267 268
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

269 270 271 272 273 274 275 276
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
277
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
278 279 280
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
281 282
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
283 284
		break;
	case REPORT_LUNS_CHANGED:
285 286
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
287
	/*
288 289
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
290 291 292
	 */
		break;
	case POWER_OR_RESET:
293
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
294 295 296
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
297
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
298 299 300
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
301
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
302 303 304 305 306 307
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

308 309 310 311 312 313 314 315 316 317
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

367 368 369 370 371 372
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
373
	h = shost_to_hba(shost);
M
Mike Miller 已提交
374
	hpsa_scan_start(h->scsi_host);
375 376 377
	return count;
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

393 394 395 396 397 398
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

399 400
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
401 402
}

403 404 405 406 407 408 409 410
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
411
		h->transMethod & CFGTBL_Trans_Performant ?
412 413 414
			"performant" : "simple");
}

415 416 417 418 419 420 421 422 423 424 425
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

426
/* List of controllers which cannot be hard reset on kexec with reset_devices */
427 428 429 430 431 432 433 434 435 436 437 438 439
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
440
	0x40800E11, /* Smart Array 5i */
441 442
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
443 444 445 446 447 448
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
449 450
};

451 452
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
453
	0x40800E11, /* Smart Array 5i */
454 455 456 457 458 459
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
460 461 462 463 464 465 466 467 468 469 470 471
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
472 473 474 475
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
476 477 478 479 480 481 482 483 484 485 486
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
487 488 489 490
			return 0;
	return 1;
}

491 492 493 494 495 496
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

497 498 499 500 501 502 503
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
504
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
505 506
}

507 508 509 510 511
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

512 513
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
514
};
515 516 517 518 519 520 521
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
522 523 524 525 526 527
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
528
	unsigned char rlevel;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
552
	if (rlevel > RAID_UNKNOWN)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

632 633 634 635
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
636 637
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
638 639 640
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
641 642
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
643 644 645 646 647 648
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
649 650
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
651 652 653 654 655

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
656
	&dev_attr_hp_ssd_smart_path_enabled,
657 658 659 660 661 662 663 664
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
665
	&dev_attr_resettable,
666
	&dev_attr_hp_ssd_smart_path_status,
667
	&dev_attr_raid_offload_debug,
668 669 670
	NULL,
};

671 672 673
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

674 675
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
676 677
	.name			= HPSA,
	.proc_name		= HPSA,
678 679 680
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
681
	.change_queue_depth	= hpsa_change_queue_depth,
682 683
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
684
	.eh_abort_handler	= hpsa_eh_abort_handler,
685 686 687
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
688
	.slave_configure	= hpsa_slave_configure,
689 690 691 692 693 694
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
695
	.max_sectors = 8192,
696
	.no_write_same = 1,
697 698
};

699
static inline u32 next_command(struct ctlr_info *h, u8 q)
700 701
{
	u32 a;
702
	struct reply_queue_buffer *rq = &h->reply_queue[q];
703

704 705 706
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

707
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
708
		return h->access.command_completed(h, q);
709

710 711 712
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
713
		atomic_dec(&h->commands_outstanding);
714 715 716 717
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
718 719 720
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
721 722 723 724
	}
	return a;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

751 752 753 754 755 756
/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
757
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
758
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
759
		if (likely(h->msix_vector > 0))
760
			c->Header.ReplyQueue =
761
				raw_smp_processor_id() % h->nreply_queues;
762
	}
763 764
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

829 830 831
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
832 833
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
834 835 836
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
		set_ioaccel1_performant_mode(h, c);
837
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
838 839 840
		break;
	case CMD_IOACCEL2:
		set_ioaccel2_performant_mode(h, c);
841
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
842 843 844
		break;
	default:
		set_performant_mode(h, c);
845
		h->access.submit_command(h, c);
846
	}
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

863 864 865 866 867 868 869
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
870
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
871

872
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
873 874 875

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
876
			__set_bit(h->dev[i]->target, lun_taken);
877 878
	}

879 880 881 882 883 884
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

900
	if (n >= HPSA_MAX_DEVICES) {
901 902 903 904 905 906 907 908 909 910 911 912
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
913
	 * unit no, zero otherwise.
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
954 955
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
956 957 958 959 960 961 962 963 964 965 966 967 968 969
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

970 971 972 973 974 975 976 977 978
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
979

980 981 982 983 984 985 986 987 988 989 990 991 992
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
993
	h->dev[entry]->offload_config = new_entry->offload_config;
994
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
995
	h->dev[entry]->queue_depth = new_entry->queue_depth;
996

997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1006 1007
}

1008 1009 1010 1011 1012 1013 1014
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1015
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1016 1017
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1028 1029
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1030 1031 1032 1033 1034 1035 1036 1037
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

1038 1039 1040 1041 1042 1043 1044 1045
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1046
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1125 1126 1127 1128
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1129 1130
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1131 1132 1133
	return 0;
}

1134 1135 1136
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1137 1138 1139 1140
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1141 1142 1143 1144 1145 1146 1147 1148 1149
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1150
#define DEVICE_UPDATED 3
1151
	for (i = 0; i < haystack_size; i++) {
1152 1153
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1154 1155
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1156 1157 1158
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1159
				return DEVICE_SAME;
1160
			} else {
1161 1162 1163
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1164
				return DEVICE_CHANGED;
1165
			}
1166 1167 1168 1169 1170 1171
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1328 1329
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1362 1363 1364 1365
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1366
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1380 1381
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1395 1396
	 * If minor device attributes change, just update
	 * the existing device structure.
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1411 1412
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1413 1414 1415 1416
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1417 1418
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
				h->scsi_host->host_no,
				sd[i]->bus, sd[i]->target, sd[i]->lun);
			continue;
		}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1460 1461 1462 1463 1464 1465 1466 1467
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1468 1469
	spin_unlock_irqrestore(&h->devlock, flags);

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
				dev_warn(&h->pdev->dev,
					"didn't find c%db%dt%dl%d for removal.\n",
					hostno, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			}
1509 1510 1511 1512 1513 1514 1515
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1516 1517
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1536
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1563
	if (likely(sd)) {
1564
		atomic_set(&sd->ioaccel_cmds_out, 0);
1565 1566 1567
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1568 1569 1570 1571
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1592 1593
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1594
	/* nothing to do. */
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1620 1621
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1622
		return -ENOMEM;
1623
	}
1624 1625 1626
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1627 1628
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1629
			goto clean;
1630
		}
1631 1632 1633 1634 1635 1636 1637 1638
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1639
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1640 1641 1642 1643
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1644
	u32 chain_len;
1645 1646 1647

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1648 1649
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1650
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1651 1652
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1653
				PCI_DMA_TODEVICE);
1654 1655
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1656
		chain_sg->Addr = cpu_to_le64(0);
1657 1658
		return -1;
	}
1659
	chain_sg->Addr = cpu_to_le64(temp64);
1660
	return 0;
1661 1662 1663 1664 1665 1666 1667
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1668
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1669 1670 1671
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1672 1673
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1674 1675
}

1676 1677 1678 1679 1680 1681

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1682 1683 1684 1685 1686
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1687
	int retry = 0;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
1698
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1699
			if (c2->error_data.data_present !=
1700 1701 1702
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1703
				break;
1704
			}
1705 1706 1707 1708 1709 1710 1711 1712 1713
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1714
			retry = 1;
1715 1716 1717 1718 1719
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
1720
			retry = 1;
1721 1722 1723 1724 1725
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
1726
			retry = 1;
1727 1728 1729 1730 1731 1732 1733 1734 1735
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
1736
			retry = 1;
1737 1738 1739 1740 1741
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
1742
			retry = 1;
1743 1744 1745 1746 1747 1748 1749 1750
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
1751
		retry = 1;
1752 1753 1754 1755 1756 1757 1758
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1759
		retry = 1;
1760 1761 1762 1763 1764 1765 1766
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
1767 1768 1769
			"HP SSD Smart Path",
			c2->error_data.serv_response);
		retry = 1;
1770 1771
		break;
	}
1772 1773

	return retry;	/* retry on raid path? */
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
1797 1798 1799 1800
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
		goto retry_cmd;
1801
	}
1802 1803 1804 1805

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
		goto retry_cmd;

1806 1807
	cmd_free(h, c);
	cmd->scsi_done(cmd);
1808 1809 1810 1811 1812
	return;

retry_cmd:
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1813 1814
}

1815
static void complete_scsi_command(struct CommandList *cp)
1816 1817 1818 1819
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1820
	struct hpsa_scsi_dev_t *dev;
1821 1822 1823 1824

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1825
	unsigned long sense_data_size;
1826 1827

	ei = cp->err_info;
1828
	cmd = cp->scsi_cmd;
1829
	h = cp->h;
1830
	dev = cmd->device->hostdata;
1831 1832

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1833
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
1834
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1835
		hpsa_unmap_sg_chain_block(h, cp);
1836 1837 1838

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1839

1840 1841 1842
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

1843 1844 1845
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1846
	cmd->result |= ei->ScsiStatus;
1847

1848 1849
	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0) {
1850 1851
		if (cp->cmd_type == CMD_IOACCEL1)
			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1852 1853 1854 1855 1856 1857
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

	/* copy the sense data */
1858 1859 1860 1861 1862 1863 1864 1865
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1866

1867 1868 1869 1870 1871
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
1872 1873 1874 1875
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1876
		cp->Header.tag = c->tag;
1877 1878
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1879 1880 1881 1882 1883 1884 1885 1886

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
1887 1888 1889
			INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
			queue_work_on(raw_smp_processor_id(),
					h->resubmit_wq, &cp->work);
1890 1891
			return;
		}
1892 1893
	}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1907
			if (sense_key == ABORTED_COMMAND) {
1908
				cmd->result |= DID_SOFT_ERROR << 16;
1909 1910
				break;
			}
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
1946 1947
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1962
		cmd->result = DID_ERROR << 16;
1963 1964
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
1965 1966 1967
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
1968 1969
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
1970 1971 1972
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
1973 1974
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
1975 1976 1977
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
1978 1979
		dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
				cp->Request.CDB, ei->ScsiStatus);
1980 1981 1982
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
1983 1984
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
1985 1986
		break;
	case CMD_UNSOLICITED_ABORT:
1987
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1988 1989
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
1990 1991 1992
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
1993 1994
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
1995
		break;
1996 1997 1998 1999
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2000 2001 2002 2003 2004 2005 2006 2007
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2008 2009 2010 2011 2012 2013
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
2014
	cmd->scsi_done(cmd);
2015 2016 2017 2018 2019 2020 2021
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2022 2023 2024 2025
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2026 2027
}

2028
static int hpsa_map_one(struct pci_dev *pdev,
2029 2030 2031 2032 2033
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2034
	u64 addr64;
2035 2036 2037

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2038
		cp->Header.SGTotal = cpu_to_le16(0);
2039
		return 0;
2040 2041
	}

2042
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2043
	if (dma_mapping_error(&pdev->dev, addr64)) {
2044
		/* Prevent subsequent unmap of something never mapped */
2045
		cp->Header.SGList = 0;
2046
		cp->Header.SGTotal = cpu_to_le16(0);
2047
		return -1;
2048
	}
2049 2050 2051 2052 2053
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2054
	return 0;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2079 2080 2081 2082
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	/* If controller lockup detected, fake a hardware error. */
2083
	if (unlikely(lockup_detected(h)))
2084
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2085
	else
2086 2087 2088
		hpsa_scsi_do_simple_cmd_core(h, c);
}

2089
#define MAX_DRIVER_CMD_RETRIES 25
2090 2091 2092
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
2093
	int backoff_time = 10, retry_count = 0;
2094 2095

	do {
2096
		memset(c->err_info, 0, sizeof(*c->err_info));
2097 2098
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
2099 2100 2101 2102 2103
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2104
	} while ((check_for_unit_attention(h, c) ||
2105 2106
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2107 2108 2109
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

2110 2111
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2112
{
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2130
	struct device *d = &cp->h->pdev->dev;
2131
	const u8 *sd = ei->SenseInfo;
2132 2133 2134

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2135 2136 2137 2138 2139 2140
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
				sd[2] & 0x0f, sd[12], sd[13]);
		else
			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2141 2142 2143 2144 2145 2146 2147 2148 2149
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2150
		hpsa_print_cmd(h, "overrun condition", cp);
2151 2152 2153 2154 2155
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2156 2157
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2158 2159 2160
		}
		break;
	case CMD_PROTOCOL_ERR:
2161
		hpsa_print_cmd(h, "protocol error", cp);
2162 2163
		break;
	case CMD_HARDWARE_ERR:
2164
		hpsa_print_cmd(h, "hardware error", cp);
2165 2166
		break;
	case CMD_CONNECTION_LOST:
2167
		hpsa_print_cmd(h, "connection lost", cp);
2168 2169
		break;
	case CMD_ABORTED:
2170
		hpsa_print_cmd(h, "aborted", cp);
2171 2172
		break;
	case CMD_ABORT_FAILED:
2173
		hpsa_print_cmd(h, "abort failed", cp);
2174 2175
		break;
	case CMD_UNSOLICITED_ABORT:
2176
		hpsa_print_cmd(h, "unsolicited abort", cp);
2177 2178
		break;
	case CMD_TIMEOUT:
2179
		hpsa_print_cmd(h, "timed out", cp);
2180
		break;
2181
	case CMD_UNABORTABLE:
2182
		hpsa_print_cmd(h, "unabortable", cp);
2183
		break;
2184
	default:
2185 2186
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2187 2188 2189 2190 2191
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2192
			u16 page, unsigned char *buf,
2193 2194 2195 2196 2197 2198
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2199
	c = cmd_alloc(h);
2200

2201
	if (c == NULL) {
2202
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2203
		return -ENOMEM;
2204 2205
	}

2206 2207 2208 2209 2210
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2211 2212 2213
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2214
		hpsa_scsi_interpret_error(h, c);
2215 2216
		rc = -1;
	}
2217
out:
2218
	cmd_free(h, c);
2219 2220 2221
	return rc;
}

2222 2223 2224 2225 2226 2227 2228 2229
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2230
	c = cmd_alloc(h);
2231
	if (c == NULL) {			/* trouble... */
2232
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		return -ENOMEM;
	}

	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2248
	cmd_free(h, c);
2249 2250 2251
	return rc;
	}

2252 2253
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
	u8 reset_type)
2254 2255 2256 2257 2258
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2259
	c = cmd_alloc(h);
2260 2261

	if (c == NULL) {			/* trouble... */
2262
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2263
		return -ENOMEM;
2264 2265
	}

2266
	/* fill_cmd can't fail here, no data buffer to map. */
2267 2268 2269
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2270 2271 2272 2273 2274
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2275
		hpsa_scsi_interpret_error(h, c);
2276 2277
		rc = -1;
	}
2278
	cmd_free(h, c);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2292
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2293 2294 2295 2296 2297 2298 2299 2300
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2313 2314 2315 2316
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2341
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2342
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2343 2344 2345
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2346 2347
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2386
	c = cmd_alloc(h);
2387
	if (c == NULL) {
2388
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2389 2390 2391 2392 2393 2394
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2395
		cmd_free(h, c);
2396 2397 2398 2399 2400
		return -ENOMEM;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2401
		hpsa_scsi_interpret_error(h, c);
2402
		cmd_free(h, c);
2403 2404
		return -1;
	}
2405
	cmd_free(h, c);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2488 2489 2490 2491 2492 2493 2494 2495 2496
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2497
	this_device->offload_to_be_enabled = 0;
2498 2499 2500 2501

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2502 2503
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2504
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2505
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2521
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2522 2523 2524 2525 2526
out:
	kfree(buf);
	return;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2538
		return -ENOMEM;
2539
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2540 2541 2542 2543 2544 2545 2546
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2547
		void *buf, int bufsize,
2548 2549 2550 2551 2552 2553 2554
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2555
	c = cmd_alloc(h);
2556
	if (c == NULL) {			/* trouble... */
2557
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2558 2559
		return -1;
	}
2560 2561
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2562 2563 2564 2565 2566
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2567 2568 2569 2570 2571 2572
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2573
		hpsa_scsi_interpret_error(h, c);
2574
		rc = -1;
2575
	} else {
2576 2577 2578
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2579 2580 2581
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2582
				rld->extended_response_flag);
2583 2584
			rc = -1;
		}
2585
	}
2586
out:
2587
	cmd_free(h, c);
2588 2589 2590 2591
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2592
		struct ReportExtendedLUNdata *buf, int bufsize)
2593
{
2594 2595
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2626
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2627 2628 2629 2630 2631
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2632
	if (rc != 0)
2633 2634 2635 2636 2637 2638
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2639
	if (rc != 0)
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2653
 *  0xff (offline for unknown reasons)
2654 2655 2656
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2657
static int hpsa_volume_offline(struct ctlr_info *h,
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
					unsigned char scsi3addr[])
{
	struct CommandList *c;
	unsigned char *sense, sense_key, asc, ascq;
	int ldstat = 0;
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
	if (!c)
		return 0;
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
	hpsa_scsi_do_simple_cmd_core(h, c);
	sense = c->err_info->SenseInfo;
	sense_key = sense[2];
	asc = sense[12];
	ascq = sense[13];
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

2717
static int hpsa_update_device_info(struct ctlr_info *h,
2718 2719
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2720
{
2721 2722 2723 2724 2725 2726

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2727
	unsigned char *inq_buff;
2728
	unsigned char *obdr_sig;
2729

2730
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2755
		is_logical_dev_addr_mode(scsi3addr)) {
2756 2757
		int volume_offline;

2758
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2759 2760
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2761 2762 2763 2764
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
2765
	} else {
2766
		this_device->raid_level = RAID_UNKNOWN;
2767 2768
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
2769
		this_device->offload_to_be_enabled = 0;
2770
		this_device->volume_offline = 0;
2771
		this_device->queue_depth = h->nr_cmds;
2772
	}
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

2784 2785 2786 2787 2788 2789 2790 2791
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

2792
static unsigned char *ext_target_model[] = {
2793 2794 2795 2796
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
2797
	"P2000 G3 SAS",
2798
	"MSA 2040 SAS",
2799 2800 2801
	NULL,
};

2802
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2803 2804 2805
{
	int i;

2806 2807 2808
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
2809 2810 2811 2812 2813
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
2814
 * Puts non-external target logical volumes on bus 0, external target logical
2815 2816 2817 2818 2819 2820
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
2821
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2822
{
2823 2824 2825 2826
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
2827
		if (is_hba_lunid(lunaddrbytes))
2828
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2829
		else
2830 2831 2832 2833 2834
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
2835 2836
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
2837 2838 2839 2840 2841 2842
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
2843
	}
2844
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2845 2846 2847 2848
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
2849
 * For the external targets (arrays), we have to manually detect the enclosure
2850 2851 2852 2853 2854 2855 2856 2857
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
2858
static int add_ext_target_dev(struct ctlr_info *h,
2859
	struct hpsa_scsi_dev_t *tmpdevice,
2860
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2861
	unsigned long lunzerobits[], int *n_ext_target_devs)
2862 2863 2864
{
	unsigned char scsi3addr[8];

2865
	if (test_bit(tmpdevice->target, lunzerobits))
2866 2867 2868 2869 2870
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

2871 2872
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
2873

2874
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2875 2876
		return 0;

2877
	memset(scsi3addr, 0, 8);
2878
	scsi3addr[3] = tmpdevice->target;
2879 2880 2881
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

2882 2883 2884
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

2885
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2886 2887
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
2888 2889 2890 2891
			"configuration.");
		return 0;
	}

2892
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2893
		return 0;
2894
	(*n_ext_target_devs)++;
2895 2896 2897
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
2898 2899 2900
	return 1;
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
2912 2913 2914
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
2915 2916
	int i;

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
2927
}
2928

2929 2930 2931 2932 2933 2934 2935
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
2936
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
2937
	struct ReportLUNdata *logdev, u32 *nlogicals)
2938
{
2939
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
2940 2941 2942
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
2943
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
2944
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2945 2946
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
2947 2948
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
2949
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
2950 2951 2952
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
2953
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
2972 2973
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
2974
	struct ReportExtendedLUNdata *physdev_list,
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
2989 2990
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
2991 2992 2993 2994 2995 2996 2997 2998

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

2999 3000 3001
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3002
	int hba_mode_enabled;
3003 3004 3005 3006 3007
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3008
		return -ENOMEM;
3009 3010
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3011
	if (rc) {
3012
		kfree(ctlr_params);
3013
		return rc;
3014
	}
3015 3016 3017 3018 3019

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3020 3021
}

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3061
	struct ReportExtendedLUNdata *physdev_list = NULL;
3062
	struct ReportLUNdata *logdev_list = NULL;
3063
	struct bmic_identify_physical_device *id_phys = NULL;
3064 3065 3066
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3067 3068
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3069
	int i, n_ext_target_devs, ndevs_to_allocate;
3070
	int raid_ctlr_position;
3071
	int rescan_hba_mode;
3072
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3073

3074
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3075 3076
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3077
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3078
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3079

3080 3081
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3082 3083 3084 3085 3086
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3087
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3088 3089
	if (rescan_hba_mode < 0)
		goto out;
3090 3091 3092 3093 3094 3095 3096 3097

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3098 3099
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3100 3101
		goto out;

3102 3103 3104
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3105
	 */
3106
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3107 3108 3109

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3110 3111 3112 3113 3114 3115 3116
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3117 3118 3119 3120 3121 3122 3123 3124 3125
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3126
	if (is_scsi_rev_5(h))
3127 3128 3129 3130
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3131
	/* adjust our table of devices */
3132
	n_ext_target_devs = 0;
3133
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3134
		u8 *lunaddrbytes, is_OBDR = 0;
3135 3136

		/* Figure out where the LUN ID info is coming from */
3137 3138
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3139 3140 3141 3142 3143 3144

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3145 3146

		/* Get device type, vendor, model, device id */
3147 3148
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3149
			continue; /* skip it if we can't talk to it. */
3150
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3151 3152 3153
		this_device = currentsd[ncurrent];

		/*
3154
		 * For external target devices, we have to insert a LUN 0 which
3155 3156 3157 3158 3159
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3160
		if (add_ext_target_dev(h, tmpdevice, this_device,
3161
				lunaddrbytes, lunzerobits,
3162
				&n_ext_target_devs)) {
3163 3164 3165 3166 3167 3168
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3181
		switch (this_device->devtype) {
3182
		case TYPE_ROM:
3183 3184 3185 3186 3187 3188 3189
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3190 3191
			if (is_OBDR)
				ncurrent++;
3192 3193
			break;
		case TYPE_DISK:
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
			if (h->hba_mode_enabled) {
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
				ncurrent++;
				break;
			} else if (h->acciopath_status) {
				if (i >= nphysicals) {
					ncurrent++;
					break;
				}
			} else {
				if (i < nphysicals)
					break;
3207
				ncurrent++;
3208
				break;
3209
			}
3210 3211 3212 3213 3214
			if (h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2) {
				hpsa_get_ioaccel_drive_info(h, this_device,
							lunaddrbytes, id_phys);
				atomic_set(&this_device->ioaccel_cmds_out, 0);
3215 3216
				ncurrent++;
			}
3217 3218 3219 3220 3221
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3222 3223 3224 3225
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3239
		if (ncurrent >= HPSA_MAX_DEVICES)
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3250
	kfree(id_phys);
3251 3252
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3264 3265
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3266 3267 3268
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3269
static int hpsa_scatter_gather(struct ctlr_info *h,
3270 3271 3272 3273
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3274 3275
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
3276

3277
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3278 3279 3280 3281 3282 3283 3284 3285

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3286 3287 3288
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
3289
	scsi_for_each_sg(cmd, sg, use_sg, i) {
3290 3291 3292 3293 3294 3295
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
3296
		hpsa_set_sg_descriptor(curr_sg, sg);
3297 3298
		curr_sg++;
	}
3299 3300

	/* Back the pointer up to the last entry and mark it as "last". */
3301
	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3302 3303 3304 3305 3306 3307

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3308
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3309 3310 3311 3312
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3313
		return 0;
3314 3315 3316 3317
	}

sglist_finished:

3318
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3319
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3320 3321 3322
	return 0;
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3371
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3372
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3373
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3385
	/* TODO: implement chaining support */
3386 3387
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3388
		return IO_ACCEL_INELIGIBLE;
3389
	}
3390

3391 3392
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3393 3394
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3395
		return IO_ACCEL_INELIGIBLE;
3396
	}
3397

3398 3399 3400 3401 3402 3403 3404 3405
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3406 3407
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3408
		return use_sg;
3409
	}
3410 3411 3412 3413 3414 3415 3416

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3417 3418 3419
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3420 3421
			curr_sg++;
		}
3422
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3444
	c->Header.SGList = use_sg;
3445
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3446 3447 3448 3449 3450
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3451 3452
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3453
	/* Tag was already set at init time. */
3454
	enqueue_cmd_and_start_io(h, c);
3455 3456
	return 0;
}
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3468 3469
	c->phys_disk = dev;

3470
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3471
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3472 3473
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3486
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3502
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3503 3504 3505 3506 3507 3508
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3509
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3510 3511 3512
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3513
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3514 3515 3516
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3517 3518
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3519 3520 3521
		BUG();
		break;
	}
D
Don Brace 已提交
3522 3523 3524 3525 3526 3527 3528

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3529 3530
}

3531 3532
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3533
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3544 3545
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3546
		return IO_ACCEL_INELIGIBLE;
3547
	}
3548

3549 3550
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3551
		return IO_ACCEL_INELIGIBLE;
3552 3553
	}

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3564 3565
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3566
		return use_sg;
3567
	}
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3587 3588
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3589 3590
			break;
		case DMA_FROM_DEVICE:
3591 3592
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3593 3594
			break;
		case DMA_NONE:
3595 3596
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3597 3598 3599 3600 3601 3602 3603 3604
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3605 3606
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3607
	}
3608 3609 3610 3611

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
3612
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3613
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3614 3615 3616 3617 3618 3619 3620 3621
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
3622
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3633
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3634
{
3635 3636 3637 3638 3639 3640
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
3641 3642
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3643 3644
						cdb, cdb_len, scsi3addr,
						phys_disk);
3645 3646
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3647 3648
						cdb, cdb_len, scsi3addr,
						phys_disk);
3649 3650
}

3651 3652 3653 3654 3655
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
3656
		*map_index %= le16_to_cpu(map->data_disks_per_row);
3657 3658 3659 3660
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
3661 3662
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
3663 3664
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
3665
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3666
			/* select map index from next group */
D
Don Brace 已提交
3667
			*map_index += le16_to_cpu(map->data_disks_per_row);
3668 3669 3670
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
3671
			*map_index %= le16_to_cpu(map->data_disks_per_row);
3672 3673 3674 3675 3676
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
3695 3696 3697 3698 3699 3700 3701 3702
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
3703 3704 3705 3706 3707 3708
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
3709
	u16 strip_size;
3710 3711 3712
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
3713
	int offload_to_mirror;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
3724 3725
		if (block_cnt == 0)
			block_cnt = 256;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
3781 3782
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
3783 3784 3785
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
3786 3787 3788
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
3799
	(void) do_div(tmpdiv, strip_size);
3800 3801
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
3802
	(void) do_div(tmpdiv, strip_size);
3803 3804 3805 3806 3807 3808
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
3809 3810
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
3811 3812 3813 3814 3815 3816 3817
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
3818 3819
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
3820
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
3821
				le16_to_cpu(map->row_cnt);
3822 3823 3824 3825 3826 3827 3828 3829 3830
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
3831
		 */
D
Don Brace 已提交
3832
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3833
		if (dev->offload_to_mirror)
D
Don Brace 已提交
3834
			map_index += le16_to_cpu(map->data_disks_per_row);
3835
		dev->offload_to_mirror = !dev->offload_to_mirror;
3836 3837 3838 3839 3840
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
3841
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3842 3843 3844 3845 3846 3847

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
3848 3849
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
3850 3851 3852 3853 3854 3855 3856 3857 3858
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
3859
		if (le16_to_cpu(map->layout_map_count) <= 1)
3860 3861 3862 3863
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
3864 3865
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
3866
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
3867 3868
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
3884
		if (first_group != last_group)
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
3931
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3932
		r5or6_last_column =
D
Don Brace 已提交
3933
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3934 3935 3936 3937 3938 3939
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
3940
			le16_to_cpu(map->row_cnt);
3941 3942

		map_index = (first_group *
D
Don Brace 已提交
3943
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3944 3945 3946 3947
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
3948
	}
3949

3950 3951 3952
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

3953 3954
	c->phys_disk = dev->phys_disk[map_index];

3955
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
3956 3957 3958 3959
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4002 4003
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4004 4005
}

4006 4007 4008 4009
/* Submit commands down the "normal" RAID stack path */
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4010 4011 4012 4013 4014 4015
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4016
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4027 4028
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4029 4030
		break;
	case DMA_FROM_DEVICE:
4031 4032
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4033 4034
		break;
	case DMA_NONE:
4035 4036
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4037 4038 4039 4040 4041 4042 4043
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4044 4045
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4063
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4064 4065 4066 4067 4068 4069 4070 4071
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *c =
			container_of(work, struct CommandList, work);

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return;
	}
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	if (unlikely(lockup_detected(h))) {
		cmd->result = DID_ERROR << 16;
		cmd->scsi_done(cmd);
		return 0;
	}
	c = cmd_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}
4126 4127 4128 4129 4130 4131
	if (unlikely(lockup_detected(h))) {
		cmd->result = DID_ERROR << 16;
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return 0;
	}
4132

4133 4134
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {

		cmd->host_scribble = (unsigned char *) c;
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;

		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4166
static void hpsa_scan_complete(struct ctlr_info *h)
4167 4168 4169
{
	unsigned long flags;

4170 4171 4172 4173
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4174 4175
}

4176 4177 4178 4179 4180
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4181 4182 4183 4184 4185 4186 4187 4188
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4189

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4206 4207
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4208

4209 4210
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4211
	hpsa_scan_complete(h);
4212 4213
}

D
Don Brace 已提交
4214 4215
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4216 4217 4218 4219
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4220 4221 4222

	if (qdepth < 1)
		qdepth = 1;
4223 4224 4225 4226
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4227 4228
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4252 4253
	struct Scsi_Host *sh;
	int error;
4254

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4266
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4267
	sh->cmd_per_lun = sh->can_queue;
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4288 4289 4290 4291 4292
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
4293
	int rc;
4294 4295 4296 4297
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

4298
	c = cmd_alloc(h);
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;
4313
		rc = 0; /* Device ready. */
4314 4315 4316 4317 4318

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

4319 4320 4321
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4344
	cmd_free(h, c);
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4361 4362 4363 4364

	if (lockup_detected(h))
		return FAILED;

4365 4366 4367 4368 4369 4370
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4371 4372
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4373
	/* send a reset to the SCSI LUN which the command was sent to */
4374
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4375 4376 4377 4378 4379 4380 4381
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4397
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
4398
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4399
{
D
Don Brace 已提交
4400
	u64 tag;
4401 4402 4403
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
4404 4405 4406
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
4407 4408 4409 4410 4411
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
4412 4413 4414
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
4415
		return;
4416
	}
D
Don Brace 已提交
4417 4418 4419
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
4420 4421
}

4422
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4423
	struct CommandList *abort, int swizzle)
4424 4425 4426 4427
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
4428
	__le32 tagupper, taglower;
4429

4430
	c = cmd_alloc(h);
4431
	if (c == NULL) {	/* trouble... */
4432
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4433 4434 4435
		return -ENOMEM;
	}

4436 4437 4438
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
4439 4440
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
4441
	hpsa_scsi_do_simple_cmd_core(h, c);
4442
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4443
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4444
		__func__, tagupper, taglower);
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4456
			__func__, tagupper, taglower);
4457
		hpsa_scsi_interpret_error(h, c);
4458 4459 4460
		rc = -1;
		break;
	}
4461
	cmd_free(h, c);
4462 4463
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4464 4465 4466
	return rc;
}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
4484
	scmd = abort->scsi_cmd;
4485 4486 4487 4488 4489 4490 4491
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

4492 4493 4494 4495 4496 4497 4498
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
4512 4513 4514 4515 4516
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

4544 4545 4546 4547 4548 4549 4550 4551 4552
/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
4553 4554 4555 4556 4557 4558 4559 4560
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);

4561 4562
	return hpsa_send_abort(h, scsi3addr, abort, 0) &&
			hpsa_send_abort(h, scsi3addr, abort, 1);
4563 4564
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
4579
	__le32 tagupper, taglower;
4580
	int refcount;
4581 4582 4583 4584 4585 4586 4587

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

4588 4589 4590
	if (lockup_detected(h))
		return FAILED;

4591 4592 4593 4594 4595 4596
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
H
Hannes Reinecke 已提交
4597
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
4612 4613 4614 4615 4616 4617 4618
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
4619
	}
4620 4621
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4622
	as  = abort->scsi_cmd;
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
4634
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4635 4636 4637 4638 4639
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
4640
		cmd_free(h, abort);
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4652 4653 4654
		refcount = atomic_read(&abort->refcount);
		if (refcount < 2) {
			cmd_free(h, abort);
4655
			return SUCCESS;
4656 4657 4658
		} else {
			msleep(100);
		}
4659 4660 4661
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
4662
	cmd_free(h, abort);
4663 4664 4665
	return FAILED;
}

4666 4667 4668 4669 4670 4671
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
4672

4673 4674 4675 4676 4677 4678
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
4679
	int refcount;
4680
	unsigned long offset;
4681

4682 4683
	/*
	 * There is some *extremely* small but non-zero chance that that
4684 4685 4686 4687 4688 4689 4690 4691 4692
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 */
4693

4694
	offset = h->last_allocation; /* benignly racy */
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	for (;;) {
		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
		if (unlikely(i == h->nr_cmds)) {
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
			offset = (i + 1) % h->nr_cmds;
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
4712
	h->last_allocation = i; /* benignly racy */
4713 4714 4715 4716

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4717
	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4718 4719 4720 4721 4722 4723 4724
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

4725 4726
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4727 4728
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4729 4730 4731 4732 4733 4734 4735

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
4736 4737
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
4738

4739 4740 4741 4742
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
4743 4744 4745 4746
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
4747 4748
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
4749 4750 4751 4752 4753 4754 4755 4756
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4757
	memset(&arg64, 0, sizeof(arg64));
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
4773
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
4784
	int cmd, void __user *arg)
4785 4786 4787 4788 4789 4790 4791 4792 4793
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4794
	memset(&arg64, 0, sizeof(arg64));
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
4811
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4812 4813 4814 4815 4816 4817 4818 4819
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
4820

D
Don Brace 已提交
4821
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
4895
	u64 temp64;
4896
	int rc = 0;
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
4912
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4913 4914 4915
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
4916 4917
				rc = -EFAULT;
				goto out_kfree;
4918 4919 4920
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
4921
		}
4922
	}
4923
	c = cmd_alloc(h);
4924
	if (c == NULL) {
4925 4926
		rc = -ENOMEM;
		goto out_kfree;
4927 4928 4929 4930 4931 4932 4933
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
4934
		c->Header.SGTotal = cpu_to_le16(1);
4935 4936
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
4937
		c->Header.SGTotal = cpu_to_le16(0);
4938 4939 4940 4941 4942 4943 4944 4945 4946
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
4947
		temp64 = pci_map_single(h->pdev, buff,
4948
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4949 4950 4951
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
4952 4953 4954
			rc = -ENOMEM;
			goto out;
		}
4955 4956 4957
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4958
	}
4959
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4960 4961
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4962 4963 4964 4965 4966 4967
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4968 4969
		rc = -EFAULT;
		goto out;
4970
	}
4971
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4972
		iocommand.buf_size > 0) {
4973 4974
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4975 4976
			rc = -EFAULT;
			goto out;
4977 4978
		}
	}
4979
out:
4980
	cmd_free(h, c);
4981 4982 4983
out_kfree:
	kfree(buff);
	return rc;
4984 4985 4986 4987 4988 4989 4990 4991
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
4992
	u64 temp64;
4993 4994
	BYTE sg_used = 0;
	int status = 0;
4995 4996
	u32 left;
	u32 sz;
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5023
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5024 5025 5026
		status = -EINVAL;
		goto cleanup1;
	}
5027
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5028 5029 5030 5031
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5032
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5047
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5048
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5049
				status = -EFAULT;
5050 5051 5052 5053 5054 5055 5056 5057
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5058
	c = cmd_alloc(h);
5059 5060 5061 5062 5063 5064
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
5065 5066
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5067 5068 5069 5070 5071
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5072
			temp64 = pci_map_single(h->pdev, buff[i],
5073
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5074 5075 5076 5077
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5078 5079 5080
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5081
				goto cleanup0;
5082
			}
5083 5084 5085
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5086
		}
5087
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5088
	}
5089
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5090 5091
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5092 5093 5094 5095 5096
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5097
		goto cleanup0;
5098
	}
5099
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5100 5101
		int i;

5102 5103 5104 5105 5106
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5107
				goto cleanup0;
5108 5109 5110 5111 5112
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5113
cleanup0:
5114
	cmd_free(h, c);
5115 5116
cleanup1:
	if (buff) {
D
Don Brace 已提交
5117 5118
		int i;

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5135

5136 5137 5138
/*
 * ioctl
 */
D
Don Brace 已提交
5139
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5140 5141 5142
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5143
	int rc;
5144 5145 5146 5147 5148 5149 5150

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5151
		hpsa_scan_start(h->scsi_host);
5152 5153 5154 5155 5156 5157
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5158
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5159 5160
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5161
		atomic_inc(&h->passthru_cmds_avail);
5162
		return rc;
5163
	case CCISS_BIG_PASSTHRU:
5164
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5165 5166
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5167
		atomic_inc(&h->passthru_cmds_avail);
5168
		return rc;
5169 5170 5171 5172 5173
	default:
		return -ENOTTY;
	}
}

5174 5175
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
5176 5177 5178 5179 5180 5181
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
5182 5183
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

5195
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5196
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5197 5198 5199
	int cmd_type)
{
	int pci_dir = XFER_NONE;
5200
	struct CommandList *a; /* for commands to be aborted */
5201 5202 5203 5204 5205

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
5206
		c->Header.SGTotal = cpu_to_le16(1);
5207 5208
	} else {
		c->Header.SGList = 0;
5209
		c->Header.SGTotal = cpu_to_le16(0);
5210 5211 5212 5213 5214 5215 5216
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
5217
			if (page_code & VPD_PAGE) {
5218
				c->Request.CDB[1] = 0x01;
5219
				c->Request.CDB[2] = (page_code & 0xff);
5220 5221
			}
			c->Request.CDBLen = 6;
5222 5223
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
5234 5235
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5236 5237 5238 5239 5240 5241 5242 5243 5244
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
5245 5246 5247
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5248 5249 5250
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5251 5252
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5253 5254 5255
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
5256 5257
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5258 5259
			c->Request.Timeout = 0;
			break;
5260 5261
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
5262 5263
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5264 5265 5266 5267 5268 5269 5270 5271
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5272 5273
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
5274 5275
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5276 5277 5278 5279 5280 5281
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
5292 5293 5294
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
5295
			return -1;
5296 5297 5298 5299 5300 5301
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
5302 5303
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5304
			c->Request.Timeout = 0; /* Don't time out */
5305 5306
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
5307
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5308 5309 5310 5311 5312 5313
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
5314 5315 5316
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
D
Don Brace 已提交
5317 5318
			dev_dbg(&h->pdev->dev,
				"Abort Tag:0x%016llx request Tag:0x%016llx",
5319
				a->Header.tag, c->Header.tag);
5320
			c->Request.CDBLen = 16;
5321 5322 5323
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5324 5325 5326 5327 5328 5329
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
D
Don Brace 已提交
5330 5331
			memcpy(&c->Request.CDB[4], &a->Header.tag,
				sizeof(a->Header.tag));
5332 5333 5334 5335
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

5347
	switch (GET_DIR(c->Request.type_attr_dir)) {
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5360 5361 5362
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5363 5364 5365 5366 5367 5368 5369 5370 5371
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5372 5373
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5374 5375 5376 5377

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

5378
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5379
{
5380
	return h->access.command_completed(h, q);
5381 5382
}

5383
static inline bool interrupt_pending(struct ctlr_info *h)
5384 5385 5386 5387 5388 5389
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5390 5391
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5392 5393
}

5394 5395
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5396 5397 5398 5399 5400 5401 5402 5403
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

5404
static inline void finish_cmd(struct CommandList *c)
5405
{
5406
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5407 5408
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
5409
		complete_scsi_command(c);
5410 5411
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
5412 5413
}

5414 5415

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5416
{
5417 5418
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
5419
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5420 5421
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
5422 5423
}

5424
/* process completion of an indexed ("direct lookup") command */
5425
static inline void process_indexed_cmd(struct ctlr_info *h,
5426 5427 5428 5429 5430
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

5431
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5432 5433 5434 5435
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
5436 5437
}

5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

5457 5458 5459 5460 5461 5462
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
5463
{
5464 5465 5466 5467 5468 5469 5470
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
5471 5472 5473 5474 5475 5476 5477
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5478
	h->last_intr_timestamp = get_jiffies_64();
5479
	while (interrupt_pending(h)) {
5480
		raw_tag = get_next_completion(h, q);
5481
		while (raw_tag != FIFO_EMPTY)
5482
			raw_tag = next_command(h, q);
5483 5484 5485 5486
	}
	return IRQ_HANDLED;
}

5487
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5488
{
5489
	struct ctlr_info *h = queue_to_hba(queue);
5490
	u32 raw_tag;
5491
	u8 q = *(u8 *) queue;
5492 5493 5494 5495

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

5496
	h->last_intr_timestamp = get_jiffies_64();
5497
	raw_tag = get_next_completion(h, q);
5498
	while (raw_tag != FIFO_EMPTY)
5499
		raw_tag = next_command(h, q);
5500 5501 5502
	return IRQ_HANDLED;
}

5503
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5504
{
5505
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5506
	u32 raw_tag;
5507
	u8 q = *(u8 *) queue;
5508 5509 5510

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5511
	h->last_intr_timestamp = get_jiffies_64();
5512
	while (interrupt_pending(h)) {
5513
		raw_tag = get_next_completion(h, q);
5514
		while (raw_tag != FIFO_EMPTY) {
5515
			process_indexed_cmd(h, raw_tag);
5516
			raw_tag = next_command(h, q);
5517 5518 5519 5520 5521
		}
	}
	return IRQ_HANDLED;
}

5522
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5523
{
5524
	struct ctlr_info *h = queue_to_hba(queue);
5525
	u32 raw_tag;
5526
	u8 q = *(u8 *) queue;
5527

5528
	h->last_intr_timestamp = get_jiffies_64();
5529
	raw_tag = get_next_completion(h, q);
5530
	while (raw_tag != FIFO_EMPTY) {
5531
		process_indexed_cmd(h, raw_tag);
5532
		raw_tag = next_command(h, q);
5533 5534 5535 5536
	}
	return IRQ_HANDLED;
}

5537 5538 5539 5540
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
5541 5542
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
5553 5554
	__le32 paddr32;
	u32 tag;
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
5569
		return err;
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
5582
	paddr32 = cpu_to_le32(paddr64);
5583 5584 5585

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
5586
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
5587
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5588 5589 5590
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
5591 5592
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5593 5594 5595 5596
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5597
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
5598
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5599
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5600

D
Don Brace 已提交
5601
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5602 5603 5604

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
5605
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

5636
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
5637
	void __iomem *vaddr, u32 use_doorbell)
5638 5639 5640 5641 5642 5643 5644 5645
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5646
		writel(use_doorbell, vaddr + SA5_DOORBELL);
5647

5648
		/* PMC hardware guys tell us we need a 10 second delay after
5649 5650 5651 5652
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
5653
		msleep(10000);
5654 5655 5656 5657 5658 5659 5660 5661 5662
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
5663 5664 5665

		int rc = 0;

5666
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5667

5668
		/* enter the D3hot power management state */
5669 5670 5671
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
5672 5673 5674 5675

		msleep(500);

		/* enter the D0 power management state */
5676 5677 5678
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
5679 5680 5681 5682 5683 5684 5685

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
5686 5687 5688 5689
	}
	return 0;
}

5690
static void init_driver_version(char *driver_version, int len)
5691 5692
{
	memset(driver_version, 0, len);
5693
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5694 5695
}

5696
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

5712 5713
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
5714 5715 5716 5717 5718 5719 5720
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

5721
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
5741
/* This does a hard reset of the controller using PCI power management
5742
 * states or the using the doorbell register.
5743
 */
5744
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
5745
{
5746 5747 5748 5749 5750
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
5751
	u32 misc_fw_support;
5752
	int rc;
5753
	struct CfgTable __iomem *cfgtable;
5754
	u32 use_doorbell;
5755
	u16 command_register;
5756

5757 5758
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
5759 5760 5761 5762 5763 5764
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
5765 5766 5767
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
5768
	 */
5769

5770 5771
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
5772 5773
		return -ENODEV;
	}
5774 5775 5776 5777

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
5778

5779 5780 5781
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
5782

5783 5784 5785 5786 5787 5788 5789
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
5790

5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
5802 5803
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
5804
		goto unmap_cfgtable;
5805

5806 5807 5808
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
5809
	misc_fw_support = readl(&cfgtable->misc_fw_support);
5810 5811 5812 5813 5814 5815
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
5816 5817
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
5818
			rc = -ENOTSUPP; /* try soft reset */
5819 5820 5821
			goto unmap_cfgtable;
		}
	}
5822

5823 5824 5825
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
5826

5827 5828
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
5829

5830 5831 5832 5833
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

5834 5835 5836
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
5837
			"Failed waiting for board to become ready after hard reset\n");
5838 5839 5840
		goto unmap_cfgtable;
	}

5841 5842 5843 5844
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
5845 5846 5847
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
5848
	} else {
5849
		dev_info(&pdev->dev, "board ready after hard reset.\n");
5850 5851 5852 5853 5854 5855 5856 5857
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
5858 5859 5860 5861 5862 5863 5864
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
5865
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5866
{
5867
#ifdef HPSA_DEBUG
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
5888
	dev_info(dev, "   Max outstanding commands = %d\n",
5889 5890 5891 5892 5893 5894 5895 5896 5897
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
5898
}
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
5936
 * controllers that are capable. If not, we use legacy INTx mode.
5937 5938
 */

5939
static void hpsa_interrupt_mode(struct ctlr_info *h)
5940 5941
{
#ifdef CONFIG_PCI_MSI
5942 5943 5944 5945 5946 5947 5948
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
5949 5950

	/* Some boards advertise MSI but don't really support it */
5951 5952
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5953
		goto default_int_mode;
5954
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5955
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5956
		h->msix_vector = MAX_REPLY_QUEUES;
5957 5958
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
5959 5960 5961 5962 5963 5964 5965
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
5966
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5967 5968
			       "available\n", err);
		}
5969 5970 5971 5972
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
5973
	}
5974
single_msi_mode:
5975
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5976
		dev_info(&h->pdev->dev, "MSI capable controller\n");
5977
		if (!pci_enable_msi(h->pdev))
5978 5979
			h->msi_vector = 1;
		else
5980
			dev_warn(&h->pdev->dev, "MSI init failed\n");
5981 5982 5983 5984
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
5985
	h->intr[h->intr_mode] = h->pdev->irq;
5986 5987
}

5988
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6002 6003 6004
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6005 6006 6007 6008 6009 6010 6011
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6012 6013
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6014 6015 6016 6017
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6018
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6019
			/* addressing mode bits already removed */
6020 6021
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6022 6023 6024
				*memory_bar);
			return 0;
		}
6025
	dev_warn(&pdev->dev, "no memory BAR found\n");
6026 6027 6028
	return -ENODEV;
}

6029 6030
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6031
{
6032
	int i, iterations;
6033
	u32 scratchpad;
6034 6035 6036 6037
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6038

6039 6040 6041 6042 6043 6044 6045 6046 6047
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6048 6049
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6050
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6051 6052 6053
	return -ENODEV;
}

6054 6055 6056
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

6069
static int hpsa_find_cfgtables(struct ctlr_info *h)
6070
{
6071 6072 6073
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6074
	u32 trans_offset;
6075
	int rc;
6076

6077 6078 6079 6080
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6081
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6082
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6083 6084
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6085
		return -ENOMEM;
6086
	}
6087 6088 6089
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6090
	/* Find performant mode table. */
6091
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6092 6093 6094 6095 6096 6097 6098 6099
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

6100
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6101
{
6102 6103 6104 6105
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6106 6107 6108 6109 6110

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6111 6112 6113 6114 6115 6116
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6117 6118 6119
	}
}

6120 6121 6122 6123 6124 6125 6126 6127 6128
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6129 6130 6131 6132
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6133
static void hpsa_find_board_params(struct ctlr_info *h)
6134
{
6135
	hpsa_get_max_perf_mode_cmds(h);
6136
	h->nr_cmds = h->max_commands;
6137
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6138
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6139 6140
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6141
		h->max_cmd_sg_entries = 32;
6142
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6143 6144
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6145 6146 6147 6148 6149 6150
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6151
		h->maxsgentries = 31; /* default to traditional values */
6152
		h->chainsize = 0;
6153
	}
6154 6155 6156

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6157 6158 6159 6160
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6161 6162
}

6163 6164
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
6165
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6166
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6167 6168 6169 6170 6171
		return false;
	}
	return true;
}

6172
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6173
{
6174
	u32 driver_support;
6175

6176
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
6177 6178
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
6179
	driver_support |= ENABLE_SCSI_PREFETCH;
6180
#endif
6181 6182
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
6183 6184
}

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

6199
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6200 6201 6202 6203 6204
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6205
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6206 6207 6208 6209
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6210
			goto done;
6211
		/* delay and try again */
6212
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
6213
	}
6214 6215 6216
	return -ENODEV;
done:
	return 0;
6217 6218
}

6219
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6220 6221
{
	int i;
6222 6223
	u32 doorbell_value;
	unsigned long flags;
6224 6225 6226 6227 6228

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
6229
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6230 6231 6232
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6233
		if (!(doorbell_value & CFGTBL_ChangeReq))
6234
			goto done;
6235
		/* delay and try again */
6236
		msleep(MODE_CHANGE_WAIT_INTERVAL);
6237
	}
6238 6239 6240
	return -ENODEV;
done:
	return 0;
6241 6242
}

6243
/* return -ENODEV or other reason on error, 0 on success */
6244
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6245 6246 6247 6248 6249 6250 6251 6252
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6253

6254 6255
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6256
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6257
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6258 6259
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
6260
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6261 6262
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6263
	h->transMethod = CFGTBL_Trans_Simple;
6264
	return 0;
6265
error:
6266
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6267
	return -ENODEV;
6268 6269
}

6270
static int hpsa_pci_init(struct ctlr_info *h)
6271
{
6272
	int prod_index, err;
6273

6274 6275
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
6276
		return prod_index;
6277 6278
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6279

M
Matthew Garrett 已提交
6280 6281 6282
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6283
	err = pci_enable_device(h->pdev);
6284
	if (err) {
6285
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6286 6287 6288
		return err;
	}

6289
	err = pci_request_regions(h->pdev, HPSA);
6290
	if (err) {
6291 6292
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
6293 6294
		return err;
	}
6295 6296 6297

	pci_set_master(h->pdev);

6298
	hpsa_interrupt_mode(h);
6299
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6300
	if (err)
6301 6302
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6303 6304 6305 6306
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
6307
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6308
	if (err)
6309
		goto err_out_free_res;
6310 6311
	err = hpsa_find_cfgtables(h);
	if (err)
6312
		goto err_out_free_res;
6313
	hpsa_find_board_params(h);
6314

6315
	if (!hpsa_CISS_signature_present(h)) {
6316 6317 6318
		err = -ENODEV;
		goto err_out_free_res;
	}
6319
	hpsa_set_driver_support_bits(h);
6320
	hpsa_p600_dma_prefetch_quirk(h);
6321 6322
	err = hpsa_enter_simple_mode(h);
	if (err)
6323 6324 6325 6326
		goto err_out_free_res;
	return 0;

err_out_free_res:
6327 6328 6329 6330 6331 6332
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
6333
	pci_disable_device(h->pdev);
6334
	pci_release_regions(h->pdev);
6335 6336 6337
	return err;
}

6338
static void hpsa_hba_inquiry(struct ctlr_info *h)
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

6354
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
6355
{
6356
	int rc, i;
6357
	void __iomem *vaddr;
6358 6359 6360 6361

	if (!reset_devices)
		return 0;

6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
6378

6379
	pci_set_master(pdev);
6380

6381 6382 6383 6384 6385 6386 6387 6388
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

6389
	/* Reset the controller with a PCI power-cycle or via doorbell */
6390
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
6391

6392 6393
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
6394 6395
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
6396
	 */
6397
	if (rc)
6398
		goto out_disable;
6399 6400

	/* Now try to get the controller to respond to a no-op */
6401
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6402 6403 6404 6405 6406 6407 6408
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
6409 6410 6411 6412 6413

out_disable:

	pci_disable_device(pdev);
	return rc;
6414 6415
}

6416
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6431
		goto clean_up;
6432 6433
	}
	return 0;
6434 6435 6436
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
6437 6438 6439 6440 6441 6442 6443 6444 6445
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
6446 6447 6448 6449
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6450 6451 6452 6453 6454
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
6455 6456 6457 6458
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6459 6460
}

6461 6462
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
6463
	int i, cpu;
6464 6465 6466

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
6467
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6468 6469 6470 6471
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
	}
6489 6490
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
6491 6492
}

6493 6494
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
6495 6496 6497
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
6498
	int rc, i;
6499

6500 6501 6502 6503 6504 6505 6506
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

6507
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6508
		/* If performant mode and MSI-X, use multiple reply queues */
6509
		for (i = 0; i < h->msix_vector; i++) {
6510 6511 6512
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
6528
		hpsa_irq_affinity_hints(h);
6529 6530
	} else {
		/* Use single reply pool */
6531
		if (h->msix_vector > 0 || h->msi_vector) {
6532 6533 6534 6535 6536 6537 6538 6539 6540
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
6541 6542 6543 6544 6545 6546 6547 6548
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

6549
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

6573
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6574
{
6575
	hpsa_free_irqs(h);
6576
#ifdef CONFIG_PCI_MSI
6577 6578 6579 6580 6581 6582 6583
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
6584
#endif /* CONFIG_PCI_MSI */
6585 6586
}

6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
		pci_free_consistent(h->pdev, h->reply_queue_size,
			h->reply_queue[i].head, h->reply_queue[i].busaddr);
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
}

6601 6602 6603
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
6604 6605
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
6606
	kfree(h->ioaccel1_blockFetchTable);
6607
	kfree(h->blockFetchTable);
6608
	hpsa_free_reply_queues(h);
6609 6610 6611 6612 6613 6614
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
6615
	pci_disable_device(h->pdev);
6616 6617 6618 6619
	pci_release_regions(h->pdev);
	kfree(h);
}

6620
/* Called when controller lockup detected. */
6621
static void fail_all_outstanding_cmds(struct ctlr_info *h)
6622
{
6623 6624
	int i, refcount;
	struct CommandList *c;
6625

6626
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6627 6628
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
6629 6630 6631 6632 6633 6634
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
			c->err_info->CommandStatus = CMD_HARDWARE_ERR;
			finish_cmd(c);
		}
		cmd_free(h, c);
6635 6636 6637
	}
}

6638 6639
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
6640
	int cpu;
6641

6642
	for_each_online_cpu(cpu) {
6643 6644 6645 6646 6647 6648 6649
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

6650 6651 6652
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
6653
	u32 lockup_detected;
6654 6655 6656

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
6657 6658 6659 6660 6661 6662 6663 6664
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
			"lockup detected but scratchpad register is zero\n");
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
6665 6666
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6667
			lockup_detected);
6668
	pci_disable_device(h->pdev);
6669
	fail_all_outstanding_cmds(h);
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
6681
				(h->heartbeat_sample_interval), now))
6682 6683 6684 6685 6686 6687 6688 6689
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
6690
				(h->heartbeat_sample_interval), now))
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

6707
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6708 6709 6710 6711
{
	int i;
	char *event_type;

6712 6713 6714
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

6715
	/* Ask the controller to clear the events we're handling. */
6716 6717
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
6729
		hpsa_drain_accel_commands(h);
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
6750
	return;
6751 6752 6753 6754
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
6755 6756
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
6757
 */
6758
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6759 6760
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6761
		return 0;
6762 6763

	h->events = readl(&(h->cfgtable->event_notify));
6764 6765
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
6766

6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6781 6782 6783 6784
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6785
			return 1;
6786
		}
6787 6788 6789 6790
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
6791 6792
}

6793
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
6794 6795
{
	unsigned long flags;
6796
	struct ctlr_info *h = container_of(to_delayed_work(work),
6797 6798 6799 6800
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
6801
		return;
6802 6803 6804 6805 6806 6807 6808

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
6809
	spin_lock_irqsave(&h->lock, flags);
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
6824
		return;
6825 6826 6827 6828

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
6829 6830
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
6831 6832
}

6833 6834 6835 6836 6837
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

6838
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6839 6840 6841 6842 6843 6844
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

6845
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6846
{
6847
	int dac, rc;
6848
	struct ctlr_info *h;
6849 6850
	int try_soft_reset = 0;
	unsigned long flags;
6851
	u32 board_id;
6852 6853 6854 6855

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

6856 6857 6858 6859 6860 6861 6862
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
6876

6877 6878 6879 6880 6881
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6882 6883
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
6884
		return -ENOMEM;
6885

6886
	h->pdev = pdev;
6887
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6888
	INIT_LIST_HEAD(&h->offline_device_list);
6889
	spin_lock_init(&h->lock);
6890
	spin_lock_init(&h->offline_device_lock);
6891
	spin_lock_init(&h->scan_lock);
6892
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
6893

6894 6895 6896 6897 6898 6899 6900
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean1;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
6901 6902 6903 6904
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean1;
	}
6905

6906 6907
	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
6908 6909
	if (!h->lockup_detected) {
		rc = -ENOMEM;
6910
		goto clean1;
6911
	}
6912 6913
	set_lockup_detected_for_all_cpus(h, 0);

6914
	rc = hpsa_pci_init(h);
6915
	if (rc != 0)
6916 6917
		goto clean1;

6918
	sprintf(h->devname, HPSA "%d", number_of_controllers);
6919 6920 6921 6922
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
6923 6924
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
6925
		dac = 1;
6926 6927 6928 6929 6930 6931 6932 6933
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
6934 6935 6936 6937
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6938

6939
	if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6940
		goto clean2;
6941 6942
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
6943
	       h->intr[h->intr_mode], dac ? "" : " not");
6944 6945 6946
	rc = hpsa_allocate_cmd_pool(h);
	if (rc)
		goto clean2_and_free_irqs;
6947 6948
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
6949 6950
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
6951 6952

	pci_set_drvdata(pdev, h);
6953
	h->ndevices = 0;
6954
	h->hba_mode_enabled = 0;
6955 6956
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
6975
		hpsa_free_irqs(h);
6976
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6977 6978
					hpsa_intx_discard_completions);
		if (rc) {
6979 6980
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7013

7014 7015
		/* Enable Accelerated IO path at driver layer */
		h->acciopath_status = 1;
7016

7017

7018 7019 7020
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7021
	hpsa_hba_inquiry(h);
7022
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7023 7024 7025 7026 7027 7028

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7029 7030 7031
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7032
	return 0;
7033 7034

clean4:
7035
	hpsa_free_sg_chain_blocks(h);
7036
	hpsa_free_cmd_pool(h);
7037
clean2_and_free_irqs:
7038
	hpsa_free_irqs(h);
7039 7040
clean2:
clean1:
7041 7042
	if (h->resubmit_wq)
		destroy_workqueue(h->resubmit_wq);
7043 7044
	if (h->rescan_ctlr_wq)
		destroy_workqueue(h->rescan_ctlr_wq);
7045 7046
	if (h->lockup_detected)
		free_percpu(h->lockup_detected);
7047
	kfree(h);
7048
	return rc;
7049 7050 7051 7052 7053 7054
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7055 7056

	/* Don't bother trying to flush the cache if locked up */
7057
	if (unlikely(lockup_detected(h)))
7058
		return;
7059 7060 7061 7062
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7063
	c = cmd_alloc(h);
7064
	if (!c) {
7065
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7066 7067
		goto out_of_memory;
	}
7068 7069 7070 7071
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7072 7073
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
7074
out:
7075 7076
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
7077
	cmd_free(h, c);
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7093
	hpsa_free_irqs_and_disable_msix(h);
7094 7095
}

7096
static void hpsa_free_device_info(struct ctlr_info *h)
7097 7098 7099 7100 7101 7102 7103
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

7104
static void hpsa_remove_one(struct pci_dev *pdev)
7105 7106
{
	struct ctlr_info *h;
7107
	unsigned long flags;
7108 7109

	if (pci_get_drvdata(pdev) == NULL) {
7110
		dev_err(&pdev->dev, "unable to remove device\n");
7111 7112 7113
		return;
	}
	h = pci_get_drvdata(pdev);
7114 7115 7116 7117 7118

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
7119 7120 7121 7122
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
7123 7124 7125
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
7126 7127
	iounmap(h->transtable);
	iounmap(h->cfgtable);
7128
	hpsa_free_device_info(h);
7129
	hpsa_free_sg_chain_blocks(h);
7130 7131 7132 7133 7134 7135
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
7136
	hpsa_free_reply_queues(h);
7137
	kfree(h->cmd_pool_bits);
7138
	kfree(h->blockFetchTable);
7139
	kfree(h->ioaccel1_blockFetchTable);
7140
	kfree(h->ioaccel2_blockFetchTable);
7141
	kfree(h->hba_inquiry_data);
7142
	pci_disable_device(pdev);
7143
	pci_release_regions(pdev);
7144
	free_percpu(h->lockup_detected);
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
7160
	.name = HPSA,
7161
	.probe = hpsa_init_one,
7162
	.remove = hpsa_remove_one,
7163 7164 7165 7166 7167 7168
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
7182
	int nsgs, int min_blocks, u32 *bucket_map)
7183 7184 7185 7186 7187 7188
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
7189
		size = i + min_blocks;
7190 7191
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
7192
		for (j = 0; j < num_buckets; j++) {
7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

7203 7204
/* return -ENODEV or other reason on error, 0 on success */
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7205
{
7206 7207
	int i;
	unsigned long register_value;
7208 7209
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
7210 7211 7212
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
7213
	struct access_method access = SA5_performant_access;
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
7225
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7226 7227 7228 7229 7230 7231
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
7232
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7243
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7244 7245 7246 7247 7248 7249
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

7250 7251 7252 7253 7254 7255 7256
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

7257
	/* Controller spec: zero out this buffer. */
7258 7259
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7260

7261 7262
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
7263
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7264 7265 7266 7267 7268
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
7269
	writel(h->nreply_queues, &h->transtable->RepQCount);
7270 7271
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
7272 7273 7274

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
7275
		writel(h->reply_queue[i].busaddr,
7276 7277 7278
			&h->transtable->RepQAddr[i].lower);
	}

7279
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7280 7281 7282 7283 7284 7285 7286 7287
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7288 7289 7290 7291 7292 7293
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
7294
	}
7295
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7296 7297 7298 7299 7300
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
7301 7302
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
7303 7304
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
7305
		return -ENODEV;
7306
	}
7307
	/* Change the access methods to the performant access methods */
7308 7309 7310
	h->access = access;
	h->transMethod = transMethod;

7311 7312
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
7313
		return 0;
7314

7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
7325

7326
		/* initialize all reply queue entries to unused */
7327 7328 7329 7330
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
7331

7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
7343 7344
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7345 7346
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
7347
			cp->tag =
7348
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7349 7350
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7375
	}
7376
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7377 7378 7379 7380 7381 7382
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
7383 7384 7385 7386
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
7387 7388 7389 7390 7391
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
7404
		kmalloc(((h->ioaccel_maxsg + 1) *
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
7422 7423
}

7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

7461
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7462 7463
{
	u32 trans_support;
7464 7465
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
7466
	int i;
7467

7468 7469 7470
	if (hpsa_simple_mode)
		return;

7471 7472 7473 7474
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

7475 7476 7477 7478 7479 7480
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
7481 7482 7483 7484 7485 7486 7487
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
		if (ioaccel2_alloc_cmds_and_bft(h))
			goto clean_up;
		}
7488 7489
	}

7490
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7491
	hpsa_get_max_perf_mode_cmds(h);
7492
	/* Performant mode ring buffer and supporting data structures */
7493
	h->reply_queue_size = h->max_commands * sizeof(u64);
7494

7495
	for (i = 0; i < h->nreply_queues; i++) {
7496 7497 7498 7499 7500
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
		if (!h->reply_queue[i].head)
			goto clean_up;
7501 7502 7503 7504 7505
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

7506
	/* Need a block fetch table for performant mode */
7507
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7508
				sizeof(u32)), GFP_KERNEL);
7509
	if (!h->blockFetchTable)
7510 7511
		goto clean_up;

7512
	hpsa_enter_performant_mode(h, trans_support);
7513 7514 7515
	return;

clean_up:
7516
	hpsa_free_reply_queues(h);
7517 7518 7519
	kfree(h->blockFetchTable);
}

7520
static int is_accelerated_cmd(struct CommandList *c)
7521
{
7522 7523 7524 7525 7526 7527
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
7528
	int i, accel_cmds_out;
7529
	int refcount;
7530

7531
	do { /* wait for all outstanding ioaccel commands to drain out */
7532
		accel_cmds_out = 0;
7533 7534
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
7535 7536 7537 7538
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
7539
		}
7540
		if (accel_cmds_out <= 0)
7541
			break;
7542 7543 7544 7545
		msleep(100);
	} while (1);
}

7546 7547 7548 7549 7550 7551
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
7552
	return pci_register_driver(&hpsa_pci_driver);
7553 7554 7555 7556 7557 7558 7559
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

7560 7561
static void __attribute__((unused)) verify_offsets(void)
{
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
7631
	VERIFY_OFFSET(tag, 0x68);
7632 7633 7634 7635 7636 7637
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

7638 7639
module_init(hpsa_init);
module_exit(hpsa_cleanup);