hrtimer.c 41.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46
#include <linux/debugobjects.h>
47 48 49 50 51 52 53 54

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
55
ktime_t ktime_get(void)
56 57 58 59 60 61 62
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
63
EXPORT_SYMBOL_GPL(ktime_get);
64 65 66 67 68 69

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
70
ktime_t ktime_get_real(void)
71 72 73 74 75 76 77 78 79 80 81 82
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
83 84 85 86 87 88
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
89
 */
90
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
91
{
92 93

	.clock_base =
94
	{
95 96 97
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
98
			.resolution = KTIME_LOW_RES,
99 100 101 102
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
103
			.resolution = KTIME_LOW_RES,
104 105
		},
	}
106 107 108 109 110 111 112 113
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
114
 * in normalized timespec format in the variable pointed to by @ts.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
131
EXPORT_SYMBOL_GPL(ktime_get_ts);
132

133 134 135 136
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
137
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 139
{
	ktime_t xtim, tomono;
140
	struct timespec xts, tom;
141 142 143 144
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
145
		xts = current_kernel_time();
146
		tom = wall_to_monotonic;
147 148
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
149
	xtim = timespec_to_ktime(xts);
150
	tomono = timespec_to_ktime(tom);
151 152 153
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
174 175 176
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
177
{
178
	struct hrtimer_clock_base *base;
179 180 181 182

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
183
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
184 185 186
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
187
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 189 190 191 192 193 194 195
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
196 197
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198
{
199 200
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
201

202 203
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
204 205 206 207 208 209 210 211 212 213 214

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
215
		if (unlikely(hrtimer_callback_running(timer)))
216 217 218 219
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
220 221
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
222 223 224 225 226 227 228
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

229
static inline struct hrtimer_clock_base *
230 231
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
232
	struct hrtimer_clock_base *base = timer->base;
233

234
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 236 237 238

	return base;
}

239
# define switch_hrtimer_base(t, b)	(b)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
270 271

EXPORT_SYMBOL_GPL(ktime_add_ns);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
296 297 298 299 300
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
301
u64 ktime_divns(const ktime_t kt, s64 div)
302
{
303
	u64 dclc;
304 305
	int sft = 0;

306
	dclc = ktime_to_ns(kt);
307 308 309 310 311 312 313 314
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
315
	return dclc;
316 317 318
}
#endif /* BITS_PER_LONG >= 64 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
504
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
526
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 528
	int res;

529
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
530

531 532 533
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
534
	 * the callback is executed in the hrtimer_interrupt context. The
535 536 537 538 539 540
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

541 542 543 544 545 546 547 548 549
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
609
	on_each_cpu(retrigger_next_event, NULL, 1);
610 611
}

612 613 614 615 616 617 618 619 620 621
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

638 639
static void __run_hrtimer(struct hrtimer *timer);

640 641 642 643 644 645 646 647 648 649
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
650 651 652 653 654 655 656 657
		/*
		 * XXX: recursion check?
		 * hrtimer_forward() should round up with timer granularity
		 * so that we never get into inf recursion here,
		 * it doesn't do that though
		 */
		__run_hrtimer(timer);
		return 1;
658 659 660 661 662 663 664
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
665
static int hrtimer_switch_to_hres(void)
666
{
I
Ingo Molnar 已提交
667 668
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
669 670 671
	unsigned long flags;

	if (base->hres_active)
672
		return 1;
673 674 675 676 677

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
678 679
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
680
		return 0;
681 682 683 684 685 686 687 688 689 690
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
691
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
692
	       smp_processor_id());
693
	return 1;
694 695 696 697 698 699
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
700
static inline int hrtimer_switch_to_hres(void) { return 0; }
701 702 703 704 705 706 707 708
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
709 710 711 712 713
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
{
	return 0;
}
714 715 716

#endif /* CONFIG_HIGH_RES_TIMERS */

717 718 719 720 721 722 723 724 725 726 727 728
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

729
/*
730
 * Counterpart to lock_hrtimer_base above:
731 732 733 734
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
735
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
736 737 738 739 740
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
741
 * @now:	forward past this time
742 743 744
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
745
 * Returns the number of overruns.
746
 */
D
Davide Libenzi 已提交
747
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
748
{
D
Davide Libenzi 已提交
749
	u64 orun = 1;
750
	ktime_t delta;
751

752
	delta = ktime_sub(now, hrtimer_get_expires(timer));
753 754 755 756

	if (delta.tv64 < 0)
		return 0;

757 758 759
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

760
	if (unlikely(delta.tv64 >= interval.tv64)) {
761
		s64 incr = ktime_to_ns(interval);
762 763

		orun = ktime_divns(delta, incr);
764 765
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
766 767 768 769 770 771 772
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
773
	hrtimer_add_expires(timer, interval);
774 775 776

	return orun;
}
S
Stas Sergeev 已提交
777
EXPORT_SYMBOL_GPL(hrtimer_forward);
778 779 780 781 782 783 784

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
785
static void enqueue_hrtimer(struct hrtimer *timer,
786
			    struct hrtimer_clock_base *base, int reprogram)
787 788 789 790
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
791
	int leftmost = 1;
792

793 794
	debug_hrtimer_activate(timer);

795 796 797 798 799 800 801 802 803 804
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
805 806
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
807
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
808
		} else {
809
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
810 811
			leftmost = 0;
		}
812 813 814
	}

	/*
815 816
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
817
	 */
I
Ingo Molnar 已提交
818
	if (leftmost) {
819 820 821 822 823 824 825 826 827 828 829 830 831 832
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

833 834
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
835 836 837 838 839
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
840
}
841 842 843 844 845

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
846 847 848 849 850
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
851
 */
852
static void __remove_hrtimer(struct hrtimer *timer,
853
			     struct hrtimer_clock_base *base,
854
			     unsigned long newstate, int reprogram)
855
{
856
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
857 858 859 860 861 862 863 864 865 866 867 868
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
869
	timer->state = newstate;
870 871 872 873 874 875
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
876
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
877
{
878
	if (hrtimer_is_queued(timer)) {
879 880 881 882 883 884 885 886 887 888
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
889
		debug_hrtimer_deactivate(timer);
890
		timer_stats_hrtimer_clear_start_info(timer);
891 892 893
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
894 895 896 897 898 899
		return 1;
	}
	return 0;
}

/**
T
Thomas Gleixner 已提交
900
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
901 902
 * @timer:	the timer to be added
 * @tim:	expiry time
903
 * @delta_ns:	"slack" range for the timer
904 905 906 907 908 909 910
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
911 912
hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
			const enum hrtimer_mode mode)
913
{
914
	struct hrtimer_clock_base *base, *new_base;
915
	unsigned long flags;
916
	int ret;
917 918 919 920 921 922 923 924 925

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

926
	if (mode == HRTIMER_MODE_REL) {
927
		tim = ktime_add_safe(tim, new_base->get_time());
928 929 930 931 932 933 934 935
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
936
		tim = ktime_add_safe(tim, base->resolution);
937 938
#endif
	}
939

940
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
941

942 943
	timer_stats_hrtimer_set_start_info(timer);

944 945 946 947 948 949
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
950 951 952 953 954

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
955 956 957
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
958
 * hrtimer_start - (re)start an hrtimer on the current CPU
959 960 961 962 963 964 965 966 967 968 969 970 971
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
	return hrtimer_start_range_ns(timer, tim, 0, mode);
}
972
EXPORT_SYMBOL_GPL(hrtimer_start);
973

974

975 976 977 978 979 980 981 982
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
983
 *    cannot be stopped
984 985 986
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
987
	struct hrtimer_clock_base *base;
988 989 990 991 992
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

993
	if (!hrtimer_callback_running(timer))
994 995 996 997 998 999 1000
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1001
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1018
		cpu_relax();
1019 1020
	}
}
1021
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1022 1023 1024 1025 1026 1027 1028

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1029
	struct hrtimer_clock_base *base;
1030 1031 1032 1033
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1034
	rem = hrtimer_expires_remaining(timer);
1035 1036 1037 1038
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1039
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1040

1041
#ifdef CONFIG_NO_HZ
1042 1043 1044 1045 1046 1047 1048 1049
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1050 1051
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1052 1053 1054 1055
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1056 1057
	spin_lock_irqsave(&cpu_base->lock, flags);

1058 1059 1060
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1061

1062 1063
			if (!base->first)
				continue;
1064

1065
			timer = rb_entry(base->first, struct hrtimer, node);
1066
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1067 1068 1069 1070
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1071
	}
1072 1073 1074

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1075 1076 1077 1078 1079 1080
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1081 1082
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1083
{
1084
	struct hrtimer_cpu_base *cpu_base;
1085

1086 1087
	memset(timer, 0, sizeof(struct hrtimer));

1088
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1089

1090
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1091 1092
		clock_id = CLOCK_MONOTONIC;

1093
	timer->base = &cpu_base->clock_base[clock_id];
1094
	INIT_LIST_HEAD(&timer->cb_entry);
1095
	hrtimer_init_timer_hres(timer);
1096 1097 1098 1099 1100 1101

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1102
}
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1116
EXPORT_SYMBOL_GPL(hrtimer_init);
1117 1118 1119 1120 1121 1122

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1123 1124
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1125 1126 1127
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1128
	struct hrtimer_cpu_base *cpu_base;
1129

1130 1131
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1132 1133 1134

	return 0;
}
1135
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1136

1137 1138 1139 1140 1141 1142 1143
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1144 1145
	WARN_ON(!irqs_disabled());

1146
	debug_hrtimer_deactivate(timer);
1147 1148 1149
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1150 1151 1152 1153 1154 1155 1156 1157 1158

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	/*
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
	 * reprogramming of the event hardware. This happens at the end of this
	 * function anyway.
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
		enqueue_hrtimer(timer, base, 0);
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1183
	int i;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1223 1224
				ktime_t expires;

1225
				expires = ktime_sub(hrtimer_get_expires(timer),
1226 1227 1228 1229 1230 1231
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1232
			__run_hrtimer(timer);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;
1259
	unsigned long flags;
1260 1261

	if (!hrtimer_hres_active())
1262 1263 1264 1265
		return;

	local_irq_save(flags);
	td = &__get_cpu_var(tick_cpu_device);
1266 1267
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
1268 1269 1270
	local_irq_restore(flags);
}

1271
#endif	/* CONFIG_HIGH_RES_TIMERS */
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1295 1296
}

1297
/*
1298
 * Called from hardirq context every jiffy
1299
 */
1300
void hrtimer_run_queues(void)
1301
{
1302
	struct rb_node *node;
1303 1304 1305
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1306

1307
	if (hrtimer_hres_active())
1308 1309
		return;

1310 1311
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1312

1313
		if (!base->first)
1314
			continue;
1315

1316
		if (gettime) {
1317 1318
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1319
		}
1320

1321
		spin_lock(&cpu_base->lock);
1322

1323 1324
		while ((node = base->first)) {
			struct hrtimer *timer;
1325

1326
			timer = rb_entry(node, struct hrtimer, node);
1327 1328
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1329 1330 1331 1332 1333 1334
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1335 1336
}

1337 1338 1339
/*
 * Sleep related functions:
 */
1340
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1353
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1354 1355 1356 1357 1358
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1359
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1360
{
1361
	hrtimer_init_sleeper(t, current);
1362

1363 1364
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1365
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1366 1367
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1368

1369 1370
		if (likely(t->task))
			schedule();
1371

1372
		hrtimer_cancel(&t->timer);
1373
		mode = HRTIMER_MODE_ABS;
1374 1375

	} while (t->task && !signal_pending(current));
1376

1377 1378
	__set_current_state(TASK_RUNNING);

1379
	return t->task == NULL;
1380 1381
}

1382 1383 1384 1385 1386
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1387
	rem = hrtimer_expires_remaining(timer);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1398
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1399
{
1400
	struct hrtimer_sleeper t;
1401
	struct timespec __user  *rmtp;
1402
	int ret = 0;
1403

1404 1405
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1406
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1407

1408
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1409
		goto out;
1410

1411
	rmtp = restart->nanosleep.rmtp;
1412
	if (rmtp) {
1413
		ret = update_rmtp(&t.timer, rmtp);
1414
		if (ret <= 0)
1415
			goto out;
1416
	}
1417 1418

	/* The other values in restart are already filled in */
1419 1420 1421 1422
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1423 1424
}

1425
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1426 1427 1428
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1429
	struct hrtimer_sleeper t;
1430
	int ret = 0;
1431 1432 1433 1434 1435
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1436

1437
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1438
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1439
	if (do_nanosleep(&t, mode))
1440
		goto out;
1441

1442
	/* Absolute timers do not update the rmtp value and restart: */
1443 1444 1445 1446
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1447

1448
	if (rmtp) {
1449
		ret = update_rmtp(&t.timer, rmtp);
1450
		if (ret <= 0)
1451
			goto out;
1452
	}
1453 1454

	restart = &current_thread_info()->restart_block;
1455
	restart->fn = hrtimer_nanosleep_restart;
1456 1457
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1458
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1459

1460 1461 1462 1463
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1464 1465
}

1466 1467 1468
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
1469
	struct timespec tu;
1470 1471 1472 1473 1474 1475 1476

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1477
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1478 1479
}

1480 1481 1482
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1483
static void __cpuinit init_hrtimers_cpu(int cpu)
1484
{
1485
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1486 1487
	int i;

1488 1489 1490 1491 1492
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1493
	hrtimer_init_hres(cpu_base);
1494 1495 1496 1497
}

#ifdef CONFIG_HOTPLUG_CPU

1498
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1499
				struct hrtimer_clock_base *new_base)
1500 1501 1502 1503 1504 1505
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1506
		BUG_ON(hrtimer_callback_running(timer));
1507
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1508 1509 1510 1511 1512 1513 1514

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1515
		timer->base = new_base;
1516
		/*
1517 1518 1519 1520 1521 1522 1523 1524
		 * Enqueue the timers on the new cpu, but do not reprogram 
		 * the timer as that would enable a deadlock between
		 * hrtimer_enqueue_reprogramm() running the timer and us still
		 * holding a nested base lock.
		 *
		 * Instead we tickle the hrtimer interrupt after the migration
		 * is done, which will run all expired timers and re-programm
		 * the timer device.
1525
		 */
1526
		enqueue_hrtimer(timer, new_base, 0);
1527

T
Thomas Gleixner 已提交
1528 1529
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1530 1531 1532
	}
}

1533
static int migrate_hrtimers(int scpu)
1534
{
1535
	struct hrtimer_cpu_base *old_base, *new_base;
1536
	int dcpu, i;
1537

1538 1539
	BUG_ON(cpu_online(scpu));
	old_base = &per_cpu(hrtimer_bases, scpu);
1540
	new_base = &get_cpu_var(hrtimer_bases);
1541

1542 1543 1544
	dcpu = smp_processor_id();

	tick_cancel_sched_timer(scpu);
1545 1546 1547 1548 1549
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1550
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1551

1552
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1553
		migrate_hrtimer_list(&old_base->clock_base[i],
1554
				     &new_base->clock_base[i]);
1555 1556
	}

1557
	spin_unlock(&old_base->lock);
1558
	spin_unlock_irq(&new_base->lock);
1559
	put_cpu_var(hrtimer_bases);
1560 1561 1562 1563 1564 1565 1566

	return dcpu;
}

static void tickle_timers(void *arg)
{
	hrtimer_peek_ahead_timers();
1567
}
1568

1569 1570
#endif /* CONFIG_HOTPLUG_CPU */

1571
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1572 1573
					unsigned long action, void *hcpu)
{
1574
	int scpu = (long)hcpu;
1575 1576 1577 1578

	switch (action) {

	case CPU_UP_PREPARE:
1579
	case CPU_UP_PREPARE_FROZEN:
1580
		init_hrtimers_cpu(scpu);
1581 1582 1583 1584
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1585
	case CPU_DEAD_FROZEN:
1586 1587 1588
	{
		int dcpu;

1589 1590 1591
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
		dcpu = migrate_hrtimers(scpu);
		smp_call_function_single(dcpu, tickle_timers, NULL, 0);
1592
		break;
1593
	}
1594 1595 1596 1597 1598 1599 1600 1601 1602
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1603
static struct notifier_block __cpuinitdata hrtimers_nb = {
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1614
/**
1615
 * schedule_hrtimeout_range - sleep until timeout
1616
 * @expires:	timeout value (ktime_t)
1617
 * @delta:	slack in expires timeout (ktime_t)
1618 1619 1620 1621 1622 1623
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1624 1625 1626 1627 1628
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1642
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1666
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1667 1668 1669

	hrtimer_init_sleeper(&t, current);

1670
	hrtimer_start_expires(&t.timer, mode);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1713
EXPORT_SYMBOL_GPL(schedule_hrtimeout);