slub.c 127.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
213
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
214
#else
215 216 217
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
218
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
219 220
#endif

221
static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 223
{
#ifdef CONFIG_SLUB_STATS
224 225 226 227 228
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
229 230 231
#endif
}

C
Christoph Lameter 已提交
232 233 234 235 236 237 238 239 240
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
241
/* Verify that a pointer has an address that is valid within a slab page */
242 243 244 245 246
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

247
	if (!object)
248 249
		return 1;

250
	base = page_address(page);
251
	if (object < base || object >= base + page->objects * s->size ||
252 253 254 255 256 257 258
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

259 260 261 262 263
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

264 265 266 267 268
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

269 270 271 272 273 274 275 276 277 278 279 280
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

281 282 283 284 285 286
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
287 288
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 290 291 292 293 294 295 296
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

297 298 299 300 301 302 303 304
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305
		return s->object_size;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

321 322 323 324 325
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

326
static inline struct kmem_cache_order_objects oo_make(int order,
327
		unsigned long size, int reserved)
328 329
{
	struct kmem_cache_order_objects x = {
330
		(order << OO_SHIFT) + order_objects(order, size, reserved)
331 332 333 334 335 336 337
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
338
	return x.x >> OO_SHIFT;
339 340 341 342
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
343
	return x.x & OO_MASK;
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

374 375 376 377 378 379 380
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
381 382
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383
	if (s->flags & __CMPXCHG_DOUBLE) {
384
		if (cmpxchg_double(&page->freelist, &page->counters,
385 386 387 388 389 390 391
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
392 393
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
394
			page->freelist = freelist_new;
395
			set_page_slub_counters(page, counters_new);
396 397 398 399 400 401 402 403 404 405
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
406
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 408 409 410 411
#endif

	return 0;
}

412 413 414 415 416
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
417 418
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419
	if (s->flags & __CMPXCHG_DOUBLE) {
420
		if (cmpxchg_double(&page->freelist, &page->counters,
421 422 423 424 425 426
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
427 428 429
		unsigned long flags;

		local_irq_save(flags);
430
		slab_lock(page);
431 432
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
433
			page->freelist = freelist_new;
434
			set_page_slub_counters(page, counters_new);
435
			slab_unlock(page);
436
			local_irq_restore(flags);
437 438
			return 1;
		}
439
		slab_unlock(page);
440
		local_irq_restore(flags);
441 442 443 444 445 446
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
447
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 449 450 451 452
#endif

	return 0;
}

C
Christoph Lameter 已提交
453
#ifdef CONFIG_SLUB_DEBUG
454 455 456
/*
 * Determine a map of object in use on a page.
 *
457
 * Node listlock must be held to guarantee that the page does
458 459 460 461 462 463 464 465 466 467 468
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
469 470 471
/*
 * Debug settings:
 */
472 473 474
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
475
static int slub_debug;
476
#endif
C
Christoph Lameter 已提交
477 478

static char *slub_debug_slabs;
479
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
480

C
Christoph Lameter 已提交
481 482 483 484 485
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
486 487
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
504
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
505
{
A
Akinobu Mita 已提交
506
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
507 508

	if (addr) {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
527 528
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
529
		p->pid = current->pid;
C
Christoph Lameter 已提交
530 531 532 533 534 535 536
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
537 538 539
	if (!(s->flags & SLAB_STORE_USER))
		return;

540 541
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
542 543 544 545 546 547 548
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

549 550
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 552 553 554 555
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
556
				pr_err("\t%pS\n", (void *)t->addrs[i]);
557 558 559 560
			else
				break;
	}
#endif
561 562 563 564 565 566 567 568 569 570 571 572 573
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
574
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575
	       page, page->objects, page->inuse, page->freelist, page->flags);
576 577 578 579 580

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
581
	struct va_format vaf;
582 583 584
	va_list args;

	va_start(args, fmt);
585 586
	vaf.fmt = fmt;
	vaf.va = &args;
587
	pr_err("=============================================================================\n");
588
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
589
	pr_err("-----------------------------------------------------------------------------\n\n");
590

591
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592
	va_end(args);
C
Christoph Lameter 已提交
593 594
}

595 596
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
597
	struct va_format vaf;
598 599 600
	va_list args;

	va_start(args, fmt);
601 602 603
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
604 605 606 607
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
608 609
{
	unsigned int off;	/* Offset of last byte */
610
	u8 *addr = page_address(page);
611 612 613 614 615

	print_tracking(s, p);

	print_page_info(page);

616 617
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
618 619

	if (p > addr + 16)
620
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
621

622
	print_section("Object ", p, min_t(unsigned long, s->object_size,
623
				PAGE_SIZE));
C
Christoph Lameter 已提交
624
	if (s->flags & SLAB_RED_ZONE)
625 626
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
627 628 629 630 631 632

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

633
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
634 635 636 637
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
638
		print_section("Padding ", p + off, s->size - off);
639 640

	dump_stack();
C
Christoph Lameter 已提交
641 642 643 644 645
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
646
	slab_bug(s, "%s", reason);
647
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
648 649
}

650 651
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
652 653 654 655
{
	va_list args;
	char buf[100];

656 657
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
658
	va_end(args);
659
	slab_bug(s, "%s", buf);
660
	print_page_info(page);
C
Christoph Lameter 已提交
661 662 663
	dump_stack();
}

664
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
665 666 667 668
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
669 670
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
671 672 673
	}

	if (s->flags & SLAB_RED_ZONE)
674
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
686
			u8 *start, unsigned int value, unsigned int bytes)
687 688 689 690
{
	u8 *fault;
	u8 *end;

691
	fault = memchr_inv(start, value, bytes);
692 693 694 695 696 697 698 699
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
700
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 702 703 704 705
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
719
 * object + s->object_size
C
Christoph Lameter 已提交
720
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
721
 * 	Padding is extended by another word if Redzoning is enabled and
722
 * 	object_size == inuse.
C
Christoph Lameter 已提交
723
 *
C
Christoph Lameter 已提交
724 725 726 727
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
728 729
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
730 731
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
732
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
733
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
734 735 736
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
737 738
 *
 * object + s->size
C
Christoph Lameter 已提交
739
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
740
 *
741
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
742
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

761 762
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
763 764
}

765
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
766 767
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
768 769 770 771 772
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
773 774 775 776

	if (!(s->flags & SLAB_POISON))
		return 1;

777
	start = page_address(page);
778
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 780
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
781 782 783
	if (!remainder)
		return 1;

784
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 786 787 788 789 790
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791
	print_section("Padding ", end - remainder, remainder);
792

E
Eric Dumazet 已提交
793
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794
	return 0;
C
Christoph Lameter 已提交
795 796 797
}

static int check_object(struct kmem_cache *s, struct page *page,
798
					void *object, u8 val)
C
Christoph Lameter 已提交
799 800
{
	u8 *p = object;
801
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
802 803

	if (s->flags & SLAB_RED_ZONE) {
804
		if (!check_bytes_and_report(s, page, object, "Redzone",
805
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
806 807
			return 0;
	} else {
808
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
809
			check_bytes_and_report(s, page, p, "Alignment padding",
810 811
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
812
		}
C
Christoph Lameter 已提交
813 814 815
	}

	if (s->flags & SLAB_POISON) {
816
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817
			(!check_bytes_and_report(s, page, p, "Poison", p,
818
					POISON_FREE, s->object_size - 1) ||
819
			 !check_bytes_and_report(s, page, p, "Poison",
820
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
821 822 823 824 825 826 827
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

828
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
829 830 831 832 833 834 835 836 837 838
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
839
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
840
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
841
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
842
		 */
843
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
844 845 846 847 848 849 850
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
851 852
	int maxobj;

C
Christoph Lameter 已提交
853 854 855
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
856
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
857 858
		return 0;
	}
859

860
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 862 863 864 865 866
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
867
		slab_err(s, page, "inuse %u > max %u",
868
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
877 878
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
879 880 881 882
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
883
	void *fp;
C
Christoph Lameter 已提交
884
	void *object = NULL;
885
	unsigned long max_objects;
C
Christoph Lameter 已提交
886

887
	fp = page->freelist;
888
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
889 890 891 892 893 894
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
895
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
896
			} else {
897
				slab_err(s, page, "Freepointer corrupt");
898
				page->freelist = NULL;
899
				page->inuse = page->objects;
900
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

910
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 912
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
913 914 915 916 917 918 919

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
920
	if (page->inuse != page->objects - nr) {
921
		slab_err(s, page, "Wrong object count. Counter is %d but "
922 923
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
924
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
925 926 927 928
	}
	return search == NULL;
}

929 930
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
931 932
{
	if (s->flags & SLAB_TRACE) {
933
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
934 935 936 937 938 939
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
940 941
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
942 943 944 945 946

		dump_stack();
	}
}

947 948 949 950
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
951 952 953 954 955 956 957 958 959 960
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

961 962
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
963
	flags &= gfp_allowed_mask;
964 965 966
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

967
	return should_failslab(s->object_size, flags, s->flags);
968 969
}

970 971
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
972
{
973
	flags &= gfp_allowed_mask;
974
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 977 978 979 980 981
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

982
	/*
X
Xie XiuQi 已提交
983
	 * Trouble is that we may no longer disable interrupts in the fast path
984 985 986 987 988 989 990 991
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
992 993
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
994 995 996
		local_irq_restore(flags);
	}
#endif
997
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998
		debug_check_no_obj_freed(x, s->object_size);
999 1000
}

1001
/*
C
Christoph Lameter 已提交
1002
 * Tracking of fully allocated slabs for debugging purposes.
1003
 */
1004 1005
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1006
{
1007 1008 1009
	if (!(s->flags & SLAB_STORE_USER))
		return;

1010
	lockdep_assert_held(&n->list_lock);
1011 1012 1013
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1014
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 1016 1017 1018
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1019
	lockdep_assert_held(&n->list_lock);
1020 1021 1022
	list_del(&page->lru);
}

1023 1024 1025 1026 1027 1028 1029 1030
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1031 1032 1033 1034 1035
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1036
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1046
	if (likely(n)) {
1047
		atomic_long_inc(&n->nr_slabs);
1048 1049
		atomic_long_add(objects, &n->total_objects);
	}
1050
}
1051
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 1053 1054 1055
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1056
	atomic_long_sub(objects, &n->total_objects);
1057 1058 1059
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1060 1061 1062 1063 1064 1065
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1066
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1067 1068 1069
	init_tracking(s, object);
}

1070 1071
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1072
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1073 1074 1075 1076 1077 1078
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1079
		goto bad;
C
Christoph Lameter 已提交
1080 1081
	}

1082
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1083 1084
		goto bad;

C
Christoph Lameter 已提交
1085 1086 1087 1088
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1089
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1090
	return 1;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092 1093 1094 1095 1096
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1097
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1098
		 */
1099
		slab_fix(s, "Marking all objects used");
1100
		page->inuse = page->objects;
1101
		page->freelist = NULL;
C
Christoph Lameter 已提交
1102 1103 1104 1105
	}
	return 0;
}

1106 1107 1108
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1109
{
1110
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111

1112
	spin_lock_irqsave(&n->list_lock, *flags);
1113 1114
	slab_lock(page);

C
Christoph Lameter 已提交
1115 1116 1117 1118
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1119
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1120 1121 1122 1123
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1124
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1125 1126 1127
		goto fail;
	}

1128
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129
		goto out;
C
Christoph Lameter 已提交
1130

1131
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1132
		if (!PageSlab(page)) {
1133 1134
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1135
		} else if (!page->slab_cache) {
1136 1137
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1138
			dump_stack();
P
Pekka Enberg 已提交
1139
		} else
1140 1141
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1142 1143
		goto fail;
	}
C
Christoph Lameter 已提交
1144 1145 1146 1147

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1148
	init_object(s, object, SLUB_RED_INACTIVE);
1149
out:
1150
	slab_unlock(page);
1151 1152 1153 1154 1155
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1156

C
Christoph Lameter 已提交
1157
fail:
1158 1159
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1160
	slab_fix(s, "Object at 0x%p not freed", object);
1161
	return NULL;
C
Christoph Lameter 已提交
1162 1163
}

C
Christoph Lameter 已提交
1164 1165
static int __init setup_slub_debug(char *str)
{
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1199
	for (; *str && *str != ','; str++) {
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1216 1217 1218
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1219
		default:
1220 1221
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1222
		}
C
Christoph Lameter 已提交
1223 1224
	}

1225
check_slabs:
C
Christoph Lameter 已提交
1226 1227
	if (*str == ',')
		slub_debug_slabs = str + 1;
1228
out:
C
Christoph Lameter 已提交
1229 1230 1231 1232 1233
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1234
static unsigned long kmem_cache_flags(unsigned long object_size,
1235
	unsigned long flags, const char *name,
1236
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1237 1238
{
	/*
1239
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1240
	 */
1241 1242
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1243
		flags |= slub_debug;
1244 1245

	return flags;
C
Christoph Lameter 已提交
1246 1247
}
#else
C
Christoph Lameter 已提交
1248 1249
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1250

C
Christoph Lameter 已提交
1251
static inline int alloc_debug_processing(struct kmem_cache *s,
1252
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1253

1254 1255 1256
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1257 1258 1259 1260

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1261
			void *object, u8 val) { return 1; }
1262 1263
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1264 1265
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1266
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1267
	unsigned long flags, const char *name,
1268
	void (*ctor)(void *))
1269 1270 1271
{
	return flags;
}
C
Christoph Lameter 已提交
1272
#define slub_debug 0
1273

1274 1275
#define disable_higher_order_debug 0

1276 1277
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1278 1279
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1280 1281 1282 1283
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1295 1296 1297 1298
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1299 1300 1301 1302 1303
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1304

1305 1306 1307 1308
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1309

1310
#endif /* CONFIG_SLUB_DEBUG */
1311

C
Christoph Lameter 已提交
1312 1313 1314
/*
 * Slab allocation and freeing
 */
1315 1316
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1317
{
1318
	struct page *page;
1319 1320
	int order = oo_order(oo);

1321 1322
	flags |= __GFP_NOTRACK;

1323 1324 1325
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1326
	if (node == NUMA_NO_NODE)
1327
		page = alloc_pages(flags, order);
1328
	else
1329 1330 1331 1332 1333 1334
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1335 1336
}

C
Christoph Lameter 已提交
1337 1338
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1339
	struct page *page;
1340
	struct kmem_cache_order_objects oo = s->oo;
1341
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1342

1343 1344 1345 1346 1347
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1348
	flags |= s->allocflags;
1349

1350 1351 1352 1353 1354 1355
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1356
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1357 1358
	if (unlikely(!page)) {
		oo = s->min;
1359
		alloc_gfp = flags;
1360 1361 1362 1363
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1364
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1365

1366 1367
		if (page)
			stat(s, ORDER_FALLBACK);
1368
	}
V
Vegard Nossum 已提交
1369

1370
	if (kmemcheck_enabled && page
1371
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1372 1373
		int pages = 1 << oo_order(oo);

1374
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1375 1376 1377 1378 1379 1380 1381 1382 1383

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1384 1385
	}

1386 1387 1388 1389 1390
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1391
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1392 1393 1394
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1395
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1396 1397 1398 1399 1400 1401 1402

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1403
	setup_object_debug(s, page, object);
1404
	if (unlikely(s->ctor))
1405
		s->ctor(object);
C
Christoph Lameter 已提交
1406 1407 1408 1409 1410 1411 1412 1413
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1414
	int order;
C
Christoph Lameter 已提交
1415

C
Christoph Lameter 已提交
1416
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1417

C
Christoph Lameter 已提交
1418 1419
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1420 1421 1422
	if (!page)
		goto out;

G
Glauber Costa 已提交
1423
	order = compound_order(page);
1424
	inc_slabs_node(s, page_to_nid(page), page->objects);
1425
	page->slab_cache = s;
1426
	__SetPageSlab(page);
1427 1428
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1429 1430 1431 1432

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1433
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1434 1435

	last = start;
1436
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1437 1438 1439 1440 1441
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1442
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1443 1444

	page->freelist = start;
1445
	page->inuse = page->objects;
1446
	page->frozen = 1;
C
Christoph Lameter 已提交
1447 1448 1449 1450 1451 1452
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1453 1454
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1455

1456
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1457 1458 1459
		void *p;

		slab_pad_check(s, page);
1460 1461
		for_each_object(p, s, page_address(page),
						page->objects)
1462
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1463 1464
	}

1465
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1466

C
Christoph Lameter 已提交
1467 1468 1469
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1470
		-pages);
C
Christoph Lameter 已提交
1471

1472
	__ClearPageSlabPfmemalloc(page);
1473
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1474

1475
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1476 1477
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1478 1479
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1480 1481
}

1482 1483 1484
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1485 1486 1487 1488
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1489 1490 1491 1492 1493
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1494
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1495 1496 1497 1498 1499
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1514 1515 1516 1517 1518 1519 1520 1521

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1522
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1523 1524 1525 1526
	free_slab(s, page);
}

/*
1527
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1528
 */
1529 1530
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1531
{
C
Christoph Lameter 已提交
1532
	n->nr_partial++;
1533
	if (tail == DEACTIVATE_TO_TAIL)
1534 1535 1536
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1537 1538
}

1539 1540
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1541
{
P
Peter Zijlstra 已提交
1542
	lockdep_assert_held(&n->list_lock);
1543 1544
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1545

1546 1547 1548
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1549 1550 1551 1552
	list_del(&page->lru);
	n->nr_partial--;
}

1553 1554 1555 1556 1557 1558 1559
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1560
/*
1561 1562
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1563
 *
1564
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1565
 */
1566
static inline void *acquire_slab(struct kmem_cache *s,
1567
		struct kmem_cache_node *n, struct page *page,
1568
		int mode, int *objects)
C
Christoph Lameter 已提交
1569
{
1570 1571 1572 1573
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1574 1575
	lockdep_assert_held(&n->list_lock);

1576 1577 1578 1579 1580
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1581 1582 1583
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1584
	*objects = new.objects - new.inuse;
1585
	if (mode) {
1586
		new.inuse = page->objects;
1587 1588 1589 1590
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1591

1592
	VM_BUG_ON(new.frozen);
1593
	new.frozen = 1;
1594

1595
	if (!__cmpxchg_double_slab(s, page,
1596
			freelist, counters,
1597
			new.freelist, new.counters,
1598 1599
			"acquire_slab"))
		return NULL;
1600 1601

	remove_partial(n, page);
1602
	WARN_ON(!freelist);
1603
	return freelist;
C
Christoph Lameter 已提交
1604 1605
}

1606
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1607
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1608

C
Christoph Lameter 已提交
1609
/*
C
Christoph Lameter 已提交
1610
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1611
 */
1612 1613
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1614
{
1615 1616
	struct page *page, *page2;
	void *object = NULL;
1617 1618
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1619 1620 1621 1622

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1623 1624
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1625 1626 1627 1628 1629
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1630
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1631
		void *t;
1632

1633 1634 1635
		if (!pfmemalloc_match(page, flags))
			continue;

1636
		t = acquire_slab(s, n, page, object == NULL, &objects);
1637 1638 1639
		if (!t)
			break;

1640
		available += objects;
1641
		if (!object) {
1642 1643 1644 1645
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1646
			put_cpu_partial(s, page, 0);
1647
			stat(s, CPU_PARTIAL_NODE);
1648
		}
1649 1650
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1651 1652
			break;

1653
	}
C
Christoph Lameter 已提交
1654
	spin_unlock(&n->list_lock);
1655
	return object;
C
Christoph Lameter 已提交
1656 1657 1658
}

/*
C
Christoph Lameter 已提交
1659
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1660
 */
1661
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1662
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1663 1664 1665
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1666
	struct zoneref *z;
1667 1668
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1669
	void *object;
1670
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1671 1672

	/*
C
Christoph Lameter 已提交
1673 1674 1675 1676
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1677
	 *
C
Christoph Lameter 已提交
1678 1679 1680 1681
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1682
	 *
C
Christoph Lameter 已提交
1683
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1684 1685 1686 1687 1688
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1689
	 */
1690 1691
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1692 1693
		return NULL;

1694
	do {
1695
		cpuset_mems_cookie = read_mems_allowed_begin();
1696
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1697 1698 1699 1700 1701 1702 1703
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1704
				object = get_partial_node(s, n, c, flags);
1705 1706
				if (object) {
					/*
1707 1708 1709 1710 1711
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1712 1713 1714
					 */
					return object;
				}
1715
			}
C
Christoph Lameter 已提交
1716
		}
1717
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1718 1719 1720 1721 1722 1723 1724
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1725
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1726
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1727
{
1728
	void *object;
1729
	int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
C
Christoph Lameter 已提交
1730

1731
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1732 1733
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1734

1735
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1736 1737
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1779
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1780 1781 1782

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1783
		pr_warn("due to cpu change %d -> %d\n",
1784 1785 1786 1787
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1788
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1789 1790
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1791
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1792 1793
			actual_tid, tid, next_tid(tid));
#endif
1794
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1795 1796
}

1797
static void init_kmem_cache_cpus(struct kmem_cache *s)
1798 1799 1800 1801 1802 1803
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1804

C
Christoph Lameter 已提交
1805 1806 1807
/*
 * Remove the cpu slab
 */
1808 1809
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1810
{
1811 1812 1813 1814 1815
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1816
	int tail = DEACTIVATE_TO_HEAD;
1817 1818 1819 1820
	struct page new;
	struct page old;

	if (page->freelist) {
1821
		stat(s, DEACTIVATE_REMOTE_FREES);
1822
		tail = DEACTIVATE_TO_TAIL;
1823 1824
	}

1825
	/*
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1843
			VM_BUG_ON(!new.frozen);
1844

1845
		} while (!__cmpxchg_double_slab(s, page,
1846 1847 1848 1849 1850 1851 1852
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1853
	/*
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1866
	 */
1867
redo:
1868

1869 1870
	old.freelist = page->freelist;
	old.counters = page->counters;
1871
	VM_BUG_ON(!old.frozen);
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1884
	if (!new.inuse && n->nr_partial >= s->min_partial)
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1917

P
Peter Zijlstra 已提交
1918
			remove_full(s, n, page);
1919 1920 1921 1922

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1923
			stat(s, tail);
1924 1925

		} else if (m == M_FULL) {
1926

1927 1928 1929 1930 1931 1932 1933
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1934
	if (!__cmpxchg_double_slab(s, page,
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1947
	}
C
Christoph Lameter 已提交
1948 1949
}

1950 1951 1952
/*
 * Unfreeze all the cpu partial slabs.
 *
1953 1954 1955
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1956
 */
1957 1958
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1959
{
1960
#ifdef CONFIG_SLUB_CPU_PARTIAL
1961
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1962
	struct page *page, *discard_page = NULL;
1963 1964 1965 1966 1967 1968

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1969 1970 1971 1972 1973 1974 1975 1976 1977

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1978 1979 1980 1981 1982

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1983
			VM_BUG_ON(!old.frozen);
1984 1985 1986 1987 1988 1989

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1990
		} while (!__cmpxchg_double_slab(s, page,
1991 1992 1993 1994
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1995
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1996 1997
			page->next = discard_page;
			discard_page = page;
1998 1999 2000
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2001 2002 2003 2004 2005
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2006 2007 2008 2009 2010 2011 2012 2013 2014

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2015
#endif
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2027
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2028
{
2029
#ifdef CONFIG_SLUB_CPU_PARTIAL
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2049
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2050
				local_irq_restore(flags);
2051
				oldpage = NULL;
2052 2053
				pobjects = 0;
				pages = 0;
2054
				stat(s, CPU_PARTIAL_DRAIN);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2065 2066
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2067
#endif
2068 2069
}

2070
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2071
{
2072
	stat(s, CPUSLAB_FLUSH);
2073 2074 2075 2076 2077
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2078 2079 2080 2081
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2082
 *
C
Christoph Lameter 已提交
2083 2084
 * Called from IPI handler with interrupts disabled.
 */
2085
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2086
{
2087
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2088

2089 2090 2091 2092
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2093
		unfreeze_partials(s, c);
2094
	}
C
Christoph Lameter 已提交
2095 2096 2097 2098 2099 2100
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2101
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2102 2103
}

2104 2105 2106 2107 2108
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2109
	return c->page || c->partial;
2110 2111
}

C
Christoph Lameter 已提交
2112 2113
static void flush_all(struct kmem_cache *s)
{
2114
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2115 2116
}

2117 2118 2119 2120
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2121
static inline int node_match(struct page *page, int node)
2122 2123
{
#ifdef CONFIG_NUMA
2124
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2125 2126 2127 2128 2129
		return 0;
#endif
	return 1;
}

2130
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2131 2132 2133 2134 2135
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2136 2137 2138 2139 2140 2141 2142
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2156
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2157

P
Pekka Enberg 已提交
2158 2159 2160
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2161 2162 2163
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2164 2165
	int node;

2166 2167 2168
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2169
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2170
		nid, gfpflags);
2171 2172 2173
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2174

2175
	if (oo_order(s->min) > get_order(s->object_size))
2176 2177
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2178

P
Pekka Enberg 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2188 2189 2190
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2191

2192
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2193 2194
			node, nr_slabs, nr_objs, nr_free);
	}
2195
#endif
P
Pekka Enberg 已提交
2196 2197
}

2198 2199 2200
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2201
	void *freelist;
2202 2203
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2204

2205
	freelist = get_partial(s, flags, node, c);
2206

2207 2208 2209 2210
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2211
	if (page) {
2212
		c = raw_cpu_ptr(s->cpu_slab);
2213 2214 2215 2216 2217 2218 2219
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2220
		freelist = page->freelist;
2221 2222 2223 2224 2225 2226
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2227
		freelist = NULL;
2228

2229
	return freelist;
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2240
/*
2241 2242
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2243 2244 2245 2246
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2247 2248
 *
 * This function must be called with interrupt disabled.
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2259

2260
		new.counters = counters;
2261
		VM_BUG_ON(!new.frozen);
2262 2263 2264 2265

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2266
	} while (!__cmpxchg_double_slab(s, page,
2267 2268 2269 2270 2271 2272 2273
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2274
/*
2275 2276 2277 2278 2279 2280
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2281
 *
2282 2283 2284
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2285
 *
2286
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2287 2288
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2289
 */
2290 2291
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2292
{
2293
	void *freelist;
2294
	struct page *page;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2306

2307 2308
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2309
		goto new_slab;
2310
redo:
2311

2312
	if (unlikely(!node_match(page, node))) {
2313
		stat(s, ALLOC_NODE_MISMATCH);
2314
		deactivate_slab(s, page, c->freelist);
2315 2316
		c->page = NULL;
		c->freelist = NULL;
2317 2318
		goto new_slab;
	}
C
Christoph Lameter 已提交
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2332
	/* must check again c->freelist in case of cpu migration or IRQ */
2333 2334
	freelist = c->freelist;
	if (freelist)
2335
		goto load_freelist;
2336

2337
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2338

2339
	if (!freelist) {
2340 2341
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2342
		goto new_slab;
2343
	}
C
Christoph Lameter 已提交
2344

2345
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2346

2347
load_freelist:
2348 2349 2350 2351 2352
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2353
	VM_BUG_ON(!c->page->frozen);
2354
	c->freelist = get_freepointer(s, freelist);
2355 2356
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2357
	return freelist;
C
Christoph Lameter 已提交
2358 2359

new_slab:
2360

2361
	if (c->partial) {
2362 2363
		page = c->page = c->partial;
		c->partial = page->next;
2364 2365 2366
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2367 2368
	}

2369
	freelist = new_slab_objects(s, gfpflags, node, &c);
2370

2371
	if (unlikely(!freelist)) {
2372
		slab_out_of_memory(s, gfpflags, node);
2373 2374
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2375
	}
2376

2377
	page = c->page;
2378
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2379
		goto load_freelist;
2380

2381
	/* Only entered in the debug case */
2382 2383
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2384
		goto new_slab;	/* Slab failed checks. Next slab needed */
2385

2386
	deactivate_slab(s, page, get_freepointer(s, freelist));
2387 2388
	c->page = NULL;
	c->freelist = NULL;
2389
	local_irq_restore(flags);
2390
	return freelist;
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2403
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2404
		gfp_t gfpflags, int node, unsigned long addr)
2405 2406
{
	void **object;
2407
	struct kmem_cache_cpu *c;
2408
	struct page *page;
2409
	unsigned long tid;
2410

2411
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2412
		return NULL;
2413

2414
	s = memcg_kmem_get_cache(s, gfpflags);
2415 2416 2417 2418 2419 2420
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2421 2422 2423 2424 2425
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2426
	 */
2427
	preempt_disable();
2428
	c = this_cpu_ptr(s->cpu_slab);
2429 2430 2431 2432 2433 2434 2435 2436

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2437
	preempt_enable();
2438

2439
	object = c->freelist;
2440
	page = c->page;
D
Dave Hansen 已提交
2441
	if (unlikely(!object || !node_match(page, node))) {
2442
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2443 2444
		stat(s, ALLOC_SLOWPATH);
	} else {
2445 2446
		void *next_object = get_freepointer_safe(s, object);

2447
		/*
L
Lucas De Marchi 已提交
2448
		 * The cmpxchg will only match if there was no additional
2449 2450
		 * operation and if we are on the right processor.
		 *
2451 2452
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2453 2454 2455 2456
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2457 2458 2459
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2460
		 */
2461
		if (unlikely(!this_cpu_cmpxchg_double(
2462 2463
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2464
				next_object, next_tid(tid)))) {
2465 2466 2467 2468

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2469
		prefetch_freepointer(s, next_object);
2470
		stat(s, ALLOC_FASTPATH);
2471
	}
2472

2473
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2474
		memset(object, 0, s->object_size);
2475

2476
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2477

2478
	return object;
C
Christoph Lameter 已提交
2479 2480
}

2481 2482 2483 2484 2485 2486
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2487 2488
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2489
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2490

2491 2492
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2493 2494

	return ret;
C
Christoph Lameter 已提交
2495 2496 2497
}
EXPORT_SYMBOL(kmem_cache_alloc);

2498
#ifdef CONFIG_TRACING
2499 2500
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2501
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2502 2503 2504 2505
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2506 2507
#endif

C
Christoph Lameter 已提交
2508 2509 2510
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2511
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2512

2513
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2514
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2515 2516

	return ret;
C
Christoph Lameter 已提交
2517 2518 2519
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2520
#ifdef CONFIG_TRACING
2521
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2522
				    gfp_t gfpflags,
2523
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2524
{
2525
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2526 2527 2528 2529

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2530
}
2531
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2532
#endif
2533
#endif
E
Eduard - Gabriel Munteanu 已提交
2534

C
Christoph Lameter 已提交
2535
/*
2536 2537
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2538
 *
2539 2540 2541
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2542
 */
2543
static void __slab_free(struct kmem_cache *s, struct page *page,
2544
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2545 2546 2547
{
	void *prior;
	void **object = (void *)x;
2548 2549 2550 2551
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2552
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2553

2554
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2555

2556 2557
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2558
		return;
C
Christoph Lameter 已提交
2559

2560
	do {
2561 2562 2563 2564
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2565 2566 2567 2568 2569 2570
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2571
		if ((!new.inuse || !prior) && !was_frozen) {
2572

P
Peter Zijlstra 已提交
2573
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2574 2575

				/*
2576 2577 2578 2579
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2580 2581 2582
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2583
			} else { /* Needs to be taken off a list */
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2597
		}
C
Christoph Lameter 已提交
2598

2599 2600 2601 2602
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2603

2604
	if (likely(!n)) {
2605 2606 2607 2608 2609

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2610
		if (new.frozen && !was_frozen) {
2611
			put_cpu_partial(s, page, 1);
2612 2613
			stat(s, CPU_PARTIAL_FREE);
		}
2614
		/*
2615 2616 2617 2618 2619
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2620
                return;
2621
        }
C
Christoph Lameter 已提交
2622

2623
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2624 2625
		goto slab_empty;

C
Christoph Lameter 已提交
2626
	/*
2627 2628
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2629
	 */
2630 2631
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2632
			remove_full(s, n, page);
2633 2634
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2635
	}
2636
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2637 2638 2639
	return;

slab_empty:
2640
	if (prior) {
C
Christoph Lameter 已提交
2641
		/*
2642
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2643
		 */
2644
		remove_partial(n, page);
2645
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2646
	} else {
2647
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2648 2649
		remove_full(s, n, page);
	}
2650

2651
	spin_unlock_irqrestore(&n->list_lock, flags);
2652
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2653 2654 2655
	discard_slab(s, page);
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2667
static __always_inline void slab_free(struct kmem_cache *s,
2668
			struct page *page, void *x, unsigned long addr)
2669 2670
{
	void **object = (void *)x;
2671
	struct kmem_cache_cpu *c;
2672
	unsigned long tid;
2673

2674 2675
	slab_free_hook(s, x);

2676 2677 2678 2679 2680 2681 2682
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2683
	preempt_disable();
2684
	c = this_cpu_ptr(s->cpu_slab);
2685

2686
	tid = c->tid;
2687
	preempt_enable();
2688

2689
	if (likely(page == c->page)) {
2690
		set_freepointer(s, object, c->freelist);
2691

2692
		if (unlikely(!this_cpu_cmpxchg_double(
2693 2694 2695 2696 2697 2698 2699
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2700
		stat(s, FREE_FASTPATH);
2701
	} else
2702
		__slab_free(s, page, x, addr);
2703 2704 2705

}

C
Christoph Lameter 已提交
2706 2707
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2708 2709
	s = cache_from_obj(s, x);
	if (!s)
2710
		return;
2711
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2712
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2713 2714 2715 2716
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2717 2718 2719 2720
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2721 2722 2723 2724
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2725
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2736
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2737
static int slub_min_objects;
C
Christoph Lameter 已提交
2738 2739 2740

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2741
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2742 2743 2744 2745 2746 2747
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2748 2749 2750 2751
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2752
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2753 2754 2755 2756 2757 2758
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2759
 *
C
Christoph Lameter 已提交
2760 2761 2762 2763
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2764
 *
C
Christoph Lameter 已提交
2765 2766 2767 2768
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2769
 */
2770
static inline int slab_order(int size, int min_objects,
2771
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2772 2773 2774
{
	int order;
	int rem;
2775
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2776

2777
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2778
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2779

2780
	for (order = max(min_order,
2781 2782
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2783

2784
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2785

2786
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2787 2788
			continue;

2789
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2790

2791
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2792 2793 2794
			break;

	}
C
Christoph Lameter 已提交
2795

C
Christoph Lameter 已提交
2796 2797 2798
	return order;
}

2799
static inline int calculate_order(int size, int reserved)
2800 2801 2802 2803
{
	int order;
	int min_objects;
	int fraction;
2804
	int max_objects;
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2815 2816
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2817
	max_objects = order_objects(slub_max_order, size, reserved);
2818 2819
	min_objects = min(min_objects, max_objects);

2820
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2821
		fraction = 16;
2822 2823
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2824
					slub_max_order, fraction, reserved);
2825 2826 2827 2828
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2829
		min_objects--;
2830 2831 2832 2833 2834 2835
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2836
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2837 2838 2839 2840 2841 2842
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2843
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2844
	if (order < MAX_ORDER)
2845 2846 2847 2848
		return order;
	return -ENOSYS;
}

2849
static void
2850
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2851 2852 2853 2854
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2855
#ifdef CONFIG_SLUB_DEBUG
2856
	atomic_long_set(&n->nr_slabs, 0);
2857
	atomic_long_set(&n->total_objects, 0);
2858
	INIT_LIST_HEAD(&n->full);
2859
#endif
C
Christoph Lameter 已提交
2860 2861
}

2862
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2863
{
2864
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2865
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2866

2867
	/*
2868 2869
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2870
	 */
2871 2872
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2873 2874 2875 2876 2877

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2878

2879
	return 1;
2880 2881
}

2882 2883
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2884 2885 2886 2887 2888
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2889 2890
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2891
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2892
 */
2893
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2894 2895 2896 2897
{
	struct page *page;
	struct kmem_cache_node *n;

2898
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2899

2900
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2901 2902

	BUG_ON(!page);
2903
	if (page_to_nid(page) != node) {
2904 2905
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2906 2907
	}

C
Christoph Lameter 已提交
2908 2909
	n = page->freelist;
	BUG_ON(!n);
2910
	page->freelist = get_freepointer(kmem_cache_node, n);
2911
	page->inuse = 1;
2912
	page->frozen = 0;
2913
	kmem_cache_node->node[node] = n;
2914
#ifdef CONFIG_SLUB_DEBUG
2915
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2916
	init_tracking(kmem_cache_node, n);
2917
#endif
2918
	init_kmem_cache_node(n);
2919
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2920

2921
	/*
2922 2923
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2924
	 */
2925
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2926 2927 2928 2929 2930 2931
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2932
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2933
		struct kmem_cache_node *n = s->node[node];
2934

2935
		if (n)
2936 2937
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2938 2939 2940 2941
		s->node[node] = NULL;
	}
}

2942
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2943 2944 2945
{
	int node;

C
Christoph Lameter 已提交
2946
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2947 2948
		struct kmem_cache_node *n;

2949
		if (slab_state == DOWN) {
2950
			early_kmem_cache_node_alloc(node);
2951 2952
			continue;
		}
2953
		n = kmem_cache_alloc_node(kmem_cache_node,
2954
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2955

2956 2957 2958
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2959
		}
2960

C
Christoph Lameter 已提交
2961
		s->node[node] = n;
2962
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2963 2964 2965 2966
	}
	return 1;
}

2967
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2968 2969 2970 2971 2972 2973 2974 2975
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2976 2977 2978 2979
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2980
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2981 2982
{
	unsigned long flags = s->flags;
2983
	unsigned long size = s->object_size;
2984
	int order;
C
Christoph Lameter 已提交
2985

2986 2987 2988 2989 2990 2991 2992 2993
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2994 2995 2996 2997 2998 2999
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3000
			!s->ctor)
C
Christoph Lameter 已提交
3001 3002 3003 3004 3005 3006
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3007
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3008
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3009
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3010
	 */
3011
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3012
		size += sizeof(void *);
C
Christoph Lameter 已提交
3013
#endif
C
Christoph Lameter 已提交
3014 3015

	/*
C
Christoph Lameter 已提交
3016 3017
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3018 3019 3020 3021
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3022
		s->ctor)) {
C
Christoph Lameter 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3035
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3036 3037 3038 3039 3040 3041 3042
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3043
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3044 3045 3046 3047
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3048
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3049 3050 3051
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3052
#endif
C
Christoph Lameter 已提交
3053

C
Christoph Lameter 已提交
3054 3055 3056 3057 3058
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3059
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3060
	s->size = size;
3061 3062 3063
	if (forced_order >= 0)
		order = forced_order;
	else
3064
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3065

3066
	if (order < 0)
C
Christoph Lameter 已提交
3067 3068
		return 0;

3069
	s->allocflags = 0;
3070
	if (order)
3071 3072 3073
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3074
		s->allocflags |= GFP_DMA;
3075 3076 3077 3078

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3079 3080 3081
	/*
	 * Determine the number of objects per slab
	 */
3082 3083
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3084 3085
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3086

3087
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3088 3089
}

3090
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3091
{
3092
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3093
	s->reserved = 0;
C
Christoph Lameter 已提交
3094

3095 3096
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3097

3098
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3099
		goto error;
3100 3101 3102 3103 3104
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3105
		if (get_order(s->size) > get_order(s->object_size)) {
3106 3107 3108 3109 3110 3111
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3112

3113 3114
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3115 3116 3117 3118 3119
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3120 3121 3122 3123
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3139
	 * B) The number of objects in cpu partial slabs to extract from the
3140 3141
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3142
	 */
3143
	if (!kmem_cache_has_cpu_partial(s))
3144 3145
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3146 3147 3148 3149 3150 3151 3152 3153
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3154
#ifdef CONFIG_NUMA
3155
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3156
#endif
3157
	if (!init_kmem_cache_nodes(s))
3158
		goto error;
C
Christoph Lameter 已提交
3159

3160
	if (alloc_kmem_cache_cpus(s))
3161
		return 0;
3162

3163
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3164 3165 3166 3167
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3168 3169
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3170
	return -EINVAL;
C
Christoph Lameter 已提交
3171 3172
}

3173 3174 3175 3176 3177 3178
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3179 3180
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3181 3182
	if (!map)
		return;
3183
	slab_err(s, page, text, s->name);
3184 3185
	slab_lock(page);

3186
	get_map(s, page, map);
3187 3188 3189
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3190
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3191 3192 3193 3194
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3195
	kfree(map);
3196 3197 3198
#endif
}

C
Christoph Lameter 已提交
3199
/*
C
Christoph Lameter 已提交
3200
 * Attempt to free all partial slabs on a node.
3201 3202
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3203
 */
C
Christoph Lameter 已提交
3204
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3205 3206 3207
{
	struct page *page, *h;

3208
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3209
		if (!page->inuse) {
3210
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3211
			discard_slab(s, page);
3212 3213
		} else {
			list_slab_objects(s, page,
3214
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3215
		}
3216
	}
C
Christoph Lameter 已提交
3217 3218 3219
}

/*
C
Christoph Lameter 已提交
3220
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3221
 */
3222
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3223 3224 3225 3226 3227
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3228
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3229 3230
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3231 3232
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3233 3234
			return 1;
	}
3235
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3236 3237 3238 3239
	free_kmem_cache_nodes(s);
	return 0;
}

3240
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3241
{
3242
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3243 3244 3245 3246 3247 3248 3249 3250
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3251
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3252 3253 3254 3255 3256 3257 3258 3259

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3260
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3261
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3262 3263 3264 3265 3266 3267 3268 3269

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3270
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3287
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3288
	void *ret;
C
Christoph Lameter 已提交
3289

3290
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3291
		return kmalloc_large(size, flags);
3292

3293
	s = kmalloc_slab(size, flags);
3294 3295

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 3297
		return s;

3298
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3299

3300
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3301 3302

	return ret;
C
Christoph Lameter 已提交
3303 3304 3305
}
EXPORT_SYMBOL(__kmalloc);

3306
#ifdef CONFIG_NUMA
3307 3308
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3309
	struct page *page;
3310
	void *ptr = NULL;
3311

V
Vladimir Davydov 已提交
3312 3313
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3314
	if (page)
3315 3316
		ptr = page_address(page);

3317
	kmalloc_large_node_hook(ptr, size, flags);
3318
	return ptr;
3319 3320
}

C
Christoph Lameter 已提交
3321 3322
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3323
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3324
	void *ret;
C
Christoph Lameter 已提交
3325

3326
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3327 3328
		ret = kmalloc_large_node(size, flags, node);

3329 3330 3331
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3332 3333 3334

		return ret;
	}
3335

3336
	s = kmalloc_slab(size, flags);
3337 3338

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 3340
		return s;

3341
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3342

3343
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3344 3345

	return ret;
C
Christoph Lameter 已提交
3346 3347 3348 3349 3350 3351
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3352
	struct page *page;
C
Christoph Lameter 已提交
3353

3354
	if (unlikely(object == ZERO_SIZE_PTR))
3355 3356
		return 0;

3357 3358
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3359 3360
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3361
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3362
	}
C
Christoph Lameter 已提交
3363

3364
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3365
}
K
Kirill A. Shutemov 已提交
3366
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3367 3368 3369 3370

void kfree(const void *x)
{
	struct page *page;
3371
	void *object = (void *)x;
C
Christoph Lameter 已提交
3372

3373 3374
	trace_kfree(_RET_IP_, x);

3375
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3376 3377
		return;

3378
	page = virt_to_head_page(x);
3379
	if (unlikely(!PageSlab(page))) {
3380
		BUG_ON(!PageCompound(page));
3381
		kfree_hook(x);
V
Vladimir Davydov 已提交
3382
		__free_kmem_pages(page, compound_order(page));
3383 3384
		return;
	}
3385
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3386 3387 3388
}
EXPORT_SYMBOL(kfree);

3389
/*
C
Christoph Lameter 已提交
3390 3391 3392 3393 3394 3395 3396 3397
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3398
 */
3399
int __kmem_cache_shrink(struct kmem_cache *s)
3400 3401 3402 3403 3404 3405
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3406
	int objects = oo_objects(s->max);
3407
	struct list_head *slabs_by_inuse =
3408
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3409 3410 3411 3412 3413 3414
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3415
	for_each_node_state(node, N_NORMAL_MEMORY) {
3416 3417 3418 3419 3420
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3421
		for (i = 0; i < objects; i++)
3422 3423 3424 3425 3426
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3427
		 * Build lists indexed by the items in use in each slab.
3428
		 *
C
Christoph Lameter 已提交
3429 3430
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3431 3432
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3433 3434 3435
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3436 3437 3438
		}

		/*
C
Christoph Lameter 已提交
3439 3440
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3441
		 */
3442
		for (i = objects - 1; i > 0; i--)
3443 3444 3445
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3446 3447 3448 3449

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3450 3451 3452 3453 3454 3455
	}

	kfree(slabs_by_inuse);
	return 0;
}

3456 3457 3458 3459
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3460
	mutex_lock(&slab_mutex);
3461
	list_for_each_entry(s, &slab_caches, list)
3462
		__kmem_cache_shrink(s);
3463
	mutex_unlock(&slab_mutex);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3475
	offline_node = marg->status_change_nid_normal;
3476 3477 3478 3479 3480 3481 3482 3483

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3484
	mutex_lock(&slab_mutex);
3485 3486 3487 3488 3489 3490
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3491
			 * and offline_pages() function shouldn't call this
3492 3493
			 * callback. So, we must fail.
			 */
3494
			BUG_ON(slabs_node(s, offline_node));
3495 3496

			s->node[offline_node] = NULL;
3497
			kmem_cache_free(kmem_cache_node, n);
3498 3499
		}
	}
3500
	mutex_unlock(&slab_mutex);
3501 3502 3503 3504 3505 3506 3507
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3508
	int nid = marg->status_change_nid_normal;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3519
	 * We are bringing a node online. No memory is available yet. We must
3520 3521 3522
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3523
	mutex_lock(&slab_mutex);
3524 3525 3526 3527 3528 3529
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3530
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3531 3532 3533 3534
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3535
		init_kmem_cache_node(n);
3536 3537 3538
		s->node[nid] = n;
	}
out:
3539
	mutex_unlock(&slab_mutex);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3563 3564 3565 3566
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3567 3568 3569
	return ret;
}

3570 3571 3572 3573
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3574

C
Christoph Lameter 已提交
3575 3576 3577 3578
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3579 3580
/*
 * Used for early kmem_cache structures that were allocated using
3581 3582
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3583 3584
 */

3585
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3586 3587
{
	int node;
3588
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3589

3590
	memcpy(s, static_cache, kmem_cache->object_size);
3591

3592 3593 3594 3595 3596 3597
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3598 3599 3600 3601 3602 3603
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3604
				p->slab_cache = s;
3605

L
Li Zefan 已提交
3606
#ifdef CONFIG_SLUB_DEBUG
3607
			list_for_each_entry(p, &n->full, lru)
3608
				p->slab_cache = s;
3609 3610 3611
#endif
		}
	}
3612 3613
	list_add(&s->list, &slab_caches);
	return s;
3614 3615
}

C
Christoph Lameter 已提交
3616 3617
void __init kmem_cache_init(void)
{
3618 3619
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3620

3621 3622 3623
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3624 3625
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3626

3627 3628
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3629

3630
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3631 3632 3633 3634

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3635 3636 3637 3638
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3639

3640
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3641

3642 3643 3644 3645 3646
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3647
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3648 3649

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3650
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3651 3652 3653

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3654
#endif
C
Christoph Lameter 已提交
3655

3656
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3657
		cache_line_size(),
C
Christoph Lameter 已提交
3658 3659 3660 3661
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3662 3663 3664 3665
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3666 3667 3668 3669 3670 3671 3672 3673
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3674 3675 3676
	if (!is_root_cache(s))
		return 1;

3677
	if (s->ctor)
C
Christoph Lameter 已提交
3678 3679
		return 1;

3680 3681 3682 3683 3684 3685
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3686 3687 3688
	return 0;
}

3689 3690
static struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
C
Christoph Lameter 已提交
3691
{
3692
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3693 3694 3695 3696

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3697
	if (ctor)
C
Christoph Lameter 已提交
3698 3699 3700 3701 3702
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3703
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3704

3705
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3706 3707 3708 3709 3710 3711
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3712
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3713
			continue;
C
Christoph Lameter 已提交
3714 3715 3716 3717
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3718
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3729
struct kmem_cache *
3730 3731
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3732 3733 3734
{
	struct kmem_cache *s;

3735
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3736
	if (s) {
3737 3738 3739
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3740
		s->refcount++;
3741

C
Christoph Lameter 已提交
3742 3743 3744 3745
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3746
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3747
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3748

3749 3750 3751 3752 3753 3754 3755 3756 3757
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3758 3759
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3760
			s = NULL;
3761
		}
3762
	}
C
Christoph Lameter 已提交
3763

3764 3765
	return s;
}
P
Pekka Enberg 已提交
3766

3767
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3768
{
3769 3770 3771 3772 3773
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3774

3775 3776 3777 3778
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3779
	memcg_propagate_slab_attrs(s);
3780 3781 3782
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3783

3784
	return err;
C
Christoph Lameter 已提交
3785 3786 3787 3788
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3789 3790
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3791
 */
3792
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3793 3794 3795
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3796 3797
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3798 3799 3800

	switch (action) {
	case CPU_UP_CANCELED:
3801
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3802
	case CPU_DEAD:
3803
	case CPU_DEAD_FROZEN:
3804
		mutex_lock(&slab_mutex);
3805 3806 3807 3808 3809
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3810
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3811 3812 3813 3814 3815 3816 3817
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3818
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3819
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3820
};
C
Christoph Lameter 已提交
3821 3822 3823

#endif

3824
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3825
{
3826
	struct kmem_cache *s;
3827
	void *ret;
3828

3829
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 3831
		return kmalloc_large(size, gfpflags);

3832
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3833

3834
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3835
		return s;
C
Christoph Lameter 已提交
3836

3837
	ret = slab_alloc(s, gfpflags, caller);
3838

L
Lucas De Marchi 已提交
3839
	/* Honor the call site pointer we received. */
3840
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841 3842

	return ret;
C
Christoph Lameter 已提交
3843 3844
}

3845
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3846
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3848
{
3849
	struct kmem_cache *s;
3850
	void *ret;
3851

3852
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 3854 3855 3856 3857 3858 3859 3860
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3861

3862
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3863

3864
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3865
		return s;
C
Christoph Lameter 已提交
3866

3867
	ret = slab_alloc_node(s, gfpflags, node, caller);
3868

L
Lucas De Marchi 已提交
3869
	/* Honor the call site pointer we received. */
3870
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871 3872

	return ret;
C
Christoph Lameter 已提交
3873
}
3874
#endif
C
Christoph Lameter 已提交
3875

3876
#ifdef CONFIG_SYSFS
3877 3878 3879 3880 3881 3882 3883 3884 3885
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3886
#endif
3887

3888
#ifdef CONFIG_SLUB_DEBUG
3889 3890
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3891 3892
{
	void *p;
3893
	void *addr = page_address(page);
3894 3895 3896 3897 3898 3899

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3900
	bitmap_zero(map, page->objects);
3901

3902 3903 3904 3905 3906
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3907 3908
	}

3909
	for_each_object(p, s, addr, page->objects)
3910
		if (!test_bit(slab_index(p, s, addr), map))
3911
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 3913 3914 3915
				return 0;
	return 1;
}

3916 3917
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3918
{
3919 3920 3921
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3922 3923
}

3924 3925
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3926 3927 3928 3929 3930 3931 3932 3933
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3934
		validate_slab_slab(s, page, map);
3935 3936 3937
		count++;
	}
	if (count != n->nr_partial)
3938 3939
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3940 3941 3942 3943 3944

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3945
		validate_slab_slab(s, page, map);
3946 3947 3948
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3949 3950
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3951 3952 3953 3954 3955 3956

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3957
static long validate_slab_cache(struct kmem_cache *s)
3958 3959 3960
{
	int node;
	unsigned long count = 0;
3961
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962 3963 3964 3965
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3966 3967

	flush_all(s);
C
Christoph Lameter 已提交
3968
	for_each_node_state(node, N_NORMAL_MEMORY) {
3969 3970
		struct kmem_cache_node *n = get_node(s, node);

3971
		count += validate_slab_node(s, n, map);
3972
	}
3973
	kfree(map);
3974 3975
	return count;
}
3976
/*
C
Christoph Lameter 已提交
3977
 * Generate lists of code addresses where slabcache objects are allocated
3978 3979 3980 3981 3982
 * and freed.
 */

struct location {
	unsigned long count;
3983
	unsigned long addr;
3984 3985 3986 3987 3988
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3989
	DECLARE_BITMAP(cpus, NR_CPUS);
3990
	nodemask_t nodes;
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4006
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007 4008 4009 4010 4011 4012
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4013
	l = (void *)__get_free_pages(flags, order);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4027
				const struct track *track)
4028 4029 4030
{
	long start, end, pos;
	struct location *l;
4031
	unsigned long caddr;
4032
	unsigned long age = jiffies - track->when;
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4064 4065
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4066 4067
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068 4069 4070
			return 1;
		}

4071
		if (track->addr < caddr)
4072 4073 4074 4075 4076 4077
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4078
	 * Not found. Insert new tracking element.
4079
	 */
4080
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081 4082 4083 4084 4085 4086 4087 4088
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4089 4090 4091 4092 4093 4094
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4095 4096
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097 4098
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099 4100 4101 4102
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4103
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4104
		unsigned long *map)
4105
{
4106
	void *addr = page_address(page);
4107 4108
	void *p;

4109
	bitmap_zero(map, page->objects);
4110
	get_map(s, page, map);
4111

4112
	for_each_object(p, s, addr, page->objects)
4113 4114
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4115 4116 4117 4118 4119
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4120
	int len = 0;
4121
	unsigned long i;
4122
	struct loc_track t = { 0, 0, NULL };
4123
	int node;
E
Eric Dumazet 已提交
4124 4125
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4126

E
Eric Dumazet 已提交
4127 4128 4129
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4130
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4131
	}
4132 4133 4134
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4135
	for_each_node_state(node, N_NORMAL_MEMORY) {
4136 4137 4138 4139
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4140
		if (!atomic_long_read(&n->nr_slabs))
4141 4142 4143 4144
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4145
			process_slab(&t, s, page, alloc, map);
4146
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4147
			process_slab(&t, s, page, alloc, map);
4148 4149 4150 4151
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4152
		struct location *l = &t.loc[i];
4153

H
Hugh Dickins 已提交
4154
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155
			break;
4156
		len += sprintf(buf + len, "%7ld ", l->count);
4157 4158

		if (l->addr)
J
Joe Perches 已提交
4159
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4160
		else
4161
			len += sprintf(buf + len, "<not-available>");
4162 4163

		if (l->sum_time != l->min_time) {
4164
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4165 4166 4167
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4168
		} else
4169
			len += sprintf(buf + len, " age=%ld",
4170 4171 4172
				l->min_time);

		if (l->min_pid != l->max_pid)
4173
			len += sprintf(buf + len, " pid=%ld-%ld",
4174 4175
				l->min_pid, l->max_pid);
		else
4176
			len += sprintf(buf + len, " pid=%ld",
4177 4178
				l->min_pid);

R
Rusty Russell 已提交
4179 4180
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4181 4182
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4183 4184
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4185
						 to_cpumask(l->cpus));
4186 4187
		}

4188
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189 4190
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4191 4192 4193
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4194 4195
		}

4196
		len += sprintf(buf + len, "\n");
4197 4198 4199
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4200
	kfree(map);
4201
	if (!t.count)
4202 4203
		len += sprintf(buf, "No data\n");
	return len;
4204
}
4205
#endif
4206

4207 4208 4209 4210 4211
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4212
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213

4214 4215 4216
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4217 4218 4219

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4220 4221
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4222 4223 4224 4225 4226 4227

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4228 4229 4230
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4231 4232 4233 4234 4235

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4236 4237 4238
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4239 4240
	validate_slab_cache(kmalloc_caches[6]);

4241
	pr_err("\nB. Corruption after free\n");
4242 4243 4244
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4245
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4246 4247 4248 4249 4250
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4251
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4252 4253 4254 4255 4256
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4257
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4258 4259 4260 4261 4262 4263 4264 4265
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4266
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4267
enum slab_stat_type {
4268 4269 4270 4271 4272
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4273 4274
};

4275
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4276 4277 4278
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4279
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4280

4281 4282
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4283 4284 4285 4286 4287 4288
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4289
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4290 4291
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4292

4293 4294
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4295

4296
		for_each_possible_cpu(cpu) {
4297 4298
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4299
			int node;
4300
			struct page *page;
4301

4302
			page = ACCESS_ONCE(c->page);
4303 4304
			if (!page)
				continue;
4305

4306 4307 4308 4309 4310 4311 4312
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4313

4314 4315 4316 4317
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4318
			if (page) {
L
Li Zefan 已提交
4319 4320 4321 4322 4323 4324 4325
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4326 4327
				total += x;
				nodes[node] += x;
4328
			}
C
Christoph Lameter 已提交
4329 4330 4331
		}
	}

4332
	get_online_mems();
4333
#ifdef CONFIG_SLUB_DEBUG
4334 4335 4336 4337
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4338 4339 4340 4341 4342
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4343
			else
4344
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4345 4346 4347 4348
			total += x;
			nodes[node] += x;
		}

4349 4350 4351
	} else
#endif
	if (flags & SO_PARTIAL) {
4352 4353
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4354

4355 4356 4357 4358
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4359
			else
4360
				x = n->nr_partial;
C
Christoph Lameter 已提交
4361 4362 4363 4364 4365 4366
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4367
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4368 4369 4370 4371
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4372
	put_online_mems();
C
Christoph Lameter 已提交
4373 4374 4375 4376
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4377
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4378 4379 4380 4381
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4382
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4383 4384
		struct kmem_cache_node *n = get_node(s, node);

4385 4386 4387
		if (!n)
			continue;

4388
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4389 4390 4391 4392
			return 1;
	}
	return 0;
}
4393
#endif
C
Christoph Lameter 已提交
4394 4395

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4396
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4397 4398 4399 4400 4401 4402 4403 4404

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4405 4406
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4407 4408 4409

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4410
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4426
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4427 4428 4429 4430 4431
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4432
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4433 4434 4435
}
SLAB_ATTR_RO(objs_per_slab);

4436 4437 4438
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4439 4440 4441
	unsigned long order;
	int err;

4442
	err = kstrtoul(buf, 10, &order);
4443 4444
	if (err)
		return err;
4445 4446 4447 4448 4449 4450 4451 4452

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4453 4454
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4455
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4456
}
4457
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4458

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4470
	err = kstrtoul(buf, 10, &min);
4471 4472 4473
	if (err)
		return err;

4474
	set_min_partial(s, min);
4475 4476 4477 4478
	return length;
}
SLAB_ATTR(min_partial);

4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4490
	err = kstrtoul(buf, 10, &objects);
4491 4492
	if (err)
		return err;
4493
	if (objects && !kmem_cache_has_cpu_partial(s))
4494
		return -EINVAL;
4495 4496 4497 4498 4499 4500 4501

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4502 4503
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4504 4505 4506
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4518
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4519 4520 4521 4522 4523
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4524
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4525 4526 4527 4528 4529
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4530
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4531 4532 4533
}
SLAB_ATTR_RO(objects);

4534 4535 4536 4537 4538 4539
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4606 4607 4608 4609 4610 4611
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4612
#ifdef CONFIG_SLUB_DEBUG
4613 4614 4615 4616 4617 4618
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4619 4620 4621 4622 4623 4624
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4634 4635
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4636
		s->flags |= SLAB_DEBUG_FREE;
4637
	}
C
Christoph Lameter 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4651 4652
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4653
		s->flags |= SLAB_TRACE;
4654
	}
C
Christoph Lameter 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4671 4672
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4673
		s->flags |= SLAB_RED_ZONE;
4674
	}
4675
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4692 4693
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4694
		s->flags |= SLAB_POISON;
4695
	}
4696
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4713 4714
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4715
		s->flags |= SLAB_STORE_USER;
4716
	}
4717
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4718 4719 4720 4721
	return length;
}
SLAB_ATTR(store_user);

4722 4723 4724 4725 4726 4727 4728 4729
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4730 4731 4732 4733 4734 4735 4736 4737
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4738 4739
}
SLAB_ATTR(validate);
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4773
#endif
4774

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4794
#ifdef CONFIG_NUMA
4795
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4796
{
4797
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4798 4799
}

4800
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4801 4802
				const char *buf, size_t length)
{
4803 4804 4805
	unsigned long ratio;
	int err;

4806
	err = kstrtoul(buf, 10, &ratio);
4807 4808 4809
	if (err)
		return err;

4810
	if (ratio <= 100)
4811
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4812 4813 4814

	return length;
}
4815
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4816 4817
#endif

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4830
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4831 4832 4833 4834 4835 4836 4837

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4838
#ifdef CONFIG_SMP
4839 4840
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4841
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4842
	}
4843
#endif
4844 4845 4846 4847
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4848 4849 4850 4851 4852
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4853
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4854 4855
}

4856 4857 4858 4859 4860
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4881
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4882 4883 4884 4885 4886 4887 4888
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4889
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4890
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4891 4892
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4893 4894
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4895 4896
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4897 4898
#endif

P
Pekka Enberg 已提交
4899
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4900 4901 4902 4903
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4904
	&min_partial_attr.attr,
4905
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4906
	&objects_attr.attr,
4907
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4908 4909 4910 4911 4912 4913 4914 4915
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4916
	&shrink_attr.attr,
4917
	&reserved_attr.attr,
4918
	&slabs_cpu_partial_attr.attr,
4919
#ifdef CONFIG_SLUB_DEBUG
4920 4921 4922 4923
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4924 4925 4926
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4927
	&validate_attr.attr,
4928 4929
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4930
#endif
C
Christoph Lameter 已提交
4931 4932 4933 4934
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4935
	&remote_node_defrag_ratio_attr.attr,
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4948
	&alloc_node_mismatch_attr.attr,
4949 4950 4951 4952 4953 4954 4955
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4956
	&deactivate_bypass_attr.attr,
4957
	&order_fallback_attr.attr,
4958 4959
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4960 4961
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4962 4963
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4964
#endif
4965 4966 4967 4968
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5010 5011 5012
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5013

5014 5015 5016 5017
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5035
		for_each_memcg_cache_index(i) {
5036
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5037 5038 5039 5040 5041 5042
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5043 5044 5045
	return err;
}

5046 5047 5048 5049 5050
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5051
	struct kmem_cache *root_cache;
5052

5053
	if (is_root_cache(s))
5054 5055
		return;

5056 5057
	root_cache = s->memcg_params->root_cache;

5058 5059 5060 5061
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5062
	if (!root_cache->max_attr_size)
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5084
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5085 5086 5087 5088 5089 5090 5091 5092
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5093
		attr->show(root_cache, buf);
5094 5095 5096 5097 5098 5099 5100 5101
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5102 5103 5104 5105 5106
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5107
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5108 5109 5110 5111 5112 5113
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5114
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5126
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5127 5128 5129
	.filter = uevent_filter,
};

5130
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5131

5132 5133 5134 5135 5136 5137 5138 5139 5140
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5141 5142 5143
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5144 5145
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5168 5169
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5170 5171 5172
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5173 5174 5175

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5176 5177
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5178 5179
#endif

C
Christoph Lameter 已提交
5180 5181 5182 5183 5184 5185 5186 5187
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5188
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5189 5190 5191 5192 5193 5194 5195

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5196
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5206
	s->kobj.kset = cache_kset(s);
5207
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5208 5209
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5210 5211

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5212 5213
	if (err)
		goto out_del_kobj;
5214 5215 5216 5217 5218

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5219 5220
			err = -ENOMEM;
			goto out_del_kobj;
5221 5222 5223 5224
		}
	}
#endif

C
Christoph Lameter 已提交
5225 5226 5227 5228 5229
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5230 5231 5232 5233 5234 5235 5236 5237 5238
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5239 5240
}

5241
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5242
{
5243
	if (slab_state < FULL)
5244 5245 5246 5247 5248 5249
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5250 5251 5252
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5253 5254
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5255
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5256 5257 5258 5259
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5260
 * available lest we lose that information.
C
Christoph Lameter 已提交
5261 5262 5263 5264 5265 5266 5267
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5268
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5269 5270 5271 5272 5273

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5274
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5275 5276 5277
		/*
		 * If we have a leftover link then remove it.
		 */
5278 5279
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5295
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5296 5297
	int err;

5298
	mutex_lock(&slab_mutex);
5299

5300
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5301
	if (!slab_kset) {
5302
		mutex_unlock(&slab_mutex);
5303
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5304 5305 5306
		return -ENOSYS;
	}

5307
	slab_state = FULL;
5308

5309
	list_for_each_entry(s, &slab_caches, list) {
5310
		err = sysfs_slab_add(s);
5311
		if (err)
5312 5313
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5314
	}
C
Christoph Lameter 已提交
5315 5316 5317 5318 5319 5320

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5321
		if (err)
5322 5323
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5324 5325 5326
		kfree(al);
	}

5327
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5328 5329 5330 5331 5332
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5333
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5334 5335 5336 5337

/*
 * The /proc/slabinfo ABI
 */
5338
#ifdef CONFIG_SLABINFO
5339
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5340 5341
{
	unsigned long nr_slabs = 0;
5342 5343
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5344 5345 5346 5347 5348 5349 5350 5351
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5352 5353
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5354
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5355 5356
	}

5357 5358 5359 5360 5361 5362
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5363 5364
}

5365
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5366 5367 5368
{
}

5369 5370
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5371
{
5372
	return -EIO;
5373
}
5374
#endif /* CONFIG_SLABINFO */