perf_event.c 126.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60 61

/*
62
 * max perf event sample rate
63
 */
64
int sysctl_perf_event_sample_rate __read_mostly = 100000;
65

66
static atomic64_t perf_event_id;
67

T
Thomas Gleixner 已提交
68
/*
69
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
70
 */
71
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
72 73 74 75

/*
 * Architecture provided APIs - weak aliases:
 */
76
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
77
{
78
	return NULL;
T
Thomas Gleixner 已提交
79 80
}

81 82 83
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

84
int __weak
85
hw_perf_group_sched_in(struct perf_event *group_leader,
86
	       struct perf_cpu_context *cpuctx,
87
	       struct perf_event_context *ctx)
88 89 90
{
	return 0;
}
T
Thomas Gleixner 已提交
91

92
void __weak perf_event_print_debug(void)	{ }
93

94
static DEFINE_PER_CPU(int, perf_disable_count);
95 96 97

void perf_disable(void)
{
P
Peter Zijlstra 已提交
98 99
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
100 101 102 103
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
104
	if (!--__get_cpu_var(perf_disable_count))
105 106 107
		hw_perf_enable();
}

108
static void get_ctx(struct perf_event_context *ctx)
109
{
110
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 112
}

113 114
static void free_ctx(struct rcu_head *head)
{
115
	struct perf_event_context *ctx;
116

117
	ctx = container_of(head, struct perf_event_context, rcu_head);
118 119 120
	kfree(ctx);
}

121
static void put_ctx(struct perf_event_context *ctx)
122
{
123 124 125
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
126 127 128
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
129
	}
130 131
}

132
static void unclone_ctx(struct perf_event_context *ctx)
133 134 135 136 137 138 139
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

140
/*
141
 * If we inherit events we want to return the parent event id
142 143
 * to userspace.
 */
144
static u64 primary_event_id(struct perf_event *event)
145
{
146
	u64 id = event->id;
147

148 149
	if (event->parent)
		id = event->parent->id;
150 151 152 153

	return id;
}

154
/*
155
 * Get the perf_event_context for a task and lock it.
156 157 158
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
159
static struct perf_event_context *
160
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161
{
162
	struct perf_event_context *ctx;
163 164 165

	rcu_read_lock();
 retry:
166
	ctx = rcu_dereference(task->perf_event_ctxp);
167 168 169 170
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
171
		 * perf_event_task_sched_out, though the
172 173 174 175 176 177
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
178
		raw_spin_lock_irqsave(&ctx->lock, *flags);
179
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 182
			goto retry;
		}
183 184

		if (!atomic_inc_not_zero(&ctx->refcount)) {
185
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 187
			ctx = NULL;
		}
188 189 190 191 192 193 194 195 196 197
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
198
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199
{
200
	struct perf_event_context *ctx;
201 202 203 204 205
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
206
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 208 209 210
	}
	return ctx;
}

211
static void perf_unpin_context(struct perf_event_context *ctx)
212 213 214
{
	unsigned long flags;

215
	raw_spin_lock_irqsave(&ctx->lock, flags);
216
	--ctx->pin_count;
217
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 219 220
	put_ctx(ctx);
}

221 222
static inline u64 perf_clock(void)
{
223
	return cpu_clock(raw_smp_processor_id());
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

249 250 251 252 253 254
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
255 256 257 258 259 260 261 262 263

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

264 265 266 267 268 269 270 271 272
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

273
/*
274
 * Add a event from the lists for its context.
275 276
 * Must be called with ctx->mutex and ctx->lock held.
 */
277
static void
278
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279
{
280
	struct perf_event *group_leader = event->group_leader;
281 282

	/*
283 284
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
285 286
	 * leader's sibling list:
	 */
287 288 289
	if (group_leader == event) {
		struct list_head *list;

290 291 292
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

293 294 295
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
296 297 298 299
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

300
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
301 302
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310
/*
311
 * Remove a event from the lists for its context.
312
 * Must be called with ctx->mutex and ctx->lock held.
313
 */
314
static void
315
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316
{
317
	struct perf_event *sibling, *tmp;
318

319
	if (list_empty(&event->group_entry))
320
		return;
321 322
	ctx->nr_events--;
	if (event->attr.inherit_stat)
323
		ctx->nr_stat--;
324

325 326
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
327

328 329
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
330

331
	update_event_times(event);
332 333 334 335 336 337 338 339 340 341

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
342

343
	/*
344 345
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
346 347
	 * to the context list directly:
	 */
348
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349
		struct list_head *list;
350

351 352
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
353
		sibling->group_leader = sibling;
354 355 356

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
357 358 359
	}
}

360
static void
361
event_sched_out(struct perf_event *event,
362
		  struct perf_cpu_context *cpuctx,
363
		  struct perf_event_context *ctx)
364
{
365
	if (event->state != PERF_EVENT_STATE_ACTIVE)
366 367
		return;

368 369 370 371
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
372
	}
373 374 375
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
376

377
	if (!is_software_event(event))
378 379
		cpuctx->active_oncpu--;
	ctx->nr_active--;
380
	if (event->attr.exclusive || !cpuctx->active_oncpu)
381 382 383
		cpuctx->exclusive = 0;
}

384
static void
385
group_sched_out(struct perf_event *group_event,
386
		struct perf_cpu_context *cpuctx,
387
		struct perf_event_context *ctx)
388
{
389
	struct perf_event *event;
390

391
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 393
		return;

394
	event_sched_out(group_event, cpuctx, ctx);
395 396 397 398

	/*
	 * Schedule out siblings (if any):
	 */
399 400
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
401

402
	if (group_event->attr.exclusive)
403 404 405
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
406
/*
407
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
408
 *
409
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
410 411
 * remove it from the context list.
 */
412
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
413 414
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 416
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
417 418 419 420 421 422

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
423
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
424 425
		return;

426
	raw_spin_lock(&ctx->lock);
427 428
	/*
	 * Protect the list operation against NMI by disabling the
429
	 * events on a global level.
430 431
	 */
	perf_disable();
T
Thomas Gleixner 已提交
432

433
	event_sched_out(event, cpuctx, ctx);
434

435
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
436 437 438

	if (!ctx->task) {
		/*
439
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
440 441 442
		 * reservation:
		 */
		cpuctx->max_pertask =
443 444
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
445 446
	}

447
	perf_enable();
448
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
449 450 451 452
}


/*
453
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
454
 *
455
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
456
 *
457
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
458
 * call when the task is on a CPU.
459
 *
460 461
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
462 463
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
464
 * When called from perf_event_exit_task, it's OK because the
465
 * context has been detached from its task.
T
Thomas Gleixner 已提交
466
 */
467
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
468
{
469
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
470 471 472 473
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
474
		 * Per cpu events are removed via an smp call and
475
		 * the removal is always successful.
T
Thomas Gleixner 已提交
476
		 */
477 478 479
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
480 481 482 483
		return;
	}

retry:
484 485
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
486

487
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
488 489 490
	/*
	 * If the context is active we need to retry the smp call.
	 */
491
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
492
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
493 494 495 496 497
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
498
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
499 500
	 * succeed.
	 */
P
Peter Zijlstra 已提交
501
	if (!list_empty(&event->group_entry))
502
		list_del_event(event, ctx);
503
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
504 505
}

506
/*
507
 * Update total_time_enabled and total_time_running for all events in a group.
508
 */
509
static void update_group_times(struct perf_event *leader)
510
{
511
	struct perf_event *event;
512

513 514 515
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
516 517
}

518
/*
519
 * Cross CPU call to disable a performance event
520
 */
521
static void __perf_event_disable(void *info)
522
{
523
	struct perf_event *event = info;
524
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525
	struct perf_event_context *ctx = event->ctx;
526 527

	/*
528 529
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
530
	 */
531
	if (ctx->task && cpuctx->task_ctx != ctx)
532 533
		return;

534
	raw_spin_lock(&ctx->lock);
535 536

	/*
537
	 * If the event is on, turn it off.
538 539
	 * If it is in error state, leave it in error state.
	 */
540
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541
		update_context_time(ctx);
542 543 544
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
545
		else
546 547
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
548 549
	}

550
	raw_spin_unlock(&ctx->lock);
551 552 553
}

/*
554
 * Disable a event.
555
 *
556 557
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
558
 * remains valid.  This condition is satisifed when called through
559 560 561 562
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
563
 * is the current context on this CPU and preemption is disabled,
564
 * hence we can't get into perf_event_task_sched_out for this context.
565
 */
566
void perf_event_disable(struct perf_event *event)
567
{
568
	struct perf_event_context *ctx = event->ctx;
569 570 571 572
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
573
		 * Disable the event on the cpu that it's on
574
		 */
575 576
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
577 578 579 580
		return;
	}

 retry:
581
	task_oncpu_function_call(task, __perf_event_disable, event);
582

583
	raw_spin_lock_irq(&ctx->lock);
584
	/*
585
	 * If the event is still active, we need to retry the cross-call.
586
	 */
587
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
588
		raw_spin_unlock_irq(&ctx->lock);
589 590 591 592 593 594 595
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
596 597 598
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
599
	}
600

601
	raw_spin_unlock_irq(&ctx->lock);
602 603
}

604
static int
605
event_sched_in(struct perf_event *event,
606
		 struct perf_cpu_context *cpuctx,
607
		 struct perf_event_context *ctx)
608
{
609
	if (event->state <= PERF_EVENT_STATE_OFF)
610 611
		return 0;

612
	event->state = PERF_EVENT_STATE_ACTIVE;
613
	event->oncpu = smp_processor_id();
614 615 616 617 618
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

619 620 621
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
622 623 624
		return -EAGAIN;
	}

625
	event->tstamp_running += ctx->time - event->tstamp_stopped;
626

627
	if (!is_software_event(event))
628
		cpuctx->active_oncpu++;
629 630
	ctx->nr_active++;

631
	if (event->attr.exclusive)
632 633
		cpuctx->exclusive = 1;

634 635 636
	return 0;
}

637
static int
638
group_sched_in(struct perf_event *group_event,
639
	       struct perf_cpu_context *cpuctx,
640
	       struct perf_event_context *ctx)
641
{
642
	struct perf_event *event, *partial_group;
643 644
	int ret;

645
	if (group_event->state == PERF_EVENT_STATE_OFF)
646 647
		return 0;

648
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 650 651
	if (ret)
		return ret < 0 ? ret : 0;

652
	if (event_sched_in(group_event, cpuctx, ctx))
653 654 655 656 657
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
658
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659
		if (event_sched_in(event, cpuctx, ctx)) {
660
			partial_group = event;
661 662 663 664 665 666 667 668 669 670 671
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
672 673
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
674
			break;
675
		event_sched_out(event, cpuctx, ctx);
676
	}
677
	event_sched_out(group_event, cpuctx, ctx);
678 679 680 681

	return -EAGAIN;
}

682
/*
683
 * Work out whether we can put this event group on the CPU now.
684
 */
685
static int group_can_go_on(struct perf_event *event,
686 687 688 689
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
690
	 * Groups consisting entirely of software events can always go on.
691
	 */
692
	if (event->group_flags & PERF_GROUP_SOFTWARE)
693 694 695
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
696
	 * events can go on.
697 698 699 700 701
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
702
	 * events on the CPU, it can't go on.
703
	 */
704
	if (event->attr.exclusive && cpuctx->active_oncpu)
705 706 707 708 709 710 711 712
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

713 714
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
715
{
716 717 718 719
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
720 721
}

T
Thomas Gleixner 已提交
722
/*
723
 * Cross CPU call to install and enable a performance event
724 725
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
726 727 728 729
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 731 732
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
733
	int err;
T
Thomas Gleixner 已提交
734 735 736 737 738

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
739
	 * Or possibly this is the right context but it isn't
740
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
741
	 */
742
	if (ctx->task && cpuctx->task_ctx != ctx) {
743
		if (cpuctx->task_ctx || ctx->task != current)
744 745 746
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
747

748
	raw_spin_lock(&ctx->lock);
749
	ctx->is_active = 1;
750
	update_context_time(ctx);
T
Thomas Gleixner 已提交
751 752 753

	/*
	 * Protect the list operation against NMI by disabling the
754
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
755
	 */
756
	perf_disable();
T
Thomas Gleixner 已提交
757

758
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
759

760 761 762
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

763
	/*
764
	 * Don't put the event on if it is disabled or if
765 766
	 * it is in a group and the group isn't on.
	 */
767 768
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 770
		goto unlock;

771
	/*
772 773 774
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
775
	 */
776
	if (!group_can_go_on(event, cpuctx, 1))
777 778
		err = -EEXIST;
	else
779
		err = event_sched_in(event, cpuctx, ctx);
780

781 782
	if (err) {
		/*
783
		 * This event couldn't go on.  If it is in a group
784
		 * then we have to pull the whole group off.
785
		 * If the event group is pinned then put it in error state.
786
		 */
787
		if (leader != event)
788
			group_sched_out(leader, cpuctx, ctx);
789
		if (leader->attr.pinned) {
790
			update_group_times(leader);
791
			leader->state = PERF_EVENT_STATE_ERROR;
792
		}
793
	}
T
Thomas Gleixner 已提交
794

795
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
796 797
		cpuctx->max_pertask--;

798
 unlock:
799
	perf_enable();
800

801
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
802 803 804
}

/*
805
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
806
 *
807 808
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
809
 *
810
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
811 812
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
813 814
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
815 816
 */
static void
817 818
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
819 820 821 822 823 824
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
825
		 * Per cpu events are installed via an smp call and
826
		 * the install is always successful.
T
Thomas Gleixner 已提交
827 828
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
829
					 event, 1);
T
Thomas Gleixner 已提交
830 831 832 833 834
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
835
				 event);
T
Thomas Gleixner 已提交
836

837
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
838 839 840
	/*
	 * we need to retry the smp call.
	 */
841
	if (ctx->is_active && list_empty(&event->group_entry)) {
842
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
843 844 845 846 847
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
848
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
849 850
	 * succeed.
	 */
851 852
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
853
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
854 855
}

856
/*
857
 * Put a event into inactive state and update time fields.
858 859 860 861 862 863
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
864 865
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
866
{
867
	struct perf_event *sub;
868

869 870 871 872
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 874 875 876
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

877
/*
878
 * Cross CPU call to enable a performance event
879
 */
880
static void __perf_event_enable(void *info)
881
{
882
	struct perf_event *event = info;
883
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 885
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
886
	int err;
887

888
	/*
889 890
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
891
	 */
892
	if (ctx->task && cpuctx->task_ctx != ctx) {
893
		if (cpuctx->task_ctx || ctx->task != current)
894 895 896
			return;
		cpuctx->task_ctx = ctx;
	}
897

898
	raw_spin_lock(&ctx->lock);
899
	ctx->is_active = 1;
900
	update_context_time(ctx);
901

902
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
903
		goto unlock;
904
	__perf_event_mark_enabled(event, ctx);
905

906 907 908
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

909
	/*
910
	 * If the event is in a group and isn't the group leader,
911
	 * then don't put it on unless the group is on.
912
	 */
913
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914
		goto unlock;
915

916
	if (!group_can_go_on(event, cpuctx, 1)) {
917
		err = -EEXIST;
918
	} else {
919
		perf_disable();
920
		if (event == leader)
921
			err = group_sched_in(event, cpuctx, ctx);
922
		else
923
			err = event_sched_in(event, cpuctx, ctx);
924
		perf_enable();
925
	}
926 927 928

	if (err) {
		/*
929
		 * If this event can't go on and it's part of a
930 931
		 * group, then the whole group has to come off.
		 */
932
		if (leader != event)
933
			group_sched_out(leader, cpuctx, ctx);
934
		if (leader->attr.pinned) {
935
			update_group_times(leader);
936
			leader->state = PERF_EVENT_STATE_ERROR;
937
		}
938 939 940
	}

 unlock:
941
	raw_spin_unlock(&ctx->lock);
942 943 944
}

/*
945
 * Enable a event.
946
 *
947 948
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
949
 * remains valid.  This condition is satisfied when called through
950 951
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
952
 */
953
void perf_event_enable(struct perf_event *event)
954
{
955
	struct perf_event_context *ctx = event->ctx;
956 957 958 959
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
960
		 * Enable the event on the cpu that it's on
961
		 */
962 963
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
964 965 966
		return;
	}

967
	raw_spin_lock_irq(&ctx->lock);
968
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 970 971
		goto out;

	/*
972 973
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
974 975 976 977
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
978 979
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
980 981

 retry:
982
	raw_spin_unlock_irq(&ctx->lock);
983
	task_oncpu_function_call(task, __perf_event_enable, event);
984

985
	raw_spin_lock_irq(&ctx->lock);
986 987

	/*
988
	 * If the context is active and the event is still off,
989 990
	 * we need to retry the cross-call.
	 */
991
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 993 994 995 996 997
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
998 999
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1000

1001
 out:
1002
	raw_spin_unlock_irq(&ctx->lock);
1003 1004
}

1005
static int perf_event_refresh(struct perf_event *event, int refresh)
1006
{
1007
	/*
1008
	 * not supported on inherited events
1009
	 */
1010
	if (event->attr.inherit)
1011 1012
		return -EINVAL;

1013 1014
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1015 1016

	return 0;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1028
{
1029
	struct perf_event *event;
1030

1031
	raw_spin_lock(&ctx->lock);
1032
	ctx->is_active = 0;
1033
	if (likely(!ctx->nr_events))
1034
		goto out;
1035
	update_context_time(ctx);
1036

1037
	perf_disable();
1038 1039 1040 1041
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1042 1043 1044
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1045
	if (event_type & EVENT_FLEXIBLE)
1046
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047
			group_sched_out(event, cpuctx, ctx);
1048 1049

 out_enable:
1050
	perf_enable();
1051
 out:
1052
	raw_spin_unlock(&ctx->lock);
1053 1054
}

1055 1056 1057
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1058 1059 1060 1061
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1062
 * in them directly with an fd; we can only enable/disable all
1063
 * events via prctl, or enable/disable all events in a family
1064 1065
 * via ioctl, which will have the same effect on both contexts.
 */
1066 1067
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1068 1069
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070
		&& ctx1->parent_gen == ctx2->parent_gen
1071
		&& !ctx1->pin_count && !ctx2->pin_count;
1072 1073
}

1074 1075
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1076 1077 1078
{
	u64 value;

1079
	if (!event->attr.inherit_stat)
1080 1081 1082
		return;

	/*
1083
	 * Update the event value, we cannot use perf_event_read()
1084 1085
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1086
	 * we know the event must be on the current CPU, therefore we
1087 1088
	 * don't need to use it.
	 */
1089 1090
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1091 1092
		event->pmu->read(event);
		/* fall-through */
1093

1094 1095
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1096 1097 1098 1099 1100 1101 1102
		break;

	default:
		break;
	}

	/*
1103
	 * In order to keep per-task stats reliable we need to flip the event
1104 1105
	 * values when we flip the contexts.
	 */
1106 1107 1108
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1109

1110 1111
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1112

1113
	/*
1114
	 * Since we swizzled the values, update the user visible data too.
1115
	 */
1116 1117
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1118 1119 1120 1121 1122
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1123 1124
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1125
{
1126
	struct perf_event *event, *next_event;
1127 1128 1129 1130

	if (!ctx->nr_stat)
		return;

1131 1132
	update_context_time(ctx);

1133 1134
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1135

1136 1137
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1138

1139 1140
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1141

1142
		__perf_event_sync_stat(event, next_event);
1143

1144 1145
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1146 1147 1148
	}
}

T
Thomas Gleixner 已提交
1149
/*
1150
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1151 1152
 * with interrupts disabled.
 *
1153
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1154
 *
I
Ingo Molnar 已提交
1155
 * This does not protect us against NMI, but disable()
1156 1157 1158
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1159
 */
1160
void perf_event_task_sched_out(struct task_struct *task,
1161
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1162
{
1163
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 1165 1166
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1167
	struct pt_regs *regs;
1168
	int do_switch = 1;
T
Thomas Gleixner 已提交
1169

1170
	regs = task_pt_regs(task);
1171
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1172

1173
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1174 1175
		return;

1176 1177
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1178
	next_ctx = next->perf_event_ctxp;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1190 1191
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192
		if (context_equiv(ctx, next_ctx)) {
1193 1194
			/*
			 * XXX do we need a memory barrier of sorts
1195
			 * wrt to rcu_dereference() of perf_event_ctxp
1196
			 */
1197 1198
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1199 1200 1201
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1202

1203
			perf_event_sync_stat(ctx, next_ctx);
1204
		}
1205 1206
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1207
	}
1208
	rcu_read_unlock();
1209

1210
	if (do_switch) {
1211
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212 1213
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1214 1215
}

1216 1217
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1218 1219 1220
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1221 1222
	if (!cpuctx->task_ctx)
		return;
1223 1224 1225 1226

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1227
	ctx_sched_out(ctx, cpuctx, event_type);
1228 1229 1230
	cpuctx->task_ctx = NULL;
}

1231 1232 1233
/*
 * Called with IRQs disabled
 */
1234
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235
{
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 1247
}

1248
static void
1249
ctx_pinned_sched_in(struct perf_event_context *ctx,
1250
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1251
{
1252
	struct perf_event *event;
T
Thomas Gleixner 已提交
1253

1254 1255
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1256
			continue;
1257
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1258 1259
			continue;

1260
		if (group_can_go_on(event, cpuctx, 1))
1261
			group_sched_in(event, cpuctx, ctx);
1262 1263 1264 1265 1266

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1267 1268 1269
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1270
		}
1271
	}
1272 1273 1274 1275
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1276
		      struct perf_cpu_context *cpuctx)
1277 1278 1279
{
	struct perf_event *event;
	int can_add_hw = 1;
1280

1281 1282 1283
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1284
			continue;
1285 1286
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1287
		 * of events:
1288
		 */
1289
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1290 1291
			continue;

1292
		if (group_can_go_on(event, cpuctx, can_add_hw))
1293
			if (group_sched_in(event, cpuctx, ctx))
1294
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1295
	}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1317
		ctx_pinned_sched_in(ctx, cpuctx);
1318 1319 1320

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1321
		ctx_flexible_sched_in(ctx, cpuctx);
1322

1323
	perf_enable();
1324
 out:
1325
	raw_spin_unlock(&ctx->lock);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1349
/*
1350
 * Called from scheduler to add the events of the current task
1351 1352
 * with interrupts disabled.
 *
1353
 * We restore the event value and then enable it.
1354 1355
 *
 * This does not protect us against NMI, but enable()
1356 1357 1358
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1359
 */
1360
void perf_event_task_sched_in(struct task_struct *task)
1361
{
1362 1363
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1364

1365 1366
	if (likely(!ctx))
		return;
1367

1368 1369 1370
	if (cpuctx->task_ctx == ctx)
		return;

1371 1372
	perf_disable();

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1385 1386

	perf_enable();
1387 1388
}

1389 1390
#define MAX_INTERRUPTS (~0ULL)

1391
static void perf_log_throttle(struct perf_event *event, int enable);
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1479
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1480
{
1481
	struct hw_perf_event *hwc = &event->hw;
1482 1483 1484
	u64 period, sample_period;
	s64 delta;

1485
	period = perf_calculate_period(event, nsec, count);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1496 1497 1498

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1499
		perf_event_stop(event);
1500
		atomic64_set(&hwc->period_left, 0);
1501
		perf_event_start(event);
1502 1503
		perf_enable();
	}
1504 1505
}

1506
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507
{
1508 1509
	struct perf_event *event;
	struct hw_perf_event *hwc;
1510 1511
	u64 interrupts, now;
	s64 delta;
1512

1513
	raw_spin_lock(&ctx->lock);
1514
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1515
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1516 1517
			continue;

1518 1519 1520
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1521
		hwc = &event->hw;
1522 1523 1524

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1525

1526
		/*
1527
		 * unthrottle events on the tick
1528
		 */
1529
		if (interrupts == MAX_INTERRUPTS) {
1530
			perf_log_throttle(event, 1);
1531
			perf_disable();
1532
			event->pmu->unthrottle(event);
1533
			perf_enable();
1534 1535
		}

1536
		if (!event->attr.freq || !event->attr.sample_freq)
1537 1538
			continue;

1539
		perf_disable();
1540 1541 1542 1543
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1544

1545 1546
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1547
		perf_enable();
1548
	}
1549
	raw_spin_unlock(&ctx->lock);
1550 1551
}

1552
/*
1553
 * Round-robin a context's events:
1554
 */
1555
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1556
{
1557
	raw_spin_lock(&ctx->lock);
1558 1559 1560 1561

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1562
	raw_spin_unlock(&ctx->lock);
1563 1564
}

1565
void perf_event_task_tick(struct task_struct *curr)
1566
{
1567
	struct perf_cpu_context *cpuctx;
1568
	struct perf_event_context *ctx;
1569
	int rotate = 0;
1570

1571
	if (!atomic_read(&nr_events))
1572 1573
		return;

1574
	cpuctx = &__get_cpu_var(perf_cpu_context);
1575 1576 1577
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1578

1579 1580 1581
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1582

1583
	perf_ctx_adjust_freq(&cpuctx->ctx);
1584
	if (ctx)
1585
		perf_ctx_adjust_freq(ctx);
1586

1587 1588 1589 1590
	if (!rotate)
		return;

	perf_disable();
1591
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1592
	if (ctx)
1593
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1594

1595
	rotate_ctx(&cpuctx->ctx);
1596 1597
	if (ctx)
		rotate_ctx(ctx);
1598

1599
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1600
	if (ctx)
1601
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1602
	perf_enable();
T
Thomas Gleixner 已提交
1603 1604
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1620
/*
1621
 * Enable all of a task's events that have been marked enable-on-exec.
1622 1623
 * This expects task == current.
 */
1624
static void perf_event_enable_on_exec(struct task_struct *task)
1625
{
1626 1627
	struct perf_event_context *ctx;
	struct perf_event *event;
1628 1629
	unsigned long flags;
	int enabled = 0;
1630
	int ret;
1631 1632

	local_irq_save(flags);
1633 1634
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1635 1636
		goto out;

1637
	__perf_event_task_sched_out(ctx);
1638

1639
	raw_spin_lock(&ctx->lock);
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1651 1652 1653
	}

	/*
1654
	 * Unclone this context if we enabled any event.
1655
	 */
1656 1657
	if (enabled)
		unclone_ctx(ctx);
1658

1659
	raw_spin_unlock(&ctx->lock);
1660

1661
	perf_event_task_sched_in(task);
1662 1663 1664 1665
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1666
/*
1667
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1668
 */
1669
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1670
{
1671
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1672 1673
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1674

1675 1676 1677 1678
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1679 1680
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1681 1682 1683 1684
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1685
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1686
	update_context_time(ctx);
1687
	update_event_times(event);
1688
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1689

P
Peter Zijlstra 已提交
1690
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1691 1692
}

1693
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1694 1695
{
	/*
1696 1697
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1698
	 */
1699 1700 1701 1702
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1703 1704 1705
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1706
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1707
		update_context_time(ctx);
1708
		update_event_times(event);
1709
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1710 1711
	}

1712
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1713 1714
}

1715
/*
1716
 * Initialize the perf_event context in a task_struct:
1717 1718
 */
static void
1719
__perf_event_init_context(struct perf_event_context *ctx,
1720 1721
			    struct task_struct *task)
{
1722
	raw_spin_lock_init(&ctx->lock);
1723
	mutex_init(&ctx->mutex);
1724 1725
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1726 1727 1728 1729 1730
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1731
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1732
{
1733
	struct perf_event_context *ctx;
1734
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1735
	struct task_struct *task;
1736
	unsigned long flags;
1737
	int err;
T
Thomas Gleixner 已提交
1738

1739
	if (pid == -1 && cpu != -1) {
1740
		/* Must be root to operate on a CPU event: */
1741
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1742 1743
			return ERR_PTR(-EACCES);

1744
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1745 1746 1747
			return ERR_PTR(-EINVAL);

		/*
1748
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1749 1750 1751
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1752
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1753 1754 1755 1756
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1757
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1774
	/*
1775
	 * Can't attach events to a dying task.
1776 1777 1778 1779 1780
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1781
	/* Reuse ptrace permission checks for now. */
1782 1783 1784 1785 1786
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1787
	ctx = perf_lock_task_context(task, &flags);
1788
	if (ctx) {
1789
		unclone_ctx(ctx);
1790
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1791 1792
	}

1793
	if (!ctx) {
1794
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1795 1796 1797
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1798
		__perf_event_init_context(ctx, task);
1799
		get_ctx(ctx);
1800
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801 1802 1803 1804 1805
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1806
			goto retry;
1807
		}
1808
		get_task_struct(task);
1809 1810
	}

1811
	put_task_struct(task);
T
Thomas Gleixner 已提交
1812
	return ctx;
1813 1814 1815 1816

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1817 1818
}

L
Li Zefan 已提交
1819 1820
static void perf_event_free_filter(struct perf_event *event);

1821
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1822
{
1823
	struct perf_event *event;
P
Peter Zijlstra 已提交
1824

1825 1826 1827
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1828
	perf_event_free_filter(event);
1829
	kfree(event);
P
Peter Zijlstra 已提交
1830 1831
}

1832
static void perf_pending_sync(struct perf_event *event);
1833

1834
static void free_event(struct perf_event *event)
1835
{
1836
	perf_pending_sync(event);
1837

1838 1839 1840 1841 1842 1843 1844 1845
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1846
	}
1847

1848 1849 1850
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1851 1852
	}

1853 1854
	if (event->destroy)
		event->destroy(event);
1855

1856 1857
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1858 1859
}

1860
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1861
{
1862
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1863

1864
	WARN_ON_ONCE(ctx->parent_ctx);
1865
	mutex_lock(&ctx->mutex);
1866
	perf_event_remove_from_context(event);
1867
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1868

1869 1870 1871 1872
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1873

1874
	free_event(event);
T
Thomas Gleixner 已提交
1875 1876 1877

	return 0;
}
1878
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1879

1880 1881 1882 1883
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1884
{
1885
	struct perf_event *event = file->private_data;
1886

1887
	file->private_data = NULL;
1888

1889
	return perf_event_release_kernel(event);
1890 1891
}

1892
static int perf_event_read_size(struct perf_event *event)
1893 1894 1895 1896 1897
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1898
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899 1900
		size += sizeof(u64);

1901
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902 1903
		size += sizeof(u64);

1904
	if (event->attr.read_format & PERF_FORMAT_ID)
1905 1906
		entry += sizeof(u64);

1907 1908
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1909 1910 1911 1912 1913 1914 1915 1916
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1917
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1918
{
1919
	struct perf_event *child;
1920 1921
	u64 total = 0;

1922 1923 1924
	*enabled = 0;
	*running = 0;

1925
	mutex_lock(&event->child_mutex);
1926
	total += perf_event_read(event);
1927 1928 1929 1930 1931 1932
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1933
		total += perf_event_read(child);
1934 1935 1936
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1937
	mutex_unlock(&event->child_mutex);
1938 1939 1940

	return total;
}
1941
EXPORT_SYMBOL_GPL(perf_event_read_value);
1942

1943
static int perf_event_read_group(struct perf_event *event,
1944 1945
				   u64 read_format, char __user *buf)
{
1946
	struct perf_event *leader = event->group_leader, *sub;
1947 1948
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1949
	u64 values[5];
1950
	u64 count, enabled, running;
1951

1952
	mutex_lock(&ctx->mutex);
1953
	count = perf_event_read_value(leader, &enabled, &running);
1954 1955

	values[n++] = 1 + leader->nr_siblings;
1956 1957 1958 1959
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1960 1961 1962
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1963 1964 1965 1966

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1967
		goto unlock;
1968

1969
	ret = size;
1970

1971
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1972
		n = 0;
1973

1974
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1975 1976 1977 1978 1979
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1980
		if (copy_to_user(buf + ret, values, size)) {
1981 1982 1983
			ret = -EFAULT;
			goto unlock;
		}
1984 1985

		ret += size;
1986
	}
1987 1988
unlock:
	mutex_unlock(&ctx->mutex);
1989

1990
	return ret;
1991 1992
}

1993
static int perf_event_read_one(struct perf_event *event,
1994 1995
				 u64 read_format, char __user *buf)
{
1996
	u64 enabled, running;
1997 1998 1999
	u64 values[4];
	int n = 0;

2000 2001 2002 2003 2004
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2005
	if (read_format & PERF_FORMAT_ID)
2006
		values[n++] = primary_event_id(event);
2007 2008 2009 2010 2011 2012 2013

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2014
/*
2015
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2016 2017
 */
static ssize_t
2018
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2019
{
2020
	u64 read_format = event->attr.read_format;
2021
	int ret;
T
Thomas Gleixner 已提交
2022

2023
	/*
2024
	 * Return end-of-file for a read on a event that is in
2025 2026 2027
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2028
	if (event->state == PERF_EVENT_STATE_ERROR)
2029 2030
		return 0;

2031
	if (count < perf_event_read_size(event))
2032 2033
		return -ENOSPC;

2034
	WARN_ON_ONCE(event->ctx->parent_ctx);
2035
	if (read_format & PERF_FORMAT_GROUP)
2036
		ret = perf_event_read_group(event, read_format, buf);
2037
	else
2038
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2039

2040
	return ret;
T
Thomas Gleixner 已提交
2041 2042 2043 2044 2045
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2046
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2047

2048
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2049 2050 2051 2052
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2053
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2054
	struct perf_mmap_data *data;
2055
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2056 2057

	rcu_read_lock();
2058
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2059
	if (data)
2060
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2061
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2062

2063
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2064 2065 2066 2067

	return events;
}

2068
static void perf_event_reset(struct perf_event *event)
2069
{
2070 2071 2072
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2073 2074
}

2075
/*
2076 2077 2078 2079
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2080
 */
2081 2082
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2083
{
2084
	struct perf_event *child;
P
Peter Zijlstra 已提交
2085

2086 2087 2088 2089
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2090
		func(child);
2091
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2092 2093
}

2094 2095
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2096
{
2097 2098
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2099

2100 2101
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2102
	event = event->group_leader;
2103

2104 2105 2106 2107
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2108
	mutex_unlock(&ctx->mutex);
2109 2110
}

2111
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112
{
2113
	struct perf_event_context *ctx = event->ctx;
2114 2115 2116 2117
	unsigned long size;
	int ret = 0;
	u64 value;

2118
	if (!event->attr.sample_period)
2119 2120 2121 2122 2123 2124 2125 2126 2127
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2128
	raw_spin_lock_irq(&ctx->lock);
2129 2130
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2131 2132 2133 2134
			ret = -EINVAL;
			goto unlock;
		}

2135
		event->attr.sample_freq = value;
2136
	} else {
2137 2138
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2139 2140
	}
unlock:
2141
	raw_spin_unlock_irq(&ctx->lock);
2142 2143 2144 2145

	return ret;
}

L
Li Zefan 已提交
2146 2147
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2148

2149 2150
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2151 2152
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2153
	u32 flags = arg;
2154 2155

	switch (cmd) {
2156 2157
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2158
		break;
2159 2160
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2161
		break;
2162 2163
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2164
		break;
P
Peter Zijlstra 已提交
2165

2166 2167
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2168

2169 2170
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2171

2172 2173
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2174

L
Li Zefan 已提交
2175 2176 2177
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2178
	default:
P
Peter Zijlstra 已提交
2179
		return -ENOTTY;
2180
	}
P
Peter Zijlstra 已提交
2181 2182

	if (flags & PERF_IOC_FLAG_GROUP)
2183
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2184
	else
2185
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2186 2187

	return 0;
2188 2189
}

2190
int perf_event_task_enable(void)
2191
{
2192
	struct perf_event *event;
2193

2194 2195 2196 2197
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2198 2199 2200 2201

	return 0;
}

2202
int perf_event_task_disable(void)
2203
{
2204
	struct perf_event *event;
2205

2206 2207 2208 2209
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2210 2211 2212 2213

	return 0;
}

2214 2215
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2216 2217
#endif

2218
static int perf_event_index(struct perf_event *event)
2219
{
2220
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2221 2222
		return 0;

2223
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224 2225
}

2226 2227 2228 2229 2230
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2231
void perf_event_update_userpage(struct perf_event *event)
2232
{
2233
	struct perf_event_mmap_page *userpg;
2234
	struct perf_mmap_data *data;
2235 2236

	rcu_read_lock();
2237
	data = rcu_dereference(event->data);
2238 2239 2240 2241
	if (!data)
		goto unlock;

	userpg = data->user_page;
2242

2243 2244 2245 2246 2247
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2248
	++userpg->lock;
2249
	barrier();
2250 2251 2252 2253
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2254

2255 2256
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2257

2258 2259
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2260

2261
	barrier();
2262
	++userpg->lock;
2263
	preempt_enable();
2264
unlock:
2265
	rcu_read_unlock();
2266 2267
}

2268
static unsigned long perf_data_size(struct perf_mmap_data *data)
2269
{
2270 2271
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2272

2273
#ifndef CONFIG_PERF_USE_VMALLOC
2274

2275 2276 2277
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2278

2279 2280 2281 2282 2283
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2284

2285 2286
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2287

2288
	return virt_to_page(data->data_pages[pgoff - 1]);
2289 2290
}

2291 2292
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2293 2294 2295 2296 2297
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2298
	WARN_ON(atomic_read(&event->mmap_count));
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2317
	data->data_order = 0;
2318 2319
	data->nr_pages = nr_pages;

2320
	return data;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2332
	return NULL;
2333 2334
}

2335 2336
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2337
	struct page *page = virt_to_page((void *)addr);
2338 2339 2340 2341 2342

	page->mapping = NULL;
	__free_page(page);
}

2343
static void perf_mmap_data_free(struct perf_mmap_data *data)
2344 2345 2346
{
	int i;

2347
	perf_mmap_free_page((unsigned long)data->user_page);
2348
	for (i = 0; i < data->nr_pages; i++)
2349
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2350
	kfree(data);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2391
	kfree(data);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2485
		data->watermark = max_size / 2;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2497 2498
}

2499
static void perf_mmap_data_release(struct perf_event *event)
2500
{
2501
	struct perf_mmap_data *data = event->data;
2502

2503
	WARN_ON(atomic_read(&event->mmap_count));
2504

2505
	rcu_assign_pointer(event->data, NULL);
2506
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2507 2508 2509 2510
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2511
	struct perf_event *event = vma->vm_file->private_data;
2512

2513
	atomic_inc(&event->mmap_count);
2514 2515 2516 2517
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2518
	struct perf_event *event = vma->vm_file->private_data;
2519

2520 2521
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2522
		unsigned long size = perf_data_size(event->data);
2523 2524
		struct user_struct *user = current_user();

2525
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2526
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2527
		perf_mmap_data_release(event);
2528
		mutex_unlock(&event->mmap_mutex);
2529
	}
2530 2531
}

2532
static const struct vm_operations_struct perf_mmap_vmops = {
2533 2534 2535 2536
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2537 2538 2539 2540
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2541
	struct perf_event *event = file->private_data;
2542
	unsigned long user_locked, user_lock_limit;
2543
	struct user_struct *user = current_user();
2544
	unsigned long locked, lock_limit;
2545
	struct perf_mmap_data *data;
2546 2547
	unsigned long vma_size;
	unsigned long nr_pages;
2548
	long user_extra, extra;
2549
	int ret = 0;
2550

2551
	if (!(vma->vm_flags & VM_SHARED))
2552
		return -EINVAL;
2553 2554 2555 2556

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2557 2558 2559 2560 2561
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562 2563
		return -EINVAL;

2564
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565 2566
		return -EINVAL;

2567 2568
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2569

2570 2571 2572
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2573 2574 2575 2576
		ret = -EINVAL;
		goto unlock;
	}

2577 2578
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2579 2580 2581 2582
			ret = -EINVAL;
		goto unlock;
	}

2583
	user_extra = nr_pages + 1;
2584
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2585 2586 2587 2588 2589 2590

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2591
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592

2593 2594 2595
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2596

2597
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2598
	lock_limit >>= PAGE_SHIFT;
2599
	locked = vma->vm_mm->locked_vm + extra;
2600

2601 2602
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2603 2604 2605
		ret = -EPERM;
		goto unlock;
	}
2606

2607
	WARN_ON(event->data);
2608 2609 2610 2611

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2612 2613
		goto unlock;

2614 2615 2616
	ret = 0;
	perf_mmap_data_init(event, data);

2617
	atomic_set(&event->mmap_count, 1);
2618
	atomic_long_add(user_extra, &user->locked_vm);
2619
	vma->vm_mm->locked_vm += extra;
2620
	event->data->nr_locked = extra;
2621
	if (vma->vm_flags & VM_WRITE)
2622
		event->data->writable = 1;
2623

2624
unlock:
2625
	mutex_unlock(&event->mmap_mutex);
2626 2627 2628

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2629 2630

	return ret;
2631 2632
}

P
Peter Zijlstra 已提交
2633 2634 2635
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2636
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2637 2638 2639
	int retval;

	mutex_lock(&inode->i_mutex);
2640
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2641 2642 2643 2644 2645 2646 2647 2648
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2649 2650 2651 2652
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2653 2654
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2655
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2656
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2657 2658
};

2659
/*
2660
 * Perf event wakeup
2661 2662 2663 2664 2665
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2666
void perf_event_wakeup(struct perf_event *event)
2667
{
2668
	wake_up_all(&event->waitq);
2669

2670 2671 2672
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2673
	}
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2685
static void perf_pending_event(struct perf_pending_entry *entry)
2686
{
2687 2688
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2689

2690 2691 2692
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2693 2694
	}

2695 2696 2697
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2698 2699 2700
	}
}

2701
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2702

2703
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2704 2705 2706
	PENDING_TAIL,
};

2707 2708
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2709
{
2710
	struct perf_pending_entry **head;
2711

2712
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2713 2714
		return;

2715 2716 2717
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2718 2719

	do {
2720 2721
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2722

2723
	set_perf_event_pending();
2724

2725
	put_cpu_var(perf_pending_head);
2726 2727 2728 2729
}

static int __perf_pending_run(void)
{
2730
	struct perf_pending_entry *list;
2731 2732
	int nr = 0;

2733
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2734
	while (list != PENDING_TAIL) {
2735 2736
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2737 2738 2739

		list = list->next;

2740 2741
		func = entry->func;
		entry->next = NULL;
2742 2743 2744 2745 2746 2747 2748
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2749
		func(entry);
2750 2751 2752 2753 2754 2755
		nr++;
	}

	return nr;
}

2756
static inline int perf_not_pending(struct perf_event *event)
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2771
	return event->pending.next == NULL;
2772 2773
}

2774
static void perf_pending_sync(struct perf_event *event)
2775
{
2776
	wait_event(event->waitq, perf_not_pending(event));
2777 2778
}

2779
void perf_event_do_pending(void)
2780 2781 2782 2783
{
	__perf_pending_run();
}

2784 2785 2786 2787
/*
 * Callchain support -- arch specific
 */

2788
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2789 2790 2791 2792
{
	return NULL;
}

2793 2794 2795 2796 2797
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}

2798 2799 2800
/*
 * Output
 */
2801 2802
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2803 2804 2805 2806 2807 2808
{
	unsigned long mask;

	if (!data->writable)
		return true;

2809
	mask = perf_data_size(data) - 1;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2820
static void perf_output_wakeup(struct perf_output_handle *handle)
2821
{
2822 2823
	atomic_set(&handle->data->poll, POLL_IN);

2824
	if (handle->nmi) {
2825 2826 2827
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2828
	} else
2829
		perf_event_wakeup(handle->event);
2830 2831
}

2832 2833 2834
/*
 * Curious locking construct.
 *
2835 2836
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2837 2838 2839 2840 2841 2842
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2843
 * event_id completes.
2844 2845 2846 2847
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2848
	int cur, cpu = get_cpu();
2849 2850 2851

	handle->locked = 0;

2852 2853 2854 2855 2856 2857 2858 2859
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2860 2861

		cpu_relax();
2862
	}
2863 2864 2865 2866 2867
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2868 2869
	unsigned long head;
	int cpu;
2870

2871
	data->done_head = data->head;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2882
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2883 2884 2885
		data->user_page->data_head = head;

	/*
2886
	 * NMI can happen here, which means we can miss a done_head update.
2887 2888
	 */

2889
	cpu = atomic_xchg(&data->lock, -1);
2890 2891 2892 2893 2894
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2895
	if (unlikely(atomic_long_read(&data->done_head))) {
2896 2897 2898
		/*
		 * Since we had it locked, we can lock it again.
		 */
2899
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2900 2901 2902 2903 2904
			cpu_relax();

		goto again;
	}

2905
	if (atomic_xchg(&data->wakeup, 0))
2906 2907
		perf_output_wakeup(handle);
out:
2908
	put_cpu();
2909 2910
}

2911 2912
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2913 2914
{
	unsigned int pages_mask;
2915
	unsigned long offset;
2916 2917 2918 2919 2920 2921 2922 2923
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2924 2925
		unsigned long page_offset;
		unsigned long page_size;
2926 2927 2928
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2929 2930 2931
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2949
int perf_output_begin(struct perf_output_handle *handle,
2950
		      struct perf_event *event, unsigned int size,
2951
		      int nmi, int sample)
2952
{
2953
	struct perf_event *output_event;
2954
	struct perf_mmap_data *data;
2955
	unsigned long tail, offset, head;
2956 2957 2958 2959 2960 2961
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2962

2963
	rcu_read_lock();
2964
	/*
2965
	 * For inherited events we send all the output towards the parent.
2966
	 */
2967 2968
	if (event->parent)
		event = event->parent;
2969

2970 2971 2972
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2973

2974
	data = rcu_dereference(event->data);
2975 2976 2977
	if (!data)
		goto out;

2978
	handle->data	= data;
2979
	handle->event	= event;
2980 2981
	handle->nmi	= nmi;
	handle->sample	= sample;
2982

2983
	if (!data->nr_pages)
2984
		goto fail;
2985

2986 2987 2988 2989
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2990 2991
	perf_output_lock(handle);

2992
	do {
2993 2994 2995 2996 2997 2998 2999
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3000
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3001
		head += size;
3002
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3003
			goto fail;
3004
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3005

3006
	handle->offset	= offset;
3007
	handle->head	= head;
3008

3009
	if (head - tail > data->watermark)
3010
		atomic_set(&data->wakeup, 1);
3011

3012
	if (have_lost) {
3013
		lost_event.header.type = PERF_RECORD_LOST;
3014 3015
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3016
		lost_event.id          = event->id;
3017 3018 3019 3020 3021
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3022
	return 0;
3023

3024
fail:
3025 3026
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3027 3028
out:
	rcu_read_unlock();
3029

3030 3031
	return -ENOSPC;
}
3032

3033
void perf_output_end(struct perf_output_handle *handle)
3034
{
3035
	struct perf_event *event = handle->event;
3036 3037
	struct perf_mmap_data *data = handle->data;

3038
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3039

3040
	if (handle->sample && wakeup_events) {
3041
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3042
		if (events >= wakeup_events) {
3043
			atomic_sub(wakeup_events, &data->events);
3044
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3045
		}
3046 3047 3048
	}

	perf_output_unlock(handle);
3049
	rcu_read_unlock();
3050 3051
}

3052
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3053 3054
{
	/*
3055
	 * only top level events have the pid namespace they were created in
3056
	 */
3057 3058
	if (event->parent)
		event = event->parent;
3059

3060
	return task_tgid_nr_ns(p, event->ns);
3061 3062
}

3063
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3064 3065
{
	/*
3066
	 * only top level events have the pid namespace they were created in
3067
	 */
3068 3069
	if (event->parent)
		event = event->parent;
3070

3071
	return task_pid_nr_ns(p, event->ns);
3072 3073
}

3074
static void perf_output_read_one(struct perf_output_handle *handle,
3075
				 struct perf_event *event)
3076
{
3077
	u64 read_format = event->attr.read_format;
3078 3079 3080
	u64 values[4];
	int n = 0;

3081
	values[n++] = atomic64_read(&event->count);
3082
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3083 3084
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3085 3086
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3087 3088
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3089 3090
	}
	if (read_format & PERF_FORMAT_ID)
3091
		values[n++] = primary_event_id(event);
3092 3093 3094 3095 3096

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3097
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3098 3099
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3100
			    struct perf_event *event)
3101
{
3102 3103
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3115
	if (leader != event)
3116 3117 3118 3119
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3120
		values[n++] = primary_event_id(leader);
3121 3122 3123

	perf_output_copy(handle, values, n * sizeof(u64));

3124
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3125 3126
		n = 0;

3127
		if (sub != event)
3128 3129 3130 3131
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3132
			values[n++] = primary_event_id(sub);
3133 3134 3135 3136 3137 3138

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3139
			     struct perf_event *event)
3140
{
3141 3142
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3143
	else
3144
		perf_output_read_one(handle, event);
3145 3146
}

3147 3148 3149
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3150
			struct perf_event *event)
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3181
		perf_output_read(handle, event);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3219
			 struct perf_event *event,
3220
			 struct pt_regs *regs)
3221
{
3222
	u64 sample_type = event->attr.sample_type;
3223

3224
	data->type = sample_type;
3225

3226
	header->type = PERF_RECORD_SAMPLE;
3227 3228 3229 3230
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3231

3232
	if (sample_type & PERF_SAMPLE_IP) {
3233 3234 3235
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3236
	}
3237

3238
	if (sample_type & PERF_SAMPLE_TID) {
3239
		/* namespace issues */
3240 3241
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3242

3243
		header->size += sizeof(data->tid_entry);
3244 3245
	}

3246
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3247
		data->time = perf_clock();
3248

3249
		header->size += sizeof(data->time);
3250 3251
	}

3252
	if (sample_type & PERF_SAMPLE_ADDR)
3253
		header->size += sizeof(data->addr);
3254

3255
	if (sample_type & PERF_SAMPLE_ID) {
3256
		data->id = primary_event_id(event);
3257

3258 3259 3260 3261
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3262
		data->stream_id = event->id;
3263 3264 3265

		header->size += sizeof(data->stream_id);
	}
3266

3267
	if (sample_type & PERF_SAMPLE_CPU) {
3268 3269
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3270

3271
		header->size += sizeof(data->cpu_entry);
3272 3273
	}

3274
	if (sample_type & PERF_SAMPLE_PERIOD)
3275
		header->size += sizeof(data->period);
3276

3277
	if (sample_type & PERF_SAMPLE_READ)
3278
		header->size += perf_event_read_size(event);
3279

3280
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3281
		int size = 1;
3282

3283 3284 3285 3286 3287 3288
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3289 3290
	}

3291
	if (sample_type & PERF_SAMPLE_RAW) {
3292 3293 3294 3295 3296 3297 3298 3299
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3300
		header->size += size;
3301
	}
3302
}
3303

3304
static void perf_event_output(struct perf_event *event, int nmi,
3305 3306 3307 3308 3309
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3310

3311
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3312

3313
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3314
		return;
3315

3316
	perf_output_sample(&handle, &header, data, event);
3317

3318
	perf_output_end(&handle);
3319 3320
}

3321
/*
3322
 * read event_id
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3333
perf_event_read_event(struct perf_event *event,
3334 3335 3336
			struct task_struct *task)
{
	struct perf_output_handle handle;
3337
	struct perf_read_event read_event = {
3338
		.header = {
3339
			.type = PERF_RECORD_READ,
3340
			.misc = 0,
3341
			.size = sizeof(read_event) + perf_event_read_size(event),
3342
		},
3343 3344
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3345
	};
3346
	int ret;
3347

3348
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3349 3350 3351
	if (ret)
		return;

3352
	perf_output_put(&handle, read_event);
3353
	perf_output_read(&handle, event);
3354

3355 3356 3357
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3358
/*
P
Peter Zijlstra 已提交
3359 3360 3361
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3362 3363
 */

P
Peter Zijlstra 已提交
3364
struct perf_task_event {
3365
	struct task_struct		*task;
3366
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3367 3368 3369 3370 3371 3372

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3373 3374
		u32				tid;
		u32				ptid;
3375
		u64				time;
3376
	} event_id;
P
Peter Zijlstra 已提交
3377 3378
};

3379
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3380
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3381 3382
{
	struct perf_output_handle handle;
3383
	int size;
P
Peter Zijlstra 已提交
3384
	struct task_struct *task = task_event->task;
3385 3386
	int ret;

3387 3388
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3389 3390 3391 3392

	if (ret)
		return;

3393 3394
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3395

3396 3397
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3398

3399
	perf_output_put(&handle, task_event->event_id);
3400

P
Peter Zijlstra 已提交
3401 3402 3403
	perf_output_end(&handle);
}

3404
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3405
{
P
Peter Zijlstra 已提交
3406
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3407 3408
		return 0;

3409 3410 3411
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3412
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3413 3414 3415 3416 3417
		return 1;

	return 0;
}

3418
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3419
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3420
{
3421
	struct perf_event *event;
P
Peter Zijlstra 已提交
3422

3423 3424 3425
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3426 3427 3428
	}
}

3429
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3430 3431
{
	struct perf_cpu_context *cpuctx;
3432
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3433

3434
	rcu_read_lock();
P
Peter Zijlstra 已提交
3435
	cpuctx = &get_cpu_var(perf_cpu_context);
3436
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3437
	if (!ctx)
P
Peter Zijlstra 已提交
3438
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3439
	if (ctx)
3440
		perf_event_task_ctx(ctx, task_event);
3441
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3442 3443 3444
	rcu_read_unlock();
}

3445 3446
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3447
			      int new)
P
Peter Zijlstra 已提交
3448
{
P
Peter Zijlstra 已提交
3449
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3450

3451 3452 3453
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3454 3455
		return;

P
Peter Zijlstra 已提交
3456
	task_event = (struct perf_task_event){
3457 3458
		.task	  = task,
		.task_ctx = task_ctx,
3459
		.event_id    = {
P
Peter Zijlstra 已提交
3460
			.header = {
3461
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3462
				.misc = 0,
3463
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3464
			},
3465 3466
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3467 3468
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3469
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3470 3471 3472
		},
	};

3473
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3474 3475
}

3476
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3477
{
3478
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3479 3480
}

3481 3482 3483 3484 3485
/*
 * comm tracking
 */

struct perf_comm_event {
3486 3487
	struct task_struct	*task;
	char			*comm;
3488 3489 3490 3491 3492 3493 3494
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3495
	} event_id;
3496 3497
};

3498
static void perf_event_comm_output(struct perf_event *event,
3499 3500 3501
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3502 3503
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3504 3505 3506 3507

	if (ret)
		return;

3508 3509
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3510

3511
	perf_output_put(&handle, comm_event->event_id);
3512 3513 3514 3515 3516
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3517
static int perf_event_comm_match(struct perf_event *event)
3518
{
P
Peter Zijlstra 已提交
3519
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3520 3521
		return 0;

3522 3523 3524
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3525
	if (event->attr.comm)
3526 3527 3528 3529 3530
		return 1;

	return 0;
}

3531
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3532 3533
				  struct perf_comm_event *comm_event)
{
3534
	struct perf_event *event;
3535

3536 3537 3538
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3539 3540 3541
	}
}

3542
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3543 3544
{
	struct perf_cpu_context *cpuctx;
3545
	struct perf_event_context *ctx;
3546
	unsigned int size;
3547
	char comm[TASK_COMM_LEN];
3548

3549
	memset(comm, 0, sizeof(comm));
3550
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3551
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3552 3553 3554 3555

	comm_event->comm = comm;
	comm_event->comm_size = size;

3556
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3557

3558
	rcu_read_lock();
3559
	cpuctx = &get_cpu_var(perf_cpu_context);
3560 3561
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3562
	if (ctx)
3563
		perf_event_comm_ctx(ctx, comm_event);
3564
	put_cpu_var(perf_cpu_context);
3565
	rcu_read_unlock();
3566 3567
}

3568
void perf_event_comm(struct task_struct *task)
3569
{
3570 3571
	struct perf_comm_event comm_event;

3572 3573
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3574

3575
	if (!atomic_read(&nr_comm_events))
3576
		return;
3577

3578
	comm_event = (struct perf_comm_event){
3579
		.task	= task,
3580 3581
		/* .comm      */
		/* .comm_size */
3582
		.event_id  = {
3583
			.header = {
3584
				.type = PERF_RECORD_COMM,
3585 3586 3587 3588 3589
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3590 3591 3592
		},
	};

3593
	perf_event_comm_event(&comm_event);
3594 3595
}

3596 3597 3598 3599 3600
/*
 * mmap tracking
 */

struct perf_mmap_event {
3601 3602 3603 3604
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3605 3606 3607 3608 3609 3610 3611 3612 3613

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3614
	} event_id;
3615 3616
};

3617
static void perf_event_mmap_output(struct perf_event *event,
3618 3619 3620
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3621 3622
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3623 3624 3625 3626

	if (ret)
		return;

3627 3628
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3629

3630
	perf_output_put(&handle, mmap_event->event_id);
3631 3632
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3633
	perf_output_end(&handle);
3634 3635
}

3636
static int perf_event_mmap_match(struct perf_event *event,
3637 3638
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3639
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3640 3641
		return 0;

3642 3643 3644
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3645
	if (event->attr.mmap)
3646 3647 3648 3649 3650
		return 1;

	return 0;
}

3651
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3652 3653
				  struct perf_mmap_event *mmap_event)
{
3654
	struct perf_event *event;
3655

3656 3657 3658
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3659 3660 3661
	}
}

3662
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3663 3664
{
	struct perf_cpu_context *cpuctx;
3665
	struct perf_event_context *ctx;
3666 3667
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3668 3669 3670
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3671
	const char *name;
3672

3673 3674
	memset(tmp, 0, sizeof(tmp));

3675
	if (file) {
3676 3677 3678 3679 3680 3681
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3682 3683 3684 3685
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3686
		name = d_path(&file->f_path, buf, PATH_MAX);
3687 3688 3689 3690 3691
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3692 3693 3694
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3695
			goto got_name;
3696
		}
3697 3698 3699 3700 3701 3702

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3703 3704 3705 3706 3707
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3708
	size = ALIGN(strlen(name)+1, sizeof(u64));
3709 3710 3711 3712

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3713
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3714

3715
	rcu_read_lock();
3716
	cpuctx = &get_cpu_var(perf_cpu_context);
3717 3718
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3719
	if (ctx)
3720
		perf_event_mmap_ctx(ctx, mmap_event);
3721
	put_cpu_var(perf_cpu_context);
3722 3723
	rcu_read_unlock();

3724 3725 3726
	kfree(buf);
}

3727
void __perf_event_mmap(struct vm_area_struct *vma)
3728
{
3729 3730
	struct perf_mmap_event mmap_event;

3731
	if (!atomic_read(&nr_mmap_events))
3732 3733 3734
		return;

	mmap_event = (struct perf_mmap_event){
3735
		.vma	= vma,
3736 3737
		/* .file_name */
		/* .file_size */
3738
		.event_id  = {
3739
			.header = {
3740
				.type = PERF_RECORD_MMAP,
3741 3742 3743 3744 3745
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3746 3747
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3748
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3749 3750 3751
		},
	};

3752
	perf_event_mmap_event(&mmap_event);
3753 3754
}

3755 3756 3757 3758
/*
 * IRQ throttle logging
 */

3759
static void perf_log_throttle(struct perf_event *event, int enable)
3760 3761 3762 3763 3764 3765 3766
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3767
		u64				id;
3768
		u64				stream_id;
3769 3770
	} throttle_event = {
		.header = {
3771
			.type = PERF_RECORD_THROTTLE,
3772 3773 3774
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3775
		.time		= perf_clock(),
3776 3777
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3778 3779
	};

3780
	if (enable)
3781
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3782

3783
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3784 3785 3786 3787 3788 3789 3790
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3791
/*
3792
 * Generic event overflow handling, sampling.
3793 3794
 */

3795
static int __perf_event_overflow(struct perf_event *event, int nmi,
3796 3797
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3798
{
3799 3800
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3801 3802
	int ret = 0;

3803
	throttle = (throttle && event->pmu->unthrottle != NULL);
3804

3805
	if (!throttle) {
3806
		hwc->interrupts++;
3807
	} else {
3808 3809
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3810
			if (HZ * hwc->interrupts >
3811
					(u64)sysctl_perf_event_sample_rate) {
3812
				hwc->interrupts = MAX_INTERRUPTS;
3813
				perf_log_throttle(event, 0);
3814 3815 3816 3817
				ret = 1;
			}
		} else {
			/*
3818
			 * Keep re-disabling events even though on the previous
3819
			 * pass we disabled it - just in case we raced with a
3820
			 * sched-in and the event got enabled again:
3821
			 */
3822 3823 3824
			ret = 1;
		}
	}
3825

3826
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3827
		u64 now = perf_clock();
3828
		s64 delta = now - hwc->freq_time_stamp;
3829

3830
		hwc->freq_time_stamp = now;
3831

3832 3833
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3834 3835
	}

3836 3837
	/*
	 * XXX event_limit might not quite work as expected on inherited
3838
	 * events
3839 3840
	 */

3841 3842
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3843
		ret = 1;
3844
		event->pending_kill = POLL_HUP;
3845
		if (nmi) {
3846 3847 3848
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3849
		} else
3850
			perf_event_disable(event);
3851 3852
	}

3853 3854 3855 3856 3857
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3858
	return ret;
3859 3860
}

3861
int perf_event_overflow(struct perf_event *event, int nmi,
3862 3863
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3864
{
3865
	return __perf_event_overflow(event, nmi, 1, data, regs);
3866 3867
}

3868
/*
3869
 * Generic software event infrastructure
3870 3871
 */

3872
/*
3873 3874
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3875 3876 3877 3878
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3879
static u64 perf_swevent_set_period(struct perf_event *event)
3880
{
3881
	struct hw_perf_event *hwc = &event->hw;
3882 3883 3884 3885 3886
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3887 3888

again:
3889 3890 3891
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3892

3893 3894 3895 3896 3897
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3898

3899
	return nr;
3900 3901
}

3902
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3903 3904
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3905
{
3906
	struct hw_perf_event *hwc = &event->hw;
3907
	int throttle = 0;
3908

3909
	data->period = event->hw.last_period;
3910 3911
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3912

3913 3914
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3915

3916
	for (; overflow; overflow--) {
3917
		if (__perf_event_overflow(event, nmi, throttle,
3918
					    data, regs)) {
3919 3920 3921 3922 3923 3924
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3925
		throttle = 1;
3926
	}
3927 3928
}

3929
static void perf_swevent_unthrottle(struct perf_event *event)
3930 3931
{
	/*
3932
	 * Nothing to do, we already reset hwc->interrupts.
3933
	 */
3934
}
3935

3936
static void perf_swevent_add(struct perf_event *event, u64 nr,
3937 3938
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3939
{
3940
	struct hw_perf_event *hwc = &event->hw;
3941

3942
	atomic64_add(nr, &event->count);
3943

3944 3945 3946
	if (!regs)
		return;

3947 3948
	if (!hwc->sample_period)
		return;
3949

3950 3951 3952 3953
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3954
		return;
3955

3956
	perf_swevent_overflow(event, 0, nmi, data, regs);
3957 3958
}

3959
static int perf_swevent_is_counting(struct perf_event *event)
3960
{
3961
	/*
3962
	 * The event is active, we're good!
3963
	 */
3964
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3965 3966
		return 1;

3967
	/*
3968
	 * The event is off/error, not counting.
3969
	 */
3970
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3971 3972 3973
		return 0;

	/*
3974
	 * The event is inactive, if the context is active
3975 3976
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3977
	 */
3978
	if (event->ctx->is_active)
3979 3980 3981 3982 3983 3984 3985 3986
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3987 3988
}

L
Li Zefan 已提交
3989 3990 3991
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4006
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4007
				enum perf_type_id type,
L
Li Zefan 已提交
4008 4009 4010
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4011
{
4012 4013 4014
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4015
	if (!perf_swevent_is_counting(event))
4016 4017
		return 0;

4018
	if (event->attr.type != type)
4019
		return 0;
4020

4021
	if (event->attr.config != event_id)
4022 4023
		return 0;

4024 4025
	if (perf_exclude_event(event, regs))
		return 0;
4026

L
Li Zefan 已提交
4027 4028 4029 4030
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4031 4032 4033
	return 1;
}

4034
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4035
				     enum perf_type_id type,
4036
				     u32 event_id, u64 nr, int nmi,
4037 4038
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
4039
{
4040
	struct perf_event *event;
4041

4042
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
4043
		if (perf_swevent_match(event, type, event_id, data, regs))
4044
			perf_swevent_add(event, nr, nmi, data, regs);
4045 4046 4047
	}
}

4048
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4049
{
4050 4051
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4052

P
Peter Zijlstra 已提交
4053
	if (in_nmi())
4054
		rctx = 3;
4055
	else if (in_irq())
4056
		rctx = 2;
4057
	else if (in_softirq())
4058
		rctx = 1;
4059
	else
4060
		rctx = 0;
P
Peter Zijlstra 已提交
4061

4062 4063
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4064
		return -1;
4065
	}
P
Peter Zijlstra 已提交
4066

4067 4068
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4069

4070
	return rctx;
P
Peter Zijlstra 已提交
4071
}
I
Ingo Molnar 已提交
4072
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4073

4074
void perf_swevent_put_recursion_context(int rctx)
4075
{
4076 4077
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4078
	cpuctx->recursion[rctx]--;
4079
	put_cpu_var(perf_cpu_context);
4080
}
I
Ingo Molnar 已提交
4081
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4082

4083 4084 4085 4086
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4087
{
4088
	struct perf_cpu_context *cpuctx;
4089
	struct perf_event_context *ctx;
4090

4091
	cpuctx = &__get_cpu_var(perf_cpu_context);
4092
	rcu_read_lock();
4093
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4094
				 nr, nmi, data, regs);
4095 4096 4097 4098
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4099
	ctx = rcu_dereference(current->perf_event_ctxp);
4100
	if (ctx)
4101
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4102
	rcu_read_unlock();
4103
}
4104

4105
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4106
			    struct pt_regs *regs, u64 addr)
4107
{
4108
	struct perf_sample_data data;
4109 4110 4111 4112 4113
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4114

4115
	perf_sample_data_init(&data, addr);
4116

4117
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4118 4119

	perf_swevent_put_recursion_context(rctx);
4120 4121
}

4122
static void perf_swevent_read(struct perf_event *event)
4123 4124 4125
{
}

4126
static int perf_swevent_enable(struct perf_event *event)
4127
{
4128
	struct hw_perf_event *hwc = &event->hw;
4129 4130 4131

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4132
		perf_swevent_set_period(event);
4133
	}
4134 4135 4136
	return 0;
}

4137
static void perf_swevent_disable(struct perf_event *event)
4138 4139 4140
{
}

4141
static const struct pmu perf_ops_generic = {
4142 4143 4144 4145
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4146 4147
};

4148
/*
4149
 * hrtimer based swevent callback
4150 4151
 */

4152
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4153 4154 4155
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4156
	struct pt_regs *regs;
4157
	struct perf_event *event;
4158 4159
	u64 period;

4160
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4161
	event->pmu->read(event);
4162

4163
	perf_sample_data_init(&data, 0);
4164
	data.period = event->hw.last_period;
4165
	regs = get_irq_regs();
4166 4167 4168 4169
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4170 4171
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4172
		regs = task_pt_regs(current);
4173

4174
	if (regs) {
4175 4176 4177
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4178 4179
	}

4180
	period = max_t(u64, 10000, event->hw.sample_period);
4181 4182 4183 4184 4185
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4222
/*
4223
 * Software event: cpu wall time clock
4224 4225
 */

4226
static void cpu_clock_perf_event_update(struct perf_event *event)
4227 4228 4229 4230 4231 4232
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4233
	prev = atomic64_xchg(&event->hw.prev_count, now);
4234
	atomic64_add(now - prev, &event->count);
4235 4236
}

4237
static int cpu_clock_perf_event_enable(struct perf_event *event)
4238
{
4239
	struct hw_perf_event *hwc = &event->hw;
4240 4241 4242
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4243
	perf_swevent_start_hrtimer(event);
4244 4245 4246 4247

	return 0;
}

4248
static void cpu_clock_perf_event_disable(struct perf_event *event)
4249
{
4250
	perf_swevent_cancel_hrtimer(event);
4251
	cpu_clock_perf_event_update(event);
4252 4253
}

4254
static void cpu_clock_perf_event_read(struct perf_event *event)
4255
{
4256
	cpu_clock_perf_event_update(event);
4257 4258
}

4259
static const struct pmu perf_ops_cpu_clock = {
4260 4261 4262
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4263 4264
};

4265
/*
4266
 * Software event: task time clock
4267 4268
 */

4269
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4270
{
4271
	u64 prev;
I
Ingo Molnar 已提交
4272 4273
	s64 delta;

4274
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4275
	delta = now - prev;
4276
	atomic64_add(delta, &event->count);
4277 4278
}

4279
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4280
{
4281
	struct hw_perf_event *hwc = &event->hw;
4282 4283
	u64 now;

4284
	now = event->ctx->time;
4285

4286
	atomic64_set(&hwc->prev_count, now);
4287 4288

	perf_swevent_start_hrtimer(event);
4289 4290

	return 0;
I
Ingo Molnar 已提交
4291 4292
}

4293
static void task_clock_perf_event_disable(struct perf_event *event)
4294
{
4295
	perf_swevent_cancel_hrtimer(event);
4296
	task_clock_perf_event_update(event, event->ctx->time);
4297

4298
}
I
Ingo Molnar 已提交
4299

4300
static void task_clock_perf_event_read(struct perf_event *event)
4301
{
4302 4303 4304
	u64 time;

	if (!in_nmi()) {
4305 4306
		update_context_time(event->ctx);
		time = event->ctx->time;
4307 4308
	} else {
		u64 now = perf_clock();
4309 4310
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4311 4312
	}

4313
	task_clock_perf_event_update(event, time);
4314 4315
}

4316
static const struct pmu perf_ops_task_clock = {
4317 4318 4319
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4320 4321
};

4322
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4323

4324
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4325
		   int entry_size, struct pt_regs *regs)
4326
{
4327
	struct perf_sample_data data;
4328
	struct perf_raw_record raw = {
4329
		.size = entry_size,
4330
		.data = record,
4331 4332
	};

4333 4334
	perf_sample_data_init(&data, addr);
	data.raw = &raw;
4335

4336
	/* Trace events already protected against recursion */
4337
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4338
			 &data, regs);
4339
}
4340
EXPORT_SYMBOL_GPL(perf_tp_event);
4341

L
Li Zefan 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4351

4352
static void tp_perf_event_destroy(struct perf_event *event)
4353
{
4354
	perf_trace_disable(event->attr.config);
4355 4356
}

4357
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4358
{
4359 4360 4361 4362
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4363
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4364
			perf_paranoid_tracepoint_raw() &&
4365 4366 4367
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4368
	if (perf_trace_enable(event->attr.config))
4369 4370
		return NULL;

4371
	event->destroy = tp_perf_event_destroy;
4372 4373 4374

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4399
#else
L
Li Zefan 已提交
4400 4401 4402 4403 4404 4405 4406

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4407
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4408 4409 4410
{
	return NULL;
}
L
Li Zefan 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4421
#endif /* CONFIG_EVENT_TRACING */
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4432 4433

	err = register_perf_hw_breakpoint(bp);
4434 4435 4436 4437 4438 4439 4440 4441
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4442
void perf_bp_event(struct perf_event *bp, void *data)
4443
{
4444 4445 4446
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4447
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4448 4449 4450

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4463
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4464

4465
static void sw_perf_event_destroy(struct perf_event *event)
4466
{
4467
	u64 event_id = event->attr.config;
4468

4469
	WARN_ON(event->parent);
4470

4471
	atomic_dec(&perf_swevent_enabled[event_id]);
4472 4473
}

4474
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4475
{
4476
	const struct pmu *pmu = NULL;
4477
	u64 event_id = event->attr.config;
4478

4479
	/*
4480
	 * Software events (currently) can't in general distinguish
4481 4482 4483 4484 4485
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4486
	switch (event_id) {
4487
	case PERF_COUNT_SW_CPU_CLOCK:
4488
		pmu = &perf_ops_cpu_clock;
4489

4490
		break;
4491
	case PERF_COUNT_SW_TASK_CLOCK:
4492
		/*
4493 4494
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4495
		 */
4496
		if (event->ctx->task)
4497
			pmu = &perf_ops_task_clock;
4498
		else
4499
			pmu = &perf_ops_cpu_clock;
4500

4501
		break;
4502 4503 4504 4505 4506
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4507 4508
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4509 4510 4511
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4512
		}
4513
		pmu = &perf_ops_generic;
4514
		break;
4515
	}
4516

4517
	return pmu;
4518 4519
}

T
Thomas Gleixner 已提交
4520
/*
4521
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4522
 */
4523 4524
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4525
		   int cpu,
4526 4527 4528
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4529
		   perf_overflow_handler_t overflow_handler,
4530
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4531
{
4532
	const struct pmu *pmu;
4533 4534
	struct perf_event *event;
	struct hw_perf_event *hwc;
4535
	long err;
T
Thomas Gleixner 已提交
4536

4537 4538
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4539
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4540

4541
	/*
4542
	 * Single events are their own group leaders, with an
4543 4544 4545
	 * empty sibling list:
	 */
	if (!group_leader)
4546
		group_leader = event;
4547

4548 4549
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4550

4551 4552 4553 4554
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4555

4556
	mutex_init(&event->mmap_mutex);
4557

4558 4559 4560 4561 4562 4563
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4564

4565
	event->parent		= parent_event;
4566

4567 4568
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4569

4570
	event->state		= PERF_EVENT_STATE_INACTIVE;
4571

4572 4573
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4574
	
4575
	event->overflow_handler	= overflow_handler;
4576

4577
	if (attr->disabled)
4578
		event->state = PERF_EVENT_STATE_OFF;
4579

4580
	pmu = NULL;
4581

4582
	hwc = &event->hw;
4583
	hwc->sample_period = attr->sample_period;
4584
	if (attr->freq && attr->sample_freq)
4585
		hwc->sample_period = 1;
4586
	hwc->last_period = hwc->sample_period;
4587 4588

	atomic64_set(&hwc->period_left, hwc->sample_period);
4589

4590
	/*
4591
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4592
	 */
4593
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4594 4595
		goto done;

4596
	switch (attr->type) {
4597
	case PERF_TYPE_RAW:
4598
	case PERF_TYPE_HARDWARE:
4599
	case PERF_TYPE_HW_CACHE:
4600
		pmu = hw_perf_event_init(event);
4601 4602 4603
		break;

	case PERF_TYPE_SOFTWARE:
4604
		pmu = sw_perf_event_init(event);
4605 4606 4607
		break;

	case PERF_TYPE_TRACEPOINT:
4608
		pmu = tp_perf_event_init(event);
4609
		break;
4610

4611 4612 4613 4614 4615
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4616 4617
	default:
		break;
4618
	}
4619 4620
done:
	err = 0;
4621
	if (!pmu)
4622
		err = -EINVAL;
4623 4624
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4625

4626
	if (err) {
4627 4628 4629
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4630
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4631
	}
4632

4633
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4634

4635 4636 4637 4638 4639 4640 4641 4642
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4643
	}
4644

4645
	return event;
T
Thomas Gleixner 已提交
4646 4647
}

4648 4649
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4650 4651
{
	u32 size;
4652
	int ret;
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4677 4678 4679
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4680 4681
	 */
	if (size > sizeof(*attr)) {
4682 4683 4684
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4685

4686 4687
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4688

4689
		for (; addr < end; addr++) {
4690 4691 4692 4693 4694 4695
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4696
		size = sizeof(*attr);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4710
	if (attr->__reserved_1)
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4728
static int perf_event_set_output(struct perf_event *event, int output_fd)
4729
{
4730
	struct perf_event *output_event = NULL;
4731
	struct file *output_file = NULL;
4732
	struct perf_event *old_output;
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4746
	output_event = output_file->private_data;
4747 4748

	/* Don't chain output fds */
4749
	if (output_event->output)
4750 4751 4752
		goto out;

	/* Don't set an output fd when we already have an output channel */
4753
	if (event->data)
4754 4755 4756 4757 4758
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4759 4760 4761 4762
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4763 4764 4765 4766

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4767
		 * is still referencing this event.
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4779
/**
4780
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4781
 *
4782
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4783
 * @pid:		target pid
I
Ingo Molnar 已提交
4784
 * @cpu:		target cpu
4785
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4786
 */
4787 4788
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4789
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4790
{
4791 4792 4793 4794
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4795 4796
	struct file *group_file = NULL;
	int fput_needed = 0;
4797
	int fput_needed2 = 0;
4798
	int err;
T
Thomas Gleixner 已提交
4799

4800
	/* for future expandability... */
4801
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4802 4803
		return -EINVAL;

4804 4805 4806
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4807

4808 4809 4810 4811 4812
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4813
	if (attr.freq) {
4814
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4815 4816 4817
			return -EINVAL;
	}

4818
	/*
I
Ingo Molnar 已提交
4819 4820 4821 4822 4823 4824 4825
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4826
	 * Look up the group leader (we will attach this event to it):
4827 4828
	 */
	group_leader = NULL;
4829
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4830
		err = -EINVAL;
4831 4832
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4833
			goto err_put_context;
4834
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4835
			goto err_put_context;
4836 4837 4838

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4839 4840 4841 4842 4843 4844 4845 4846
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4847
		 */
I
Ingo Molnar 已提交
4848 4849
		if (group_leader->ctx != ctx)
			goto err_put_context;
4850 4851 4852
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4853
		if (attr.exclusive || attr.pinned)
4854
			goto err_put_context;
4855 4856
	}

4857
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4858
				     NULL, NULL, GFP_KERNEL);
4859 4860
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4861 4862
		goto err_put_context;

4863
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4864
	if (err < 0)
4865 4866
		goto err_free_put_context;

4867 4868
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4869 4870
		goto err_free_put_context;

4871
	if (flags & PERF_FLAG_FD_OUTPUT) {
4872
		err = perf_event_set_output(event, group_fd);
4873 4874
		if (err)
			goto err_fput_free_put_context;
4875 4876
	}

4877
	event->filp = event_file;
4878
	WARN_ON_ONCE(ctx->parent_ctx);
4879
	mutex_lock(&ctx->mutex);
4880
	perf_install_in_context(ctx, event, cpu);
4881
	++ctx->generation;
4882
	mutex_unlock(&ctx->mutex);
4883

4884
	event->owner = current;
4885
	get_task_struct(current);
4886 4887 4888
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4889

4890
err_fput_free_put_context:
4891
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4892

4893
err_free_put_context:
4894
	if (err < 0)
4895
		kfree(event);
T
Thomas Gleixner 已提交
4896 4897

err_put_context:
4898 4899 4900 4901
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4902

4903
	return err;
T
Thomas Gleixner 已提交
4904 4905
}

4906 4907 4908 4909 4910 4911 4912 4913 4914
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4915 4916
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4927 4928 4929 4930
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4931 4932

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4933
				 NULL, overflow_handler, GFP_KERNEL);
4934 4935
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4936
		goto err_put_context;
4937
	}
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4954 4955 4956 4957
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4958 4959 4960
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4961
/*
4962
 * inherit a event from parent task to child task:
4963
 */
4964 4965
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4966
	      struct task_struct *parent,
4967
	      struct perf_event_context *parent_ctx,
4968
	      struct task_struct *child,
4969 4970
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4971
{
4972
	struct perf_event *child_event;
4973

4974
	/*
4975 4976
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4977 4978 4979
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4980 4981
	if (parent_event->parent)
		parent_event = parent_event->parent;
4982

4983 4984 4985
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4986
					   NULL, GFP_KERNEL);
4987 4988
	if (IS_ERR(child_event))
		return child_event;
4989
	get_ctx(child_ctx);
4990

4991
	/*
4992
	 * Make the child state follow the state of the parent event,
4993
	 * not its attr.disabled bit.  We hold the parent's mutex,
4994
	 * so we won't race with perf_event_{en, dis}able_family.
4995
	 */
4996 4997
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4998
	else
4999
		child_event->state = PERF_EVENT_STATE_OFF;
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5010

5011 5012
	child_event->overflow_handler = parent_event->overflow_handler;

5013 5014 5015
	/*
	 * Link it up in the child's context:
	 */
5016
	add_event_to_ctx(child_event, child_ctx);
5017 5018 5019

	/*
	 * Get a reference to the parent filp - we will fput it
5020
	 * when the child event exits. This is safe to do because
5021 5022 5023
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5024
	atomic_long_inc(&parent_event->filp->f_count);
5025

5026
	/*
5027
	 * Link this into the parent event's child list
5028
	 */
5029 5030 5031 5032
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5033

5034
	return child_event;
5035 5036
}

5037
static int inherit_group(struct perf_event *parent_event,
5038
	      struct task_struct *parent,
5039
	      struct perf_event_context *parent_ctx,
5040
	      struct task_struct *child,
5041
	      struct perf_event_context *child_ctx)
5042
{
5043 5044 5045
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5046

5047
	leader = inherit_event(parent_event, parent, parent_ctx,
5048
				 child, NULL, child_ctx);
5049 5050
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5051 5052
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5053 5054 5055
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5056
	}
5057 5058 5059
	return 0;
}

5060
static void sync_child_event(struct perf_event *child_event,
5061
			       struct task_struct *child)
5062
{
5063
	struct perf_event *parent_event = child_event->parent;
5064
	u64 child_val;
5065

5066 5067
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5068

5069
	child_val = atomic64_read(&child_event->count);
5070 5071 5072 5073

	/*
	 * Add back the child's count to the parent's count:
	 */
5074 5075 5076 5077 5078
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5079 5080

	/*
5081
	 * Remove this event from the parent's list
5082
	 */
5083 5084 5085 5086
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5087 5088

	/*
5089
	 * Release the parent event, if this was the last
5090 5091
	 * reference to it.
	 */
5092
	fput(parent_event->filp);
5093 5094
}

5095
static void
5096 5097
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5098
			 struct task_struct *child)
5099
{
5100
	struct perf_event *parent_event;
5101

5102
	perf_event_remove_from_context(child_event);
5103

5104
	parent_event = child_event->parent;
5105
	/*
5106
	 * It can happen that parent exits first, and has events
5107
	 * that are still around due to the child reference. These
5108
	 * events need to be zapped - but otherwise linger.
5109
	 */
5110 5111 5112
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5113
	}
5114 5115 5116
}

/*
5117
 * When a child task exits, feed back event values to parent events.
5118
 */
5119
void perf_event_exit_task(struct task_struct *child)
5120
{
5121 5122
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5123
	unsigned long flags;
5124

5125 5126
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5127
		return;
P
Peter Zijlstra 已提交
5128
	}
5129

5130
	local_irq_save(flags);
5131 5132 5133 5134 5135 5136
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5137 5138
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5139 5140 5141

	/*
	 * Take the context lock here so that if find_get_context is
5142
	 * reading child->perf_event_ctxp, we wait until it has
5143 5144
	 * incremented the context's refcount before we do put_ctx below.
	 */
5145
	raw_spin_lock(&child_ctx->lock);
5146
	child->perf_event_ctxp = NULL;
5147 5148 5149
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5150
	 * the events from it.
5151 5152
	 */
	unclone_ctx(child_ctx);
5153
	update_context_time(child_ctx);
5154
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5155 5156

	/*
5157 5158 5159
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5160
	 */
5161
	perf_event_task(child, child_ctx, 0);
5162

5163 5164 5165
	/*
	 * We can recurse on the same lock type through:
	 *
5166 5167 5168
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5169 5170 5171 5172 5173 5174
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5175

5176
again:
5177 5178 5179 5180 5181
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5182
				 group_entry)
5183
		__perf_event_exit_task(child_event, child_ctx, child);
5184 5185

	/*
5186
	 * If the last event was a group event, it will have appended all
5187 5188 5189
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5190 5191
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5192
		goto again;
5193 5194 5195 5196

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5197 5198
}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5217 5218 5219 5220
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5221
void perf_event_free_task(struct task_struct *task)
5222
{
5223 5224
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5225 5226 5227 5228 5229 5230

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5231 5232
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5233

5234 5235 5236
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5237

5238 5239 5240
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5241

5242
	mutex_unlock(&ctx->mutex);
5243

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5259 5260
	}

5261 5262 5263 5264 5265 5266 5267
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5268

5269 5270 5271 5272
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5273

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5286 5287
}

5288

5289
/*
5290
 * Initialize the perf_event context in task_struct
5291
 */
5292
int perf_event_init_task(struct task_struct *child)
5293
{
5294
	struct perf_event_context *child_ctx, *parent_ctx;
5295 5296
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5297
	struct task_struct *parent = current;
5298
	int inherited_all = 1;
5299
	int ret = 0;
5300

5301
	child->perf_event_ctxp = NULL;
5302

5303 5304
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5305

5306
	if (likely(!parent->perf_event_ctxp))
5307 5308
		return 0;

5309
	/*
5310 5311
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5312
	 */
5313 5314
	parent_ctx = perf_pin_task_context(parent);

5315 5316 5317 5318 5319 5320 5321
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5322 5323 5324 5325
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5326
	mutex_lock(&parent_ctx->mutex);
5327 5328 5329 5330 5331

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5332 5333 5334 5335 5336 5337
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5338

5339 5340 5341 5342
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5343
			break;
5344 5345
	}

5346 5347
	child_ctx = child->perf_event_ctxp;

5348
	if (child_ctx && inherited_all) {
5349 5350 5351
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5352 5353
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5354
		 * because the list of events and the generation
5355
		 * count can't have changed since we took the mutex.
5356
		 */
5357 5358 5359
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5360
			child_ctx->parent_gen = parent_ctx->parent_gen;
5361 5362 5363 5364 5365
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5366 5367
	}

5368
	mutex_unlock(&parent_ctx->mutex);
5369

5370
	perf_unpin_context(parent_ctx);
5371

5372
	return ret;
5373 5374
}

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5386
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5387
{
5388
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5389

5390
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5391

5392
	spin_lock(&perf_resource_lock);
5393
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5394
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5395 5396 5397
}

#ifdef CONFIG_HOTPLUG_CPU
5398
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5399 5400
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5401 5402
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5403

5404 5405 5406
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5407
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5408
}
5409
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5410
{
5411
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5412
	struct perf_event_context *ctx = &cpuctx->ctx;
5413 5414

	mutex_lock(&ctx->mutex);
5415
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5416
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5417 5418
}
#else
5419
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5431
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5432 5433 5434 5435
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5436
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5446 5447 5448
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5449 5450
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5451
	.priority		= 20,
T
Thomas Gleixner 已提交
5452 5453
};

5454
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5455
{
5456
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5457 5458
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5459 5460
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5461 5462 5463
	register_cpu_notifier(&perf_cpu_nb);
}

5464 5465 5466
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5467 5468 5469 5470 5471 5472
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5473
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5484
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5485 5486
		return -EINVAL;

5487
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5488 5489 5490
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5491
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5492 5493
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5494
		cpuctx->max_pertask = mpt;
5495
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5496
	}
5497
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5498 5499 5500 5501

	return count;
}

5502 5503 5504
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5505 5506 5507 5508 5509
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5510 5511 5512
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5523
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5524
	perf_overcommit = val;
5525
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5552
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5553 5554
};

5555
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5556 5557 5558 5559
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5560
device_initcall(perf_event_sysfs_init);