core.c 104.4 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
134
 * returns the device node corresponding to the regulator if found, else
135 136 137 138 139 140 141 142 143 144 145 146 147
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
148
		dev_dbg(dev, "Looking up %s property in node %s failed",
149 150 151 152 153 154
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

155 156 157 158 159 160 161 162 163 164 165
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

166 167 168 169 170 171 172
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

186 187
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188
			 *min_uV, *max_uV);
189
		return -EINVAL;
190
	}
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202 203
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 205 206 207 208 209 210
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

211 212 213 214 215 216
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

217
	if (*min_uV > *max_uV) {
218 219
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
220
		return -EINVAL;
221
	}
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
233
		rdev_err(rdev, "no constraints\n");
234 235 236
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237
		rdev_err(rdev, "operation not allowed\n");
238 239 240 241 242 243 244 245
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

246 247
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248
			 *min_uA, *max_uA);
249
		return -EINVAL;
250
	}
251 252 253 254 255

	return 0;
}

/* operating mode constraint check */
256
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257
{
258
	switch (*mode) {
259 260 261 262 263 264
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
265
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 267 268
		return -EINVAL;
	}

269
	if (!rdev->constraints) {
270
		rdev_err(rdev, "no constraints\n");
271 272 273
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274
		rdev_err(rdev, "operation not allowed\n");
275 276
		return -EPERM;
	}
277 278 279 280 281 282 283 284

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
285
	}
286 287

	return -EINVAL;
288 289 290 291 292 293
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
294
		rdev_err(rdev, "no constraints\n");
295 296 297
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298
		rdev_err(rdev, "operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
307
	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 309 310 311 312 313 314 315
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
316
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 318 319 320

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
321
	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 323 324

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
325
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326

327 328
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
329 330 331
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

332
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333
}
334
static DEVICE_ATTR_RO(name);
335

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
417 418 419
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
420 421 422
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
423 424 425 426 427 428 429 430
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

431 432 433
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436 437 438 439 440

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
441
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 443 444 445

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449 450 451 452

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
453
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 455 456 457

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
458
	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 460 461 462 463 464

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
465
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 467 468 469

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
477
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 479 480 481

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
482
	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 484 485 486 487
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
488
		uA += regulator->uA_load;
489 490 491
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
492
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493

494 495
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
496
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499
	return sprintf(buf, "%d\n", rdev->use_count);
}
500
static DEVICE_ATTR_RO(num_users);
501

502 503
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
504
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508 509 510 511 512 513 514

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
515
static DEVICE_ATTR_RO(type);
516 517 518 519

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
520
	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 522 523

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
524 525
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
526 527 528 529

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
530
	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 532 533

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
534 535
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 542 543

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
544 545
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
546 547 548 549

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551

D
David Brownell 已提交
552 553
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
554
}
555 556
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
557 558 559 560

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562

D
David Brownell 已提交
563 564
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
565
}
566 567
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

D
David Brownell 已提交
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
576
}
577 578
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

D
David Brownell 已提交
585 586
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
587
}
588 589
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

D
David Brownell 已提交
596 597
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
598
}
599 600
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

D
David Brownell 已提交
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
609
}
610 611 612
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
634

635 636
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
637
static int drms_uA_update(struct regulator_dev *rdev)
638 639 640 641 642
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

643 644 645 646
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
647
	err = regulator_check_drms(rdev);
648 649 650
	if (err < 0)
		return 0;

651 652
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
653 654
		return 0;

655 656
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
657
		return -EINVAL;
658 659

	/* get output voltage */
660
	output_uV = _regulator_get_voltage(rdev);
661 662 663 664
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
665 666

	/* get input voltage */
667 668
	input_uV = 0;
	if (rdev->supply)
669
		input_uV = regulator_get_voltage(rdev->supply);
670
	if (input_uV <= 0)
671
		input_uV = rdev->constraints->input_uV;
672 673 674 675
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
676 677 678

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
679
		current_uA += sibling->uA_load;
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}

		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
702 703 704
	}

	return err;
705 706 707 708 709 710
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
711 712

	/* If we have no suspend mode configration don't set anything;
713 714
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
715 716
	 */
	if (!rstate->enabled && !rstate->disabled) {
717 718
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
719
			rdev_warn(rdev, "No configuration\n");
720 721 722 723
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
724
		rdev_err(rdev, "invalid configuration\n");
725 726
		return -EINVAL;
	}
727

728
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729
		ret = rdev->desc->ops->set_suspend_enable(rdev);
730
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731
		ret = rdev->desc->ops->set_suspend_disable(rdev);
732 733 734
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

735
	if (ret < 0) {
736
		rdev_err(rdev, "failed to enabled/disable\n");
737 738 739 740 741 742
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
743
			rdev_err(rdev, "failed to set voltage\n");
744 745 746 747 748 749 750
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
751
			rdev_err(rdev, "failed to set mode\n");
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
782
	char buf[80] = "";
783 784
	int count = 0;
	int ret;
785

786
	if (constraints->min_uV && constraints->max_uV) {
787
		if (constraints->min_uV == constraints->max_uV)
788 789
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
790
		else
791 792 793 794 795 796 797 798 799 800 801 802
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

803 804 805 806
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

807
	if (constraints->min_uA && constraints->max_uA) {
808
		if (constraints->min_uA == constraints->max_uA)
809 810
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
811
		else
812 813 814 815 816 817 818 819 820
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
821
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
822
	}
823

824 825 826 827 828 829 830 831 832
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

833 834 835
	if (!count)
		sprintf(buf, "no parameters");

836
	rdev_dbg(rdev, "%s\n", buf);
837 838 839 840 841

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
842 843
}

844
static int machine_constraints_voltage(struct regulator_dev *rdev,
845
	struct regulation_constraints *constraints)
846
{
847
	const struct regulator_ops *ops = rdev->desc->ops;
848 849 850 851
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
852
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
853 854
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
855 856 857
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
858 859 860 861 862 863 864 865 866
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
867 868
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
869 870
				return ret;
			}
871
		}
872
	}
873

874 875 876 877 878 879 880 881 882 883 884
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

885 886
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
887
		if (count == 1 && !cmin) {
888
			cmin = 1;
889
			cmax = INT_MAX;
890 891
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
892 893
		}

894 895
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
896
			return 0;
897

898
		/* else require explicit machine-level constraints */
899
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
900
			rdev_err(rdev, "invalid voltage constraints\n");
901
			return -EINVAL;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
921 922 923
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
924
			return -EINVAL;
925 926 927 928
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
929 930
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
931 932 933
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
934 935
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
936 937 938 939
			constraints->max_uV = max_uV;
		}
	}

940 941 942
	return 0;
}

943 944 945
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
946
	const struct regulator_ops *ops = rdev->desc->ops;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

973 974
static int _regulator_do_enable(struct regulator_dev *rdev);

975 976 977 978 979 980 981 982 983 984 985 986
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
987
	const struct regulation_constraints *constraints)
988 989
{
	int ret = 0;
990
	const struct regulator_ops *ops = rdev->desc->ops;
991

992 993 994 995 996 997
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
998 999
	if (!rdev->constraints)
		return -ENOMEM;
1000

1001
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1002 1003 1004
	if (ret != 0)
		goto out;

1005
	ret = machine_constraints_current(rdev, rdev->constraints);
1006 1007 1008
	if (ret != 0)
		goto out;

1009
	/* do we need to setup our suspend state */
1010
	if (rdev->constraints->initial_state) {
1011
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1012
		if (ret < 0) {
1013
			rdev_err(rdev, "failed to set suspend state\n");
1014 1015 1016
			goto out;
		}
	}
1017

1018
	if (rdev->constraints->initial_mode) {
1019
		if (!ops->set_mode) {
1020
			rdev_err(rdev, "no set_mode operation\n");
1021 1022 1023 1024
			ret = -EINVAL;
			goto out;
		}

1025
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1026
		if (ret < 0) {
1027
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1028 1029 1030 1031
			goto out;
		}
	}

1032 1033 1034
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1035 1036 1037
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1038
			rdev_err(rdev, "failed to enable\n");
1039 1040 1041 1042
			goto out;
		}
	}

1043 1044
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1045 1046 1047 1048 1049 1050 1051
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

1052
	print_constraints(rdev);
1053
	return 0;
1054
out:
1055 1056
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1057 1058 1059 1060 1061
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1062 1063
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1064 1065 1066 1067 1068 1069
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1070
		      struct regulator_dev *supply_rdev)
1071 1072 1073
{
	int err;

1074 1075 1076
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1077 1078
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1079
		return err;
1080
	}
1081
	supply_rdev->open_count++;
1082 1083

	return 0;
1084 1085 1086
}

/**
1087
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088
 * @rdev:         regulator source
1089
 * @consumer_dev_name: dev_name() string for device supply applies to
1090
 * @supply:       symbolic name for supply
1091 1092 1093 1094 1095 1096 1097
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1098 1099
				      const char *consumer_dev_name,
				      const char *supply)
1100 1101
{
	struct regulator_map *node;
1102
	int has_dev;
1103 1104 1105 1106

	if (supply == NULL)
		return -EINVAL;

1107 1108 1109 1110 1111
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1112
	list_for_each_entry(node, &regulator_map_list, list) {
1113 1114 1115 1116
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1117
			continue;
1118 1119
		}

1120 1121 1122
		if (strcmp(node->supply, supply) != 0)
			continue;

1123 1124 1125 1126 1127 1128
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1129 1130 1131
		return -EBUSY;
	}

1132
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1133 1134 1135 1136 1137 1138
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1139 1140 1141 1142 1143 1144
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1145 1146
	}

1147 1148 1149 1150
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1151 1152 1153 1154 1155 1156 1157
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1158
			kfree(node->dev_name);
1159 1160 1161 1162 1163
			kfree(node);
		}
	}
}

1164
#define REG_STR_SIZE	64
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1183 1184
		regulator->dev = dev;

1185
		/* Add a link to the device sysfs entry */
1186 1187 1188
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1189
			goto overflow_err;
1190 1191 1192

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1193
			goto overflow_err;
1194 1195 1196 1197

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1198 1199
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1200
			/* non-fatal */
1201
		}
1202 1203 1204
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1205
			goto overflow_err;
1206 1207 1208 1209
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1210
	if (!regulator->debugfs) {
1211 1212 1213 1214 1215 1216 1217 1218
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1219
	}
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1230 1231 1232 1233 1234 1235 1236 1237 1238
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1239 1240
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1241 1242
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1243
	if (!rdev->desc->ops->enable_time)
1244
		return rdev->desc->enable_time;
1245 1246 1247
	return rdev->desc->ops->enable_time(rdev);
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1274
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1275 1276
						  const char *supply,
						  int *ret)
1277 1278 1279
{
	struct regulator_dev *r;
	struct device_node *node;
1280 1281
	struct regulator_map *map;
	const char *devname = NULL;
1282

1283 1284
	regulator_supply_alias(&dev, &supply);

1285 1286 1287
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1288
		if (node) {
1289 1290 1291 1292
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1293 1294
			*ret = -EPROBE_DEFER;
			return NULL;
1295 1296 1297 1298 1299 1300 1301 1302 1303
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1304 1305 1306
	}

	/* if not found, try doing it non-dt way */
1307 1308 1309
	if (dev)
		devname = dev_name(dev);

1310 1311 1312 1313
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1325 1326 1327
	return NULL;
}

1328 1329
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1330
					bool exclusive, bool allow_dummy)
1331 1332
{
	struct regulator_dev *rdev;
1333
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1334
	const char *devname = NULL;
1335
	int ret;
1336 1337

	if (id == NULL) {
1338
		pr_err("get() with no identifier\n");
1339
		return ERR_PTR(-EINVAL);
1340 1341
	}

1342 1343 1344
	if (dev)
		devname = dev_name(dev);

1345 1346 1347 1348 1349
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1350 1351
	mutex_lock(&regulator_list_mutex);

1352
	rdev = regulator_dev_lookup(dev, id, &ret);
1353 1354 1355
	if (rdev)
		goto found;

1356 1357
	regulator = ERR_PTR(ret);

1358 1359 1360 1361
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1362
	if (ret && ret != -ENODEV)
1363 1364
		goto out;

1365 1366 1367
	if (!devname)
		devname = "deviceless";

1368 1369 1370
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1371
	 */
1372
	if (have_full_constraints() && allow_dummy) {
1373 1374
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1375

1376 1377
		rdev = dummy_regulator_rdev;
		goto found;
1378 1379
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1380
		dev_warn(dev, "dummy supplies not allowed\n");
1381 1382
	}

1383 1384 1385 1386
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1397 1398 1399
	if (!try_module_get(rdev->owner))
		goto out;

1400 1401 1402 1403
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1404
		goto out;
1405 1406
	}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1418
out:
1419
	mutex_unlock(&regulator_list_mutex);
1420

1421 1422
	return regulator;
}
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1439
	return _regulator_get(dev, id, false, true);
1440
}
1441 1442
EXPORT_SYMBOL_GPL(regulator_get);

1443 1444 1445 1446 1447 1448 1449
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1450 1451 1452
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1466
	return _regulator_get(dev, id, true, false);
1467 1468 1469
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1470 1471 1472 1473 1474 1475
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1476
 * or IS_ERR() condition containing errno.
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1492
	return _regulator_get(dev, id, false, false);
1493 1494 1495
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1496
/* regulator_list_mutex lock held by regulator_put() */
1497
static void _regulator_put(struct regulator *regulator)
1498 1499 1500 1501 1502 1503 1504 1505
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1506 1507
	debugfs_remove_recursive(regulator->debugfs);

1508
	/* remove any sysfs entries */
1509
	if (regulator->dev)
1510
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1511
	mutex_lock(&rdev->mutex);
1512
	kfree(regulator->supply_name);
1513 1514 1515
	list_del(&regulator->list);
	kfree(regulator);

1516 1517
	rdev->open_count--;
	rdev->exclusive = 0;
1518
	mutex_unlock(&rdev->mutex);
1519

1520
	module_put(rdev->owner);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1535 1536 1537 1538
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1616 1617
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1618
					 struct device *alias_dev,
1619
					 const char *const *alias_id,
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1657
					    const char *const *id,
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1668 1669 1670 1671 1672
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1673
	struct gpio_desc *gpiod;
1674 1675
	int ret;

1676 1677
	gpiod = gpio_to_desc(config->ena_gpio);

1678
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1679
		if (pin->gpiod == gpiod) {
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1698
	pin->gpiod = gpiod;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1717
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1718 1719
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1720
				gpiod_put(pin->gpiod);
1721 1722
				list_del(&pin->list);
				kfree(pin);
1723 1724
				rdev->ena_pin = NULL;
				return;
1725 1726 1727 1728 1729 1730 1731
			} else {
				pin->request_count--;
			}
		}
	}
}

1732
/**
1733 1734 1735 1736
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1750 1751
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1762 1763
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1764 1765 1766 1767 1768 1769 1770
			pin->enable_count = 0;
		}
	}

	return 0;
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

1850 1851 1852 1853
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1854 1855
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1868
	_regulator_enable_delay(delay);
1869 1870 1871 1872 1873 1874

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1875 1876 1877
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1878
	int ret;
1879 1880

	/* check voltage and requested load before enabling */
1881 1882 1883
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1884

1885 1886 1887 1888 1889 1890 1891
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1892
			ret = _regulator_do_enable(rdev);
1893 1894 1895
			if (ret < 0)
				return ret;

1896
		} else if (ret < 0) {
1897
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1898 1899
			return ret;
		}
1900
		/* Fallthrough on positive return values - already enabled */
1901 1902
	}

1903 1904 1905
	rdev->use_count++;

	return 0;
1906 1907 1908 1909 1910 1911
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1912 1913 1914 1915
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1916
 * NOTE: the output value can be set by other drivers, boot loader or may be
1917
 * hardwired in the regulator.
1918 1919 1920
 */
int regulator_enable(struct regulator *regulator)
{
1921 1922
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1923

1924 1925 1926
	if (regulator->always_on)
		return 0;

1927 1928 1929 1930 1931 1932
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1933
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1934
	ret = _regulator_enable(rdev);
1935
	mutex_unlock(&rdev->mutex);
1936

1937
	if (ret != 0 && rdev->supply)
1938 1939
		regulator_disable(rdev->supply);

1940 1941 1942 1943
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1944 1945 1946 1947 1948 1949
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1950 1951 1952 1953
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1954 1955 1956 1957 1958 1959 1960 1961
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

1962 1963 1964 1965 1966 1967
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

1968 1969 1970 1971 1972
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

1973
/* locks held by regulator_disable() */
1974
static int _regulator_disable(struct regulator_dev *rdev)
1975 1976 1977
{
	int ret = 0;

D
David Brownell 已提交
1978
	if (WARN(rdev->use_count <= 0,
1979
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1980 1981
		return -EIO;

1982
	/* are we the last user and permitted to disable ? */
1983 1984
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1985 1986

		/* we are last user */
1987
		if (_regulator_can_change_status(rdev)) {
1988 1989 1990 1991 1992 1993
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

1994
			ret = _regulator_do_disable(rdev);
1995
			if (ret < 0) {
1996
				rdev_err(rdev, "failed to disable\n");
1997 1998 1999
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2000 2001
				return ret;
			}
2002 2003
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2016

2017 2018 2019 2020 2021 2022 2023
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2024 2025 2026
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2027
 *
2028
 * NOTE: this will only disable the regulator output if no other consumer
2029 2030
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2031 2032 2033
 */
int regulator_disable(struct regulator *regulator)
{
2034 2035
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2036

2037 2038 2039
	if (regulator->always_on)
		return 0;

2040
	mutex_lock(&rdev->mutex);
2041
	ret = _regulator_disable(rdev);
2042
	mutex_unlock(&rdev->mutex);
2043

2044 2045
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2046

2047 2048 2049 2050 2051
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2052
static int _regulator_force_disable(struct regulator_dev *rdev)
2053 2054 2055
{
	int ret = 0;

2056 2057 2058 2059 2060
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2061 2062 2063
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2064 2065
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2066
		return ret;
2067 2068
	}

2069 2070 2071 2072
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2086
	struct regulator_dev *rdev = regulator->rdev;
2087 2088
	int ret;

2089
	mutex_lock(&rdev->mutex);
2090
	regulator->uA_load = 0;
2091
	ret = _regulator_force_disable(regulator->rdev);
2092
	mutex_unlock(&rdev->mutex);
2093

2094 2095 2096
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2097

2098 2099 2100 2101
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2149
	int ret;
2150

2151 2152 2153
	if (regulator->always_on)
		return 0;

2154 2155 2156
	if (!ms)
		return regulator_disable(regulator);

2157 2158 2159 2160
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2161 2162 2163
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2164 2165 2166 2167
	if (ret < 0)
		return ret;
	else
		return 0;
2168 2169 2170
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2171 2172
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2173
	/* A GPIO control always takes precedence */
2174
	if (rdev->ena_pin)
2175 2176
		return rdev->ena_gpio_state;

2177
	/* If we don't know then assume that the regulator is always on */
2178
	if (!rdev->desc->ops->is_enabled)
2179
		return 1;
2180

2181
	return rdev->desc->ops->is_enabled(rdev);
2182 2183 2184 2185 2186 2187
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2188 2189 2190 2191 2192 2193 2194
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2195 2196 2197
 */
int regulator_is_enabled(struct regulator *regulator)
{
2198 2199
	int ret;

2200 2201 2202
	if (regulator->always_on)
		return 1;

2203 2204 2205 2206 2207
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2208 2209 2210
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2211 2212 2213 2214 2215
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2216
 * can change its voltage, false otherwise. Useful for detecting fixed
2217 2218 2219 2220 2221 2222 2223 2224
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2225 2226 2227 2228 2229 2230 2231 2232 2233
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2234 2235 2236 2237 2238

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2251 2252 2253 2254 2255 2256 2257
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2268
 * zero if this selector code can't be used on this system, or a
2269 2270 2271 2272
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2273 2274 2275
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;
2276

2277 2278 2279
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2280 2281 2282 2283 2284 2285 2286 2287 2288
	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = regulator_list_voltage(rdev->supply, selector);
	} else {
2289
		return -EINVAL;
2290
	}
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2335 2336
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2362 2363
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2401
	struct regulator_dev *rdev = regulator->rdev;
2402 2403
	int i, voltages, ret;

2404 2405 2406 2407
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2408
			return min_uV <= ret && ret <= max_uV;
2409 2410 2411 2412
		else
			return ret;
	}

2413 2414 2415 2416 2417
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2432
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2483 2484 2485 2486
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2487
	int delay = 0;
2488
	int best_val = 0;
2489
	unsigned int selector;
2490
	int old_selector = -1;
2491 2492 2493

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2494 2495 2496
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2497 2498 2499 2500
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2501 2502
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2503 2504 2505 2506 2507 2508
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2509
	if (rdev->desc->ops->set_voltage) {
2510 2511
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2512 2513 2514 2515 2516 2517 2518 2519 2520

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2521
	} else if (rdev->desc->ops->set_voltage_sel) {
2522
		if (rdev->desc->ops->map_voltage) {
2523 2524
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2525 2526 2527 2528 2529
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2530 2531 2532 2533
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2534 2535 2536 2537
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2538

2539
		if (ret >= 0) {
2540 2541 2542
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2543 2544 2545
				if (old_selector == selector)
					ret = 0;
				else
2546 2547
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2548 2549 2550
			} else {
				ret = -EINVAL;
			}
2551
		}
2552 2553 2554
	} else {
		ret = -EINVAL;
	}
2555

2556
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2557 2558
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2559

2560 2561 2562 2563 2564 2565
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2566
		}
2567

2568 2569 2570 2571 2572 2573 2574
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2575 2576
	}

2577 2578 2579
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2580
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2581 2582
				     (void *)data);
	}
2583

2584
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2585 2586 2587 2588

	return ret;
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2604
 * Regulator system constraints must be set for this regulator before
2605 2606 2607 2608 2609
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2610
	int ret = 0;
2611
	int old_min_uV, old_max_uV;
2612
	int current_uV;
2613 2614 2615

	mutex_lock(&rdev->mutex);

2616 2617 2618 2619 2620 2621 2622
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	/* If we're trying to set a range that overlaps the current voltage,
	 * return succesfully even though the regulator does not support
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2636
	/* sanity check */
2637 2638
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2639 2640 2641 2642 2643 2644 2645 2646
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2647

2648 2649 2650
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2651 2652
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2653

2654 2655
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2656
		goto out2;
2657

2658
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2659 2660
	if (ret < 0)
		goto out2;
2661

2662 2663 2664
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2665 2666 2667 2668
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2669 2670 2671 2672
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2686 2687
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2718
/**
2719 2720
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2721 2722 2723 2724 2725 2726
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2727
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2728
 * set_voltage_time_sel() operation.
2729 2730 2731 2732 2733
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2734
	unsigned int ramp_delay = 0;
2735
	int old_volt, new_volt;
2736 2737 2738 2739 2740 2741 2742

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2743
		rdev_warn(rdev, "ramp_delay not set\n");
2744
		return 0;
2745
	}
2746

2747 2748 2749
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2750

2751 2752 2753 2754
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2755
}
2756
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2805 2806
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2807
	int sel, ret;
2808 2809 2810 2811 2812

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2813
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2814
	} else if (rdev->desc->ops->get_voltage) {
2815
		ret = rdev->desc->ops->get_voltage(rdev);
2816 2817
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2818 2819
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2820 2821
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2822
	} else {
2823
		return -EINVAL;
2824
	}
2825

2826 2827
	if (ret < 0)
		return ret;
2828
	return ret - rdev->constraints->uV_offset;
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2857
 * @min_uA: Minimum supported current in uA
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2944
	int regulator_curr_mode;
2945 2946 2947 2948 2949 2950 2951 2952 2953

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2954 2955 2956 2957 2958 2959 2960 2961 2962
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2963
	/* constraints check */
2964
	ret = regulator_mode_constrain(rdev, &mode);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
3034
	int ret;
3035

3036 3037
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3038
	ret = drms_uA_update(rdev);
3039
	mutex_unlock(&rdev->mutex);
3040

3041 3042 3043 3044
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

3045 3046 3047 3048
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3049
 * @enable: enable or disable bypass mode
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3098 3099 3100
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3101
 * @nb: notifier block
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3116
 * @nb: notifier block
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3128 3129 3130
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3131
static int _notifier_call_chain(struct regulator_dev *rdev,
3132 3133 3134
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3135
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3166 3167
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3168 3169 3170 3171 3172 3173 3174 3175
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3176
	while (--i >= 0)
3177 3178 3179 3180 3181 3182
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3183 3184 3185 3186 3187 3188 3189
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3205
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3206
	int i;
3207
	int ret = 0;
3208

3209 3210 3211 3212 3213 3214 3215
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3216 3217 3218 3219

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3220
	for (i = 0; i < num_consumers; i++) {
3221 3222
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3223
			goto err;
3224
		}
3225 3226 3227 3228 3229
	}

	return 0;

err:
3230 3231 3232 3233 3234 3235 3236
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3250 3251
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3252 3253 3254 3255 3256 3257
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3258
	int ret, r;
3259

3260
	for (i = num_consumers - 1; i >= 0; --i) {
3261 3262 3263 3264 3265 3266 3267 3268
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3269
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3270 3271 3272 3273 3274 3275
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3276 3277 3278 3279 3280

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3341
 * @rdev: regulator source
3342
 * @event: notifier block
3343
 * @data: callback-specific data.
3344 3345 3346
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3347
 * Note lock must be held by caller.
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3374
	case REGULATOR_MODE_STANDBY:
3375 3376
		return REGULATOR_STATUS_STANDBY;
	default:
3377
		return REGULATOR_STATUS_UNDEFINED;
3378 3379 3380 3381
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3409 3410 3411 3412
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3413 3414
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3415
{
3416 3417
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3418
	const struct regulator_ops *ops = rdev->desc->ops;
3419 3420 3421 3422 3423 3424 3425
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3426 3427

	/* some attributes need specific methods to be displayed */
3428 3429 3430 3431 3432 3433 3434
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3435
	}
3436

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3452
	/* some attributes are type-specific */
3453 3454
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3455 3456 3457 3458 3459 3460

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
3461
		return 0;
3462 3463

	/* constraints need specific supporting methods */
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3499

3500 3501 3502 3503
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	kfree(rdev);
3504 3505
}

3506 3507 3508 3509 3510 3511
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3512 3513 3514
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3515
	if (!rdev->debugfs) {
3516 3517 3518 3519 3520 3521 3522 3523
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3524 3525
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3526 3527
}

3528 3529
/**
 * regulator_register - register regulator
3530
 * @regulator_desc: regulator to register
3531
 * @cfg: runtime configuration for regulator
3532 3533
 *
 * Called by regulator drivers to register a regulator.
3534 3535
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3536
 */
3537 3538
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3539
		   const struct regulator_config *cfg)
3540
{
3541
	const struct regulation_constraints *constraints = NULL;
3542
	const struct regulator_init_data *init_data;
3543
	struct regulator_config *config = NULL;
3544
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3545
	struct regulator_dev *rdev;
3546
	struct device *dev;
3547
	int ret, i;
3548
	const char *supply = NULL;
3549

3550
	if (regulator_desc == NULL || cfg == NULL)
3551 3552
		return ERR_PTR(-EINVAL);

3553
	dev = cfg->dev;
3554
	WARN_ON(!dev);
3555

3556 3557 3558
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3559 3560
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3561 3562
		return ERR_PTR(-EINVAL);

3563 3564 3565
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3566 3567
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3568 3569 3570 3571 3572 3573

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3574 3575 3576 3577
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3578

3579 3580 3581 3582
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3593
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3594 3595 3596 3597 3598 3599
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3600 3601 3602
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3603
	rdev->reg_data = config->driver_data;
3604 3605
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3606 3607
	if (config->regmap)
		rdev->regmap = config->regmap;
3608
	else if (dev_get_regmap(dev, NULL))
3609
		rdev->regmap = dev_get_regmap(dev, NULL);
3610 3611
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3612 3613 3614
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3615
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3616

3617
	/* preform any regulator specific init */
3618
	if (init_data && init_data->regulator_init) {
3619
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3620 3621
		if (ret < 0)
			goto clean;
3622 3623 3624
	}

	/* register with sysfs */
3625
	rdev->dev.class = &regulator_class;
3626
	rdev->dev.parent = dev;
3627
	dev_set_name(&rdev->dev, "regulator.%lu",
3628
		    (unsigned long) atomic_inc_return(&regulator_no));
3629
	ret = device_register(&rdev->dev);
3630 3631
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3632
		goto clean;
3633
	}
3634 3635 3636

	dev_set_drvdata(&rdev->dev, rdev);

3637 3638
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3639
		ret = regulator_ena_gpio_request(rdev, config);
3640 3641 3642
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3643
			goto wash;
3644 3645 3646 3647 3648
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3649
		if (config->ena_gpio_invert)
3650 3651 3652
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3653
	/* set regulator constraints */
3654 3655 3656 3657
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3658 3659 3660
	if (ret < 0)
		goto scrub;

3661
	if (init_data && init_data->supply_regulator)
3662 3663 3664 3665 3666
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3667 3668
		struct regulator_dev *r;

3669
		r = regulator_dev_lookup(dev, supply, &ret);
3670

3671 3672 3673 3674 3675 3676 3677 3678
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3679
			dev_err(dev, "Failed to find supply %s\n", supply);
3680
			ret = -EPROBE_DEFER;
3681 3682 3683 3684 3685 3686
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3687 3688

		/* Enable supply if rail is enabled */
3689
		if (_regulator_is_enabled(rdev)) {
3690 3691 3692 3693
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3694 3695
	}

3696
add_dev:
3697
	/* add consumers devices */
3698 3699 3700 3701
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3702
				init_data->consumer_supplies[i].supply);
3703 3704 3705 3706 3707
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3708
		}
3709
	}
3710 3711

	list_add(&rdev->list, &regulator_list);
3712 3713

	rdev_init_debugfs(rdev);
3714
out:
3715
	mutex_unlock(&regulator_list_mutex);
3716
	kfree(config);
3717
	return rdev;
D
David Brownell 已提交
3718

3719 3720 3721
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3722
scrub:
3723
	if (rdev->supply)
3724
		_regulator_put(rdev->supply);
3725
	regulator_ena_gpio_free(rdev);
3726
	kfree(rdev->constraints);
3727
wash:
D
David Brownell 已提交
3728
	device_unregister(&rdev->dev);
3729 3730 3731 3732
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3733 3734 3735 3736
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3737 3738 3739 3740 3741
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3742
 * @rdev: regulator to unregister
3743 3744 3745 3746 3747 3748 3749 3750
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3751 3752 3753
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3754
		regulator_put(rdev->supply);
3755
	}
3756
	mutex_lock(&regulator_list_mutex);
3757
	debugfs_remove_recursive(rdev->debugfs);
3758
	flush_work(&rdev->disable_work.work);
3759
	WARN_ON(rdev->open_count);
3760
	unset_regulator_supplies(rdev);
3761
	list_del(&rdev->list);
3762
	kfree(rdev->constraints);
3763
	regulator_ena_gpio_free(rdev);
3764
	of_node_put(rdev->dev.of_node);
3765
	device_unregister(&rdev->dev);
3766 3767 3768 3769 3770
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3771
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3794
			rdev_err(rdev, "failed to prepare\n");
3795 3796 3797 3798 3799 3800 3801 3802 3803
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3818 3819
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
			error = _regulator_do_enable(rdev);
3820 3821 3822
			if (error)
				ret = error;
		} else {
3823
			if (!have_full_constraints())
3824
				goto unlock;
3825
			if (!_regulator_is_enabled(rdev))
3826 3827
				goto unlock;

3828
			error = _regulator_do_disable(rdev);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3857 3858
/**
 * rdev_get_drvdata - get rdev regulator driver data
3859
 * @rdev: regulator
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3896
 * @rdev: regulator
3897 3898 3899 3900 3901 3902 3903
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3946
#endif
3947 3948

static const struct file_operations supply_map_fops = {
3949
#ifdef CONFIG_DEBUG_FS
3950 3951 3952
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3953
};
3954

3955 3956
static int __init regulator_init(void)
{
3957 3958 3959 3960
	int ret;

	ret = class_register(&regulator_class);

3961
	debugfs_root = debugfs_create_dir("regulator", NULL);
3962
	if (!debugfs_root)
3963
		pr_warn("regulator: Failed to create debugfs directory\n");
3964

3965 3966
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3967

3968 3969 3970
	regulator_dummy_init();

	return ret;
3971 3972 3973 3974
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3975 3976 3977 3978

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
3979
	const struct regulator_ops *ops;
3980 3981 3982
	struct regulation_constraints *c;
	int enabled, ret;

3983 3984 3985 3986 3987 3988 3989 3990 3991
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3992 3993 3994
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
3995 3996 3997
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
3998 3999 4000 4001 4002
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

4003
		if (c && c->always_on)
4004 4005
			continue;

4006 4007 4008
		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
			continue;

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

4023
		if (have_full_constraints()) {
4024 4025
			/* We log since this may kill the system if it
			 * goes wrong. */
4026
			rdev_info(rdev, "disabling\n");
4027
			ret = _regulator_do_disable(rdev);
4028
			if (ret != 0)
4029
				rdev_err(rdev, "couldn't disable: %d\n", ret);
4030 4031 4032 4033 4034 4035
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
4036
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
4047
late_initcall_sync(regulator_init_complete);