intel_pstate.c 37.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>
#endif

41 42 43
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
44
#define BYT_TURBO_VIDS		0x66d
45

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51 52 53 54
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

55
static inline int32_t div_fp(s64 x, s64 y)
56
{
57
	return div64_s64((int64_t)x << FRAC_BITS, y);
58 59
}

60 61 62 63 64 65 66 67 68 69 70
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

71
struct sample {
72
	int32_t core_pct_busy;
73 74
	u64 aperf;
	u64 mperf;
75
	u64 tsc;
76
	int freq;
77
	ktime_t time;
78 79 80 81 82 83
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
84
	int	max_pstate_physical;
85
	int	scaling;
86 87 88
	int	turbo_pstate;
};

89
struct vid_data {
90 91 92
	int min;
	int max;
	int turbo;
93 94 95
	int32_t ratio;
};

96 97 98 99 100 101 102
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
103
	int32_t last_err;
104 105 106 107 108 109 110 111
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
112
	struct vid_data vid;
113 114
	struct _pid pid;

115
	ktime_t last_sample_time;
116 117
	u64	prev_aperf;
	u64	prev_mperf;
118
	u64	prev_tsc;
119
	struct sample sample;
120 121 122
#if IS_ENABLED(CONFIG_ACPI)
	struct acpi_processor_performance acpi_perf_data;
#endif
123 124 125 126 127 128 129 130 131 132 133 134
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

135 136
struct pstate_funcs {
	int (*get_max)(void);
137
	int (*get_max_physical)(void);
138 139
	int (*get_min)(void);
	int (*get_turbo)(void);
140
	int (*get_scaling)(void);
141 142
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
143 144
};

145 146 147
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
148 149
};

150 151
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
152
static int hwp_active;
153
static int no_acpi_perf;
154

155 156
struct perf_limits {
	int no_turbo;
157
	int turbo_disabled;
158 159 160 161
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
162 163
	int max_policy_pct;
	int max_sysfs_pct;
164 165
	int min_policy_pct;
	int min_sysfs_pct;
166 167
};

168 169 170 171 172 173 174 175 176 177 178 179 180 181
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
182
	.no_turbo = 0,
183
	.turbo_disabled = 0,
184 185 186 187
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
188 189
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
190 191
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
192 193
};

194 195 196 197 198 199
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#if IS_ENABLED(CONFIG_ACPI)
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	bool turbo_absent = false;
	int max_pstate_index;
	int min_pss_ctl, max_pss_ctl, turbo_pss_ctl;
	int i;

	cpu = all_cpu_data[policy->cpu];

	pr_debug("intel_pstate: default limits 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);

	if (!cpu->acpi_perf_data.shared_cpu_map &&
	    zalloc_cpumask_var_node(&cpu->acpi_perf_data.shared_cpu_map,
				    GFP_KERNEL, cpu_to_node(policy->cpu))) {
		return -ENOMEM;
	}

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return ret;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		return -EIO;

	pr_debug("intel_pstate: CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++)
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		return 0;

	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	min_pss_ctl = convert_to_native_pstate_format(cpu,
					cpu->acpi_perf_data.state_count - 1);
	/* Check if there is a turbo freq in _PSS */
	if (turbo_pss_ctl <= cpu->pstate.max_pstate &&
	    turbo_pss_ctl > cpu->pstate.min_pstate) {
		pr_debug("intel_pstate: no turbo range exists in _PSS\n");
274
		limits->no_turbo = limits->turbo_disabled = 1;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		cpu->pstate.turbo_pstate = cpu->pstate.max_pstate;
		turbo_absent = true;
	}

	/* Check if the max non turbo p state < Intel P state max */
	max_pstate_index = turbo_absent ? 0 : 1;
	max_pss_ctl = convert_to_native_pstate_format(cpu, max_pstate_index);
	if (max_pss_ctl < cpu->pstate.max_pstate &&
	    max_pss_ctl > cpu->pstate.min_pstate)
		cpu->pstate.max_pstate = max_pss_ctl;

	/* check If min perf > Intel P State min */
	if (min_pss_ctl > cpu->pstate.min_pstate &&
	    min_pss_ctl < cpu->pstate.max_pstate) {
		cpu->pstate.min_pstate = min_pss_ctl;
		policy->cpuinfo.min_freq = min_pss_ctl * cpu->pstate.scaling;
	}

	if (turbo_absent)
		policy->cpuinfo.max_freq = cpu->pstate.max_pstate *
						cpu->pstate.scaling;
	else {
		policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate *
						cpu->pstate.scaling;
		/*
		 * The _PSS table doesn't contain whole turbo frequency range.
		 * This just contains +1 MHZ above the max non turbo frequency,
		 * with control value corresponding to max turbo ratio. But
		 * when cpufreq set policy is called, it will call with this
		 * max frequency, which will cause a reduced performance as
		 * this driver uses real max turbo frequency as the max
		 * frequeny. So correct this frequency in _PSS table to
		 * correct max turbo frequency based on the turbo ratio.
		 * Also need to convert to MHz as _PSS freq is in MHz.
		 */
		cpu->acpi_perf_data.states[0].core_frequency =
						turbo_pss_ctl * 100;
	}

	pr_debug("intel_pstate: Updated limits using _PSS 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);
	pr_debug("intel_pstate: policy max_freq=%d Khz min_freq = %d KHz\n",
		 policy->cpuinfo.max_freq, policy->cpuinfo.min_freq);

	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	if (!no_acpi_perf)
		return 0;

	cpu = all_cpu_data[policy->cpu];
	acpi_processor_unregister_performance(policy->cpu);
	return 0;
}

#else
static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

347
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
348
			     int deadband, int integral) {
349 350 351
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
352
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

370
static signed int pid_calc(struct _pid *pid, int32_t busy)
371
{
372
	signed int result;
373 374 375
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

376
	fp_error = int_tofp(pid->setpoint) - busy;
377

378
	if (abs(fp_error) <= int_tofp(pid->deadband))
379 380 381 382 383 384
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

385 386 387 388 389 390 391 392
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
393 394 395 396 397 398
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

399 400
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
401 402

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
403
	result = result + (1 << (FRAC_BITS-1));
404 405 406 407 408
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
409 410 411
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
412

413
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
414 415 416 417 418
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
419

420 421 422 423 424 425
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

426 427 428 429 430 431 432
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
433
	limits->turbo_disabled =
434 435 436 437
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

D
Dirk Brandewie 已提交
438 439
static void intel_pstate_hwp_set(void)
{
440 441 442 443 444 445 446
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
447 448 449 450 451

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
452
		adj_range = limits->min_perf_pct * range / 100;
453
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
454 455 456
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

457
		adj_range = limits->max_perf_pct * range / 100;
458
		max = hw_min + adj_range;
459
		if (limits->no_turbo) {
460 461 462
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
463 464 465 466 467 468 469 470 471 472
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

473 474 475 476 477 478 479
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
480

481 482 483 484 485
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
486
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
487 488 489 490 491 492 493

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
494 495 496 497 498 499
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
500 501 502
	{NULL, NULL}
};

503
static void __init intel_pstate_debug_expose_params(void)
504
{
505
	struct dentry *debugfs_parent;
506 507
	int i = 0;

D
Dirk Brandewie 已提交
508 509
	if (hwp_active)
		return;
510 511 512 513 514
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
515 516
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
517 518 519 520 521 522 523 524 525 526 527
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
528
		return sprintf(buf, "%u\n", limits->object);		\
529 530
	}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

547 548 549 550 551 552 553 554 555 556 557
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

558 559 560 561 562 563
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
564 565
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
566
	else
567
		ret = sprintf(buf, "%u\n", limits->no_turbo);
568 569 570 571

	return ret;
}

572
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
573
			      const char *buf, size_t count)
574 575 576
{
	unsigned int input;
	int ret;
577

578 579 580
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
581 582

	update_turbo_state();
583
	if (limits->turbo_disabled) {
584
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
585
		return -EPERM;
586
	}
D
Dirk Brandewie 已提交
587

588
	limits->no_turbo = clamp_t(int, input, 0, 1);
589

D
Dirk Brandewie 已提交
590 591 592
	if (hwp_active)
		intel_pstate_hwp_set();

593 594 595 596
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
597
				  const char *buf, size_t count)
598 599 600
{
	unsigned int input;
	int ret;
601

602 603 604 605
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

606 607 608 609 610 611 612 613 614
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
615

D
Dirk Brandewie 已提交
616 617
	if (hwp_active)
		intel_pstate_hwp_set();
618 619 620 621
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
622
				  const char *buf, size_t count)
623 624 625
{
	unsigned int input;
	int ret;
626

627 628 629
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
630

631 632 633 634 635 636 637 638 639
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
640

D
Dirk Brandewie 已提交
641 642
	if (hwp_active)
		intel_pstate_hwp_set();
643 644 645 646 647 648 649 650 651
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
652
define_one_global_ro(turbo_pct);
653
define_one_global_ro(num_pstates);
654 655 656 657 658

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
659
	&turbo_pct.attr,
660
	&num_pstates.attr,
661 662 663 664 665 666 667
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

668
static void __init intel_pstate_sysfs_expose_params(void)
669
{
670
	struct kobject *intel_pstate_kobject;
671 672 673 674 675
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
676
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
677 678 679
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
680

681
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
682
{
683
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
684 685
}

686 687 688
static int byt_get_min_pstate(void)
{
	u64 value;
689

690
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
691
	return (value >> 8) & 0x7F;
692 693 694 695 696
}

static int byt_get_max_pstate(void)
{
	u64 value;
697

698
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
699
	return (value >> 16) & 0x7F;
700
}
701

702 703 704
static int byt_get_turbo_pstate(void)
{
	u64 value;
705

706
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
707
	return value & 0x7F;
708 709
}

710 711 712 713 714 715
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

716
	val = (u64)pstate << 8;
717
	if (limits->no_turbo && !limits->turbo_disabled)
718 719 720 721 722 723 724
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
725
	vid = ceiling_fp(vid_fp);
726

727 728 729
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

730 731
	val |= vid;

732
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
#define BYT_BCLK_FREQS 5
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};

static int byt_get_scaling(void)
{
	u64 value;
	int i;

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x3;

	BUG_ON(i > BYT_BCLK_FREQS);

	return byt_freq_table[i] * 100;
}

751 752 753 754 755
static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
756 757
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
758 759 760 761
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
762 763 764

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
765 766
}

767
static int core_get_min_pstate(void)
768 769
{
	u64 value;
770

771
	rdmsrl(MSR_PLATFORM_INFO, value);
772 773 774
	return (value >> 40) & 0xFF;
}

775
static int core_get_max_pstate_physical(void)
776 777
{
	u64 value;
778

779
	rdmsrl(MSR_PLATFORM_INFO, value);
780 781 782
	return (value >> 8) & 0xFF;
}

783
static int core_get_max_pstate(void)
784
{
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
818

819 820
skip_tar:
	return max_pstate;
821 822
}

823
static int core_get_turbo_pstate(void)
824 825 826
{
	u64 value;
	int nont, ret;
827

828
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
829
	nont = core_get_max_pstate();
830
	ret = (value) & 255;
831 832 833 834 835
	if (ret <= nont)
		ret = nont;
	return ret;
}

836 837 838 839 840
static inline int core_get_scaling(void)
{
	return 100000;
}

841
static void core_set_pstate(struct cpudata *cpudata, int pstate)
842 843 844
{
	u64 val;

845
	val = (u64)pstate << 8;
846
	if (limits->no_turbo && !limits->turbo_disabled)
847 848
		val |= (u64)1 << 32;

849
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
850 851
}

852 853 854 855 856 857 858 859 860 861 862 863 864
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

865 866 867 868 869 870 871 872 873 874 875
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
876
		.get_max_physical = core_get_max_pstate_physical,
877 878
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
879
		.get_scaling = core_get_scaling,
880 881 882 883
		.set = core_set_pstate,
	},
};

884 885 886 887
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
888
		.setpoint = 60,
889 890 891 892 893 894
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
895
		.get_max_physical = byt_get_max_pstate,
896
		.get_min = byt_get_min_pstate,
897
		.get_turbo = byt_get_turbo_pstate,
898
		.set = byt_set_pstate,
899
		.get_scaling = byt_get_scaling,
900
		.get_vid = byt_get_vid,
901 902 903
	},
};

904 905 906 907 908 909 910 911 912 913 914
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
915
		.get_max_physical = core_get_max_pstate_physical,
916 917
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
918
		.get_scaling = core_get_scaling,
919 920 921 922
		.set = core_set_pstate,
	},
};

923 924 925
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
926
	int max_perf_adj;
927
	int min_perf;
928

929
	if (limits->no_turbo || limits->turbo_disabled)
930 931
		max_perf = cpu->pstate.max_pstate;

932 933 934 935 936
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
937 938 939
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
940

941 942
	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
943 944
}

945
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
946 947 948
{
	int max_perf, min_perf;

949 950
	if (force) {
		update_turbo_state();
951

952
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
953

954
		pstate = clamp_t(int, pstate, min_perf, max_perf);
955

956 957 958
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
959
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
960

961 962
	cpu->pstate.current_pstate = pstate;

963
	pstate_funcs.set(cpu, pstate);
964 965 966 967
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
968 969
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
970
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
971
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
972
	cpu->pstate.scaling = pstate_funcs.get_scaling();
973

974 975
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
976
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
977 978
}

979
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
980
{
981
	struct sample *sample = &cpu->sample;
982
	int64_t core_pct;
983

984
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
985
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
986

987
	sample->freq = fp_toint(
988
		mul_fp(int_tofp(
989 990
			cpu->pstate.max_pstate_physical *
			cpu->pstate.scaling / 100),
991
			core_pct));
992

993
	sample->core_pct_busy = (int32_t)core_pct;
994 995 996 997 998
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
999
	unsigned long flags;
1000
	u64 tsc;
1001

1002
	local_irq_save(flags);
1003 1004
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1005 1006 1007 1008 1009
	if (cpu->prev_mperf == mperf) {
		local_irq_restore(flags);
		return;
	}

1010
	tsc = rdtsc();
1011
	local_irq_restore(flags);
1012

1013 1014
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
1015 1016
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1017
	cpu->sample.tsc =  tsc;
1018 1019
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1020
	cpu->sample.tsc -= cpu->prev_tsc;
1021

1022
	intel_pstate_calc_busy(cpu);
1023 1024 1025

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1026
	cpu->prev_tsc = tsc;
1027 1028
}

D
Dirk Brandewie 已提交
1029 1030 1031 1032 1033 1034 1035 1036
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1037 1038
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
1039
	int delay;
1040

1041
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
1042 1043 1044
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1045
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
1046
{
1047
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1048
	s64 duration_us;
1049
	u32 sample_time;
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1062
	core_busy = cpu->sample.core_pct_busy;
1063
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1064
	current_pstate = int_tofp(cpu->pstate.current_pstate);
1065
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1066

1067 1068 1069 1070 1071 1072 1073
	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
1074
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1075 1076
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
1077 1078
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
1079
				      int_tofp(duration_us));
1080 1081 1082
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1083
	return core_busy;
1084 1085 1086 1087
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1088
	int32_t busy_scaled;
1089
	struct _pid *pid;
1090
	signed int ctl;
1091 1092 1093 1094
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1095 1096 1097 1098 1099 1100

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

1101
	/* Negative values of ctl increase the pstate and vice versa */
1102
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
1113 1114
}

D
Dirk Brandewie 已提交
1115 1116 1117 1118 1119 1120 1121 1122
static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

1123 1124 1125 1126 1127
static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
1128

1129
	intel_pstate_adjust_busy_pstate(cpu);
1130

1131 1132 1133 1134
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
1135 1136
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1137 1138

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1139 1140
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1141
	ICPU(0x37, byt_params),
1142 1143
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1144
	ICPU(0x3d, core_params),
1145 1146 1147 1148
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1149
	ICPU(0x47, core_params),
1150
	ICPU(0x4c, byt_params),
1151
	ICPU(0x4e, core_params),
1152
	ICPU(0x4f, core_params),
1153
	ICPU(0x5e, core_params),
1154
	ICPU(0x56, core_params),
1155
	ICPU(0x57, knl_params),
1156 1157 1158 1159
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1160 1161 1162 1163 1164
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1165 1166 1167 1168
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1169 1170 1171
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1172 1173 1174 1175 1176 1177
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1178 1179 1180 1181

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

1182
	intel_pstate_get_cpu_pstates(cpu);
1183

1184
	init_timer_deferrable(&cpu->timer);
1185
	cpu->timer.data = (unsigned long)cpu;
1186
	cpu->timer.expires = jiffies + HZ/100;
D
Dirk Brandewie 已提交
1187 1188 1189 1190 1191 1192

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

1193 1194 1195 1196 1197
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

1198
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1211
	sample = &cpu->sample;
1212 1213 1214 1215 1216
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1217 1218 1219
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1220 1221
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
1222 1223
		pr_debug("intel_pstate: set performance\n");
		limits = &performance_limits;
1224
		return 0;
1225
	}
D
Dirk Brandewie 已提交
1226

1227 1228 1229 1230 1231 1232
	pr_debug("intel_pstate: set powersave\n");
	limits = &powersave_limits;
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
	limits->max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1233 1234

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1235 1236 1237 1238 1239 1240 1241 1242
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1243 1244

	/* Make sure min_perf_pct <= max_perf_pct */
1245
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1246

1247 1248 1249 1250
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
1251

D
Dirk Brandewie 已提交
1252 1253 1254
	if (hwp_active)
		intel_pstate_hwp_set();

1255 1256 1257 1258 1259
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1260
	cpufreq_verify_within_cpu_limits(policy);
1261

1262
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1263
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1264 1265 1266 1267 1268
		return -EINVAL;

	return 0;
}

1269
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1270
{
1271 1272
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1273

1274
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1275

1276
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
D
Dirk Brandewie 已提交
1277 1278 1279
	if (hwp_active)
		return;

1280
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1281 1282
}

1283
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1284 1285
{
	struct cpudata *cpu;
1286
	int rc;
1287 1288 1289 1290 1291 1292 1293

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1294
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1295 1296 1297 1298
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1299 1300
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1301 1302

	/* cpuinfo and default policy values */
1303 1304 1305
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1306 1307 1308 1309 1310 1311
	if (!no_acpi_perf)
		intel_pstate_init_perf_limits(policy);
	/*
	 * If there is no acpi perf data or error, we ignore and use Intel P
	 * state calculated limits, So this is not fatal error.
	 */
1312 1313 1314 1315 1316 1317
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1318 1319 1320 1321 1322
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	return intel_pstate_exit_perf_limits(policy);
}

1323 1324 1325 1326 1327 1328
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1329
	.exit		= intel_pstate_cpu_exit,
1330
	.stop_cpu	= intel_pstate_stop_cpu,
1331 1332 1333
	.name		= "intel_pstate",
};

1334
static int __initdata no_load;
D
Dirk Brandewie 已提交
1335
static int __initdata no_hwp;
1336
static int __initdata hwp_only;
1337
static unsigned int force_load;
1338

1339 1340
static int intel_pstate_msrs_not_valid(void)
{
1341
	if (!pstate_funcs.get_max() ||
1342 1343
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1344 1345 1346 1347
		return -ENODEV;

	return 0;
}
1348

1349
static void copy_pid_params(struct pstate_adjust_policy *policy)
1350 1351 1352 1353 1354 1355 1356 1357 1358
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1359
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1360 1361
{
	pstate_funcs.get_max   = funcs->get_max;
1362
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1363 1364
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1365
	pstate_funcs.get_scaling = funcs->get_scaling;
1366
	pstate_funcs.set       = funcs->set;
1367
	pstate_funcs.get_vid   = funcs->get_vid;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
#if IS_ENABLED(CONFIG_ACPI)

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1421 1422 1423 1424
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1425
	int  oem_pwr_table;
1426 1427 1428 1429
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1441 1442 1443 1444
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1445 1446 1447 1448 1449 1450 1451
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1461

1462 1463
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1464 1465 1466
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1467
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1468 1469 1470 1471 1472 1473
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1474 1475
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1476
			}
1477 1478 1479 1480 1481 1482
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1483
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1484 1485
#endif /* CONFIG_ACPI */

1486 1487
static int __init intel_pstate_init(void)
{
1488
	int cpu, rc = 0;
1489
	const struct x86_cpu_id *id;
1490
	struct cpu_defaults *cpu_def;
1491

1492 1493 1494
	if (no_load)
		return -ENODEV;

1495 1496 1497 1498
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1499 1500 1501 1502 1503 1504 1505
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1506
	cpu_def = (struct cpu_defaults *)id->driver_data;
1507

1508 1509
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1510

1511 1512 1513
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1514 1515
	pr_info("Intel P-state driver initializing.\n");

1516
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1517 1518 1519
	if (!all_cpu_data)
		return -ENOMEM;

1520 1521
	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
		pr_info("intel_pstate: HWP enabled\n");
1522
		hwp_active++;
1523
	}
D
Dirk Brandewie 已提交
1524

1525 1526 1527
	if (!hwp_active && hwp_only)
		goto out;

1528 1529 1530 1531 1532 1533
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1534

1535 1536
	return rc;
out:
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1547 1548 1549 1550
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1551 1552 1553 1554 1555 1556 1557
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1558 1559
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1560
		no_hwp = 1;
1561
	}
1562 1563
	if (!strcmp(str, "force"))
		force_load = 1;
1564 1565
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1566 1567 1568
	if (!strcmp(str, "no_acpi"))
		no_acpi_perf = 1;

1569 1570 1571 1572
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1573 1574 1575
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");