intel_lrc.c 76.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
291
 *
292
 * @ctx: Context to work on
293
 * @engine: Engine the descriptor will be used with
294
 *
295 296 297 298 299 300
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
301
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303
 *    bits 32-52:    ctx ID, a globally unique tag
304 305
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443 444
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		struct intel_ringbuffer *ringbuf;
486

487
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 489
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
490 491
	}

492
	execlists_submit_requests(req0, req1);
493 494
}

495
static unsigned int
496
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497
{
498
	struct drm_i915_gem_request *head_req;
499

500
	assert_spin_locked(&engine->execlist_lock);
501

502
	head_req = list_first_entry_or_null(&engine->execlist_queue,
503
					    struct drm_i915_gem_request,
504 505
					    execlist_link);

506 507
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
508 509 510 511 512 513

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

514 515
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

516 517
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
518

519
	return 1;
520 521
}

522
static u32
523
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524
		   u32 *context_id)
B
Ben Widawsky 已提交
525
{
526
	struct drm_i915_private *dev_priv = engine->i915;
527
	u32 status;
B
Ben Widawsky 已提交
528

529 530
	read_pointer %= GEN8_CSB_ENTRIES;

531
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532 533 534

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
535

536
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 538 539
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
540 541
}

542
/**
543
 * intel_lrc_irq_handler() - handle Context Switch interrupts
544
 * @data: tasklet handler passed in unsigned long
545 546 547 548
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
549
static void intel_lrc_irq_handler(unsigned long data)
550
{
551
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552
	struct drm_i915_private *dev_priv = engine->i915;
553
	u32 status_pointer;
554
	unsigned int read_pointer, write_pointer;
555 556
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
557 558
	unsigned int submit_contexts = 0;

559
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560

561
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562

563
	read_pointer = engine->next_context_status_buffer;
564
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565
	if (read_pointer > write_pointer)
566
		write_pointer += GEN8_CSB_ENTRIES;
567 568

	while (read_pointer < write_pointer) {
569 570 571 572 573 574
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
575

576 577 578 579 580 581 582 583
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

584
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585 586 587 588 589 590 591

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
592 593 594 595 596
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

597
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598 599
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
600
				execlists_check_remove_request(engine, csb[i][1]);
601 602
	}

603
	if (submit_contexts) {
604
		if (!engine->disable_lite_restore_wa ||
605 606
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
607
	}
608

609
	spin_unlock(&engine->execlist_lock);
610 611 612

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
613 614
}

615
static void execlists_context_queue(struct drm_i915_gem_request *request)
616
{
617
	struct intel_engine_cs *engine = request->engine;
618
	struct drm_i915_gem_request *cursor;
619
	int num_elements = 0;
620

621
	spin_lock_bh(&engine->execlist_lock);
622

623
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 625 626 627
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
628
		struct drm_i915_gem_request *tail_req;
629

630
		tail_req = list_last_entry(&engine->execlist_queue,
631
					   struct drm_i915_gem_request,
632 633
					   execlist_link);

634
		if (request->ctx == tail_req->ctx) {
635
			WARN(tail_req->elsp_submitted != 0,
636
				"More than 2 already-submitted reqs queued\n");
637 638
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
639 640 641
		}
	}

642
	i915_gem_request_reference(request);
643
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
644
	request->ctx_hw_id = request->ctx->hw_id;
645
	if (num_elements == 0)
646
		execlists_context_unqueue(engine);
647

648
	spin_unlock_bh(&engine->execlist_lock);
649 650
}

651
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652
{
653
	struct intel_engine_cs *engine = req->engine;
654 655 656 657
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
658
	if (engine->gpu_caches_dirty)
659 660
		flush_domains = I915_GEM_GPU_DOMAINS;

661
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 663 664
	if (ret)
		return ret;

665
	engine->gpu_caches_dirty = false;
666 667 668
	return 0;
}

669
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 671
				 struct list_head *vmas)
{
672
	const unsigned other_rings = ~intel_engine_flag(req->engine);
673 674 675 676 677 678 679 680
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

681
		if (obj->active & other_rings) {
682
			ret = i915_gem_object_sync(obj, req->engine, &req);
683 684 685
			if (ret)
				return ret;
		}
686 687 688 689 690 691 692 693 694 695 696 697 698

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
699
	return logical_ring_invalidate_all_caches(req);
700 701
}

702
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703
{
704
	struct intel_engine_cs *engine = request->engine;
705
	struct intel_context *ce = &request->ctx->engine[engine->id];
706
	int ret;
707

708 709 710 711
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
712
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
713

714
	if (!ce->state) {
715 716 717 718 719
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

720
	request->ringbuf = ce->ringbuf;
721

722 723 724 725 726 727
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
728
		ret = i915_guc_wq_check_space(request);
729 730 731 732
		if (ret)
			return ret;
	}

733 734 735
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
736

737 738 739 740
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

741
	if (!ce->initialised) {
742 743 744 745
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

746
		ce->initialised = true;
747 748 749 750 751 752 753 754 755
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

756
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757 758 759
	return 0;

err_unpin:
760
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
761
	return ret;
762 763 764 765
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766
 * @request: Request to advance the logical ringbuffer of.
767 768 769 770 771 772
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
773
static int
774
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775
{
776
	struct intel_ringbuffer *ringbuf = request->ringbuf;
777
	struct intel_engine_cs *engine = request->engine;
778

779 780
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
781

782 783 784 785 786 787 788 789 790
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
791

792 793 794 795 796 797 798 799
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
800

801 802
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
803 804
	else
		execlists_context_queue(request);
805 806

	return 0;
807 808
}

809 810
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
811
 * @params: execbuffer call parameters.
812 813 814 815 816 817 818 819
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
820
int intel_execlists_submission(struct i915_execbuffer_params *params,
821
			       struct drm_i915_gem_execbuffer2 *args,
822
			       struct list_head *vmas)
823
{
824
	struct drm_device       *dev = params->dev;
825
	struct intel_engine_cs *engine = params->engine;
826
	struct drm_i915_private *dev_priv = dev->dev_private;
827
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
828
	u64 exec_start;
829 830 831 832 833 834 835 836 837 838
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
839
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

864
	ret = execlists_move_to_gpu(params->request, vmas);
865 866 867
	if (ret)
		return ret;

868
	if (engine == &dev_priv->engine[RCS] &&
869
	    instp_mode != dev_priv->relative_constants_mode) {
870
		ret = intel_ring_begin(params->request, 4);
871 872 873 874 875
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
876
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
877 878 879 880 881 882
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

883 884 885
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

886
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
887 888 889
	if (ret)
		return ret;

890
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
891

892
	i915_gem_execbuffer_move_to_active(vmas, params->request);
893

894 895 896
	return 0;
}

897
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
898
{
899
	struct drm_i915_gem_request *req, *tmp;
900
	LIST_HEAD(cancel_list);
901

902
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
903

904
	spin_lock_bh(&engine->execlist_lock);
905
	list_replace_init(&engine->execlist_queue, &cancel_list);
906
	spin_unlock_bh(&engine->execlist_lock);
907

908
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
909
		list_del(&req->execlist_link);
910
		i915_gem_request_unreference(req);
911 912 913
	}
}

914
void intel_logical_ring_stop(struct intel_engine_cs *engine)
915
{
916
	struct drm_i915_private *dev_priv = engine->i915;
917 918
	int ret;

919
	if (!intel_engine_initialized(engine))
920 921
		return;

922
	ret = intel_engine_idle(engine);
923
	if (ret)
924
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
925
			  engine->name, ret);
926 927

	/* TODO: Is this correct with Execlists enabled? */
928
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
929 930 931 932
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
933
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
934 935
		return;
	}
936
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
937 938
}

939
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
940
{
941
	struct intel_engine_cs *engine = req->engine;
942 943
	int ret;

944
	if (!engine->gpu_caches_dirty)
945 946
		return 0;

947
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
948 949 950
	if (ret)
		return ret;

951
	engine->gpu_caches_dirty = false;
952 953 954
	return 0;
}

955
static int intel_lr_context_pin(struct i915_gem_context *ctx,
956
				struct intel_engine_cs *engine)
957
{
958
	struct drm_i915_private *dev_priv = ctx->i915;
959
	struct intel_context *ce = &ctx->engine[engine->id];
960 961
	void *vaddr;
	u32 *lrc_reg_state;
962
	int ret;
963

964
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
965

966
	if (ce->pin_count++)
967 968
		return 0;

969 970
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
971
	if (ret)
972
		goto err;
973

974
	vaddr = i915_gem_object_pin_map(ce->state);
975 976
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
977 978 979
		goto unpin_ctx_obj;
	}

980 981
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

982
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
983
	if (ret)
984
		goto unpin_map;
985

986
	i915_gem_context_reference(ctx);
987
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
988
	intel_lr_context_descriptor_update(ctx, engine);
989 990 991 992

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
993

994 995 996
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
997

998
	return 0;
999

1000
unpin_map:
1001
	i915_gem_object_unpin_map(ce->state);
1002
unpin_ctx_obj:
1003
	i915_gem_object_ggtt_unpin(ce->state);
1004
err:
1005
	ce->pin_count = 0;
1006 1007 1008
	return ret;
}

1009
void intel_lr_context_unpin(struct i915_gem_context *ctx,
1010
			    struct intel_engine_cs *engine)
1011
{
1012
	struct intel_context *ce = &ctx->engine[engine->id];
1013

1014
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1015
	GEM_BUG_ON(ce->pin_count == 0);
1016

1017
	if (--ce->pin_count)
1018
		return;
1019

1020
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1021

1022 1023
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1024

1025 1026 1027
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1028

1029
	i915_gem_context_unreference(ctx);
1030 1031
}

1032
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1033 1034
{
	int ret, i;
1035
	struct intel_engine_cs *engine = req->engine;
1036
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1037
	struct i915_workarounds *w = &req->i915->workarounds;
1038

1039
	if (w->count == 0)
1040 1041
		return 0;

1042
	engine->gpu_caches_dirty = true;
1043
	ret = logical_ring_flush_all_caches(req);
1044 1045 1046
	if (ret)
		return ret;

1047
	ret = intel_ring_begin(req, w->count * 2 + 2);
1048 1049 1050 1051 1052
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1053
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1054 1055 1056 1057 1058 1059
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1060
	engine->gpu_caches_dirty = true;
1061
	ret = logical_ring_flush_all_caches(req);
1062 1063 1064 1065 1066 1067
	if (ret)
		return ret;

	return 0;
}

1068
#define wa_ctx_emit(batch, index, cmd)					\
1069
	do {								\
1070 1071
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072 1073
			return -ENOSPC;					\
		}							\
1074
		batch[__index] = (cmd);					\
1075 1076
	} while (0)

V
Ville Syrjälä 已提交
1077
#define wa_ctx_emit_reg(batch, index, reg) \
1078
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1096
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1097 1098 1099 1100 1101
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1102
	/*
1103
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1104 1105 1106 1107
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1108 1109
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1110 1111
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1112
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1113
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1114
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1116 1117 1118
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1119
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1130
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1131
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1132
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1133
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1134
	wa_ctx_emit(batch, index, 0);
1135 1136 1137 1138

	return index;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1161
 * @engine: only applicable for RCS
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1177
 *
1178 1179 1180 1181 1182 1183 1184 1185
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1186
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1187 1188 1189 1190
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1191
	uint32_t scratch_addr;
1192 1193
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1194
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1195
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1196

1197
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1198
	if (IS_BROADWELL(engine->i915)) {
1199
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1200 1201 1202
		if (rc < 0)
			return rc;
		index = rc;
1203 1204
	}

1205 1206
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1207
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1218

1219 1220
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1221
		wa_ctx_emit(batch, index, MI_NOOP);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1235
 * @engine: only applicable for RCS
1236 1237 1238
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1239
 * @batch: page in which WA are loaded
1240 1241 1242 1243 1244 1245 1246 1247 1248
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1249
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1250 1251 1252 1253 1254 1255
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1256
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1257
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1258

1259
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1260 1261 1262 1263

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1264
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1265 1266 1267 1268
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1269
	int ret;
1270 1271
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1272
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1273 1274
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1275
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1276

1277
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1278
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1279 1280 1281 1282
	if (ret < 0)
		return ret;
	index = ret;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1299 1300 1301 1302 1303 1304 1305
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1306
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1307 1308 1309 1310 1311 1312
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1313
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1314 1315
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1316
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1317
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1318 1319 1320 1321 1322
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1323
	/* WaClearTdlStateAckDirtyBits:bxt */
1324
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1342
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1343 1344
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1345 1346
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1347 1348 1349 1350 1351
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1352
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1353 1354 1355
{
	int ret;

1356
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1357
						   PAGE_ALIGN(size));
1358
	if (IS_ERR(engine->wa_ctx.obj)) {
1359
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1360 1361 1362
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1363 1364
	}

1365
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1366 1367 1368
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1369
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1370 1371 1372 1373 1374 1375
		return ret;
	}

	return 0;
}

1376
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1377
{
1378 1379 1380 1381
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1382 1383 1384
	}
}

1385
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1386 1387 1388 1389 1390
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1391
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1392

1393
	WARN_ON(engine->id != RCS);
1394

1395
	/* update this when WA for higher Gen are added */
1396
	if (INTEL_GEN(engine->i915) > 9) {
1397
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1398
			  INTEL_GEN(engine->i915));
1399
		return 0;
1400
	}
1401

1402
	/* some WA perform writes to scratch page, ensure it is valid */
1403 1404
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1405 1406 1407
		return -EINVAL;
	}

1408
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1409 1410 1411 1412 1413
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1414
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1415 1416 1417
	batch = kmap_atomic(page);
	offset = 0;

1418
	if (IS_GEN8(engine->i915)) {
1419
		ret = gen8_init_indirectctx_bb(engine,
1420 1421 1422 1423 1424 1425
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1426
		ret = gen8_init_perctx_bb(engine,
1427 1428 1429 1430 1431
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1432
	} else if (IS_GEN9(engine->i915)) {
1433
		ret = gen9_init_indirectctx_bb(engine,
1434 1435 1436 1437 1438 1439
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1440
		ret = gen9_init_perctx_bb(engine,
1441 1442 1443 1444 1445
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1446 1447 1448 1449 1450
	}

out:
	kunmap_atomic(batch);
	if (ret)
1451
		lrc_destroy_wa_ctx_obj(engine);
1452 1453 1454 1455

	return ret;
}

1456 1457
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1458
	struct drm_i915_private *dev_priv = engine->i915;
1459 1460 1461 1462 1463 1464

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1465
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1466
{
1467
	struct drm_i915_private *dev_priv = engine->i915;
1468
	unsigned int next_context_status_buffer_hw;
1469

1470
	lrc_init_hws(engine);
1471

1472 1473 1474
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1475

1476
	I915_WRITE(RING_MODE_GEN7(engine),
1477 1478
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1479
	POSTING_READ(RING_MODE_GEN7(engine));
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1490 1491
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1492
	 */
1493
	next_context_status_buffer_hw =
1494
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1495 1496 1497 1498 1499 1500 1501 1502 1503

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1504 1505
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1506

1507
	intel_engine_init_hangcheck(engine);
1508

1509
	return intel_mocs_init_engine(engine);
1510 1511
}

1512
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1513
{
1514
	struct drm_i915_private *dev_priv = engine->i915;
1515 1516
	int ret;

1517
	ret = gen8_init_common_ring(engine);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1531
	return init_workarounds_ring(engine);
1532 1533
}

1534
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1535 1536 1537
{
	int ret;

1538
	ret = gen8_init_common_ring(engine);
1539 1540 1541
	if (ret)
		return ret;

1542
	return init_workarounds_ring(engine);
1543 1544
}

1545 1546 1547
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1548
	struct intel_engine_cs *engine = req->engine;
1549 1550 1551 1552
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1553
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1554 1555 1556 1557 1558 1559 1560
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1561 1562
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1563
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1564 1565
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1566 1567 1568 1569 1570 1571 1572 1573 1574
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1575
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1576
			      u64 offset, unsigned dispatch_flags)
1577
{
1578
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1579
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1580 1581
	int ret;

1582 1583 1584 1585
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1586 1587
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1588
	if (req->ctx->ppgtt &&
1589
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1590
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1591
		    !intel_vgpu_active(req->i915)) {
1592 1593 1594 1595
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1596

1597
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1598 1599
	}

1600
	ret = intel_ring_begin(req, 4);
1601 1602 1603 1604
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1605 1606 1607 1608
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1609 1610 1611 1612 1613 1614 1615 1616
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1617
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1618
{
1619
	struct drm_i915_private *dev_priv = engine->i915;
1620 1621 1622
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1623 1624
}

1625
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1626
{
1627
	struct drm_i915_private *dev_priv = engine->i915;
1628
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1629 1630
}

1631
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1632 1633 1634
			   u32 invalidate_domains,
			   u32 unused)
{
1635
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1636
	struct intel_engine_cs *engine = ringbuf->engine;
1637
	struct drm_i915_private *dev_priv = request->i915;
1638 1639 1640
	uint32_t cmd;
	int ret;

1641
	ret = intel_ring_begin(request, 4);
1642 1643 1644 1645 1646
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1647 1648 1649 1650 1651 1652 1653 1654 1655
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1656
		if (engine == &dev_priv->engine[VCS])
1657
			cmd |= MI_INVALIDATE_BSD;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1671
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1672 1673 1674
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1675
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1676
	struct intel_engine_cs *engine = ringbuf->engine;
1677
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1678
	bool vf_flush_wa = false, dc_flush_wa = false;
1679 1680
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1681
	int len;
1682 1683 1684 1685 1686 1687

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1688
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1689
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1702 1703 1704 1705
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1706
		if (IS_GEN9(request->i915))
1707
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1708 1709 1710 1711

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1712
	}
1713

M
Mika Kuoppala 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1723 1724 1725
	if (ret)
		return ret;

1726 1727 1728 1729 1730 1731 1732 1733 1734
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1744 1745 1746 1747 1748 1749
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1760 1761 1762 1763 1764
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1765
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1777
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1778 1779
}

1780 1781 1782 1783 1784 1785 1786
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1787
static int gen8_emit_request(struct drm_i915_gem_request *request)
1788
{
1789
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1790 1791
	int ret;

1792
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1793 1794 1795
	if (ret)
		return ret;

1796 1797
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1798 1799

	intel_logical_ring_emit(ringbuf,
1800 1801
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1802
				intel_hws_seqno_address(request->engine) |
1803
				MI_FLUSH_DW_USE_GTT);
1804
	intel_logical_ring_emit(ringbuf, 0);
1805
	intel_logical_ring_emit(ringbuf, request->seqno);
1806 1807
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1808 1809
	return intel_logical_ring_advance_and_submit(request);
}
1810

1811 1812 1813 1814
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1815

1816
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1817 1818 1819
	if (ret)
		return ret;

1820 1821 1822
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1823 1824 1825 1826
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1827
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1828 1829 1830 1831
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1832 1833
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1834 1835
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1836 1837
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1838
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1839
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1840
	return intel_logical_ring_advance_and_submit(request);
1841 1842
}

1843
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1844 1845 1846 1847
{
	struct render_state so;
	int ret;

1848
	ret = i915_gem_render_state_prepare(req->engine, &so);
1849 1850 1851 1852 1853 1854
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1855
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1856
				       I915_DISPATCH_SECURE);
1857 1858 1859
	if (ret)
		goto out;

1860
	ret = req->engine->emit_bb_start(req,
1861 1862 1863 1864 1865
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1866
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1867 1868 1869 1870 1871 1872

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1873
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1874 1875 1876
{
	int ret;

1877
	ret = intel_logical_ring_workarounds_emit(req);
1878 1879 1880
	if (ret)
		return ret;

1881 1882 1883 1884 1885 1886 1887 1888
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1889
	return intel_lr_context_render_state_init(req);
1890 1891
}

1892 1893 1894
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1895
 * @engine: Engine Command Streamer.
1896 1897
 *
 */
1898
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1899
{
1900
	struct drm_i915_private *dev_priv;
1901

1902
	if (!intel_engine_initialized(engine))
1903 1904
		return;

1905 1906 1907 1908 1909 1910 1911
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1912
	dev_priv = engine->i915;
1913

1914 1915 1916
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1917
	}
1918

1919 1920
	if (engine->cleanup)
		engine->cleanup(engine);
1921

1922 1923
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1924

1925 1926
	intel_engine_fini_breadcrumbs(engine);

1927
	if (engine->status_page.obj) {
1928
		i915_gem_object_unpin_map(engine->status_page.obj);
1929
		engine->status_page.obj = NULL;
1930
	}
1931
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1932

1933 1934 1935
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1936

1937
	lrc_destroy_wa_ctx_obj(engine);
1938
	engine->i915 = NULL;
1939 1940
}

1941
static void
1942
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1943 1944
{
	/* Default vfuncs which can be overriden by each engine. */
1945 1946 1947
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
1948 1949
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1950
	engine->emit_bb_start = gen8_emit_bb_start;
1951
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1952
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1953 1954
}

1955
static inline void
1956
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1957
{
1958 1959
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1960 1961
}

1962
static int
1963 1964 1965
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1966
	void *hws;
1967 1968 1969 1970

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1971 1972 1973 1974
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1975
	engine->status_page.obj = dctx_obj;
1976 1977

	return 0;
1978 1979
}

1980 1981 1982 1983 1984 1985
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1986 1987 1988 1989
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
		goto error;

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	ret = i915_cmd_parser_init_ring(engine);
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

static int logical_render_ring_init(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2038
	ret = intel_init_pipe_control(engine, 4096);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2061 2062 2063 2064 2065 2066
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
2067
	int (*init)(struct intel_engine_cs *engine);
2068 2069 2070 2071 2072 2073 2074
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
2075
		.init = logical_render_ring_init,
2076 2077 2078 2079 2080 2081 2082
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
2083
		.init = logical_ring_init,
2084 2085 2086 2087 2088 2089 2090
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
2091
		.init = logical_ring_init,
2092 2093 2094 2095 2096 2097 2098
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
2099
		.init = logical_ring_init,
2100 2101 2102 2103 2104 2105 2106
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
2107
		.init = logical_ring_init,
2108 2109 2110 2111
	},
};

static struct intel_engine_cs *
2112
logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
2113
{
2114 2115
	const struct logical_ring_info *info = &logical_rings[id];
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2116
	enum forcewake_domains fw_domains;
2117

2118 2119 2120 2121 2122
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2123

2124
	engine->i915 = dev_priv;
2125

2126 2127
	/* Intentionally left blank. */
	engine->buffer = NULL;
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2157
	i915_gem_batch_pool_init(dev_priv->dev, &engine->batch_pool);
2158 2159 2160 2161

	return engine;
}

2162 2163 2164 2165
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
2166 2167 2168 2169
 * This function inits the engines for an Execlists submission style (the
 * equivalent in the legacy ringbuffer submission world would be
 * i915_gem_init_engines). It does it only for those engines that are present in
 * the hardware.
2170 2171 2172
 *
 * Return: non-zero if the initialization failed.
 */
2173 2174 2175
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2176 2177
	unsigned int mask = 0;
	unsigned int i;
2178 2179
	int ret;

2180 2181
	WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2182

2183 2184 2185
	for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;
2186

2187 2188
		if (!logical_rings[i].init)
			continue;
2189

2190
		ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
2191
		if (ret)
2192 2193 2194
			goto cleanup;

		mask |= ENGINE_MASK(i);
2195 2196
	}

2197 2198 2199 2200 2201 2202 2203 2204 2205
	/*
	 * Catch failures to update logical_rings table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
		struct intel_device_info *info =
			(struct intel_device_info *)&dev_priv->info;
		info->ring_mask = mask;
2206 2207 2208 2209
	}

	return 0;

2210 2211 2212
cleanup:
	for (i = 0; i < I915_NUM_ENGINES; i++)
		intel_logical_ring_cleanup(&dev_priv->engine[i]);
2213 2214 2215 2216

	return ret;
}

2217
static u32
2218
make_rpcs(struct drm_i915_private *dev_priv)
2219 2220 2221 2222 2223 2224 2225
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2226
	if (INTEL_GEN(dev_priv) < 9)
2227 2228 2229 2230 2231 2232 2233 2234
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2235
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2236
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2237
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2238 2239 2240 2241
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2242
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2243
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2244
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2245 2246 2247 2248
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2249 2250
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2251
			GEN8_RPCS_EU_MIN_SHIFT;
2252
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2253 2254 2255 2256 2257 2258 2259
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2260
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2261 2262 2263
{
	u32 indirect_ctx_offset;

2264
	switch (INTEL_GEN(engine->i915)) {
2265
	default:
2266
		MISSING_CASE(INTEL_GEN(engine->i915));
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2281
static int
2282
populate_lr_context(struct i915_gem_context *ctx,
2283
		    struct drm_i915_gem_object *ctx_obj,
2284 2285
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2286
{
2287
	struct drm_i915_private *dev_priv = ctx->i915;
2288
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2289 2290
	void *vaddr;
	u32 *reg_state;
2291 2292
	int ret;

2293 2294 2295
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2296 2297 2298 2299 2300 2301
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2302 2303 2304 2305
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2306 2307
		return ret;
	}
2308
	ctx_obj->dirty = true;
2309 2310 2311

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2312
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2313 2314 2315 2316 2317 2318

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2319
	reg_state[CTX_LRI_HEADER_0] =
2320 2321 2322
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2323 2324
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2325
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2326
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2327 2328 2329 2330
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2331 2332 2333
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2334 2335 2336 2337
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2338
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2339 2340 2341 2342 2343 2344
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2345
		       RING_BB_PPGTT);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2361 2362 2363 2364 2365 2366 2367
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2368
				intel_lr_indirect_ctx_offset(engine) << 6;
2369 2370 2371 2372 2373

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2374
	}
2375
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2376 2377
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2378
	/* PDP values well be assigned later if needed */
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2408
		execlists_update_context_pdps(ppgtt, reg_state);
2409 2410
	}

2411
	if (engine->id == RCS) {
2412
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2413
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2414
			       make_rpcs(dev_priv));
2415 2416
	}

2417
	i915_gem_object_unpin_map(ctx_obj);
2418 2419 2420 2421

	return 0;
}

2422 2423
/**
 * intel_lr_context_size() - return the size of the context for an engine
2424
 * @engine: which engine to find the context size for
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2436
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2437 2438 2439
{
	int ret = 0;

2440
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2441

2442
	switch (engine->id) {
2443
	case RCS:
2444
		if (INTEL_GEN(engine->i915) >= 9)
2445 2446 2447
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2458 2459
}

2460
/**
2461
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2462
 * @ctx: LR context to create.
2463
 * @engine: engine to be used with the context.
2464 2465 2466 2467 2468 2469 2470
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2471
 * Return: non-zero on error.
2472
 */
2473
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2474
					    struct intel_engine_cs *engine)
2475
{
2476
	struct drm_i915_gem_object *ctx_obj;
2477
	struct intel_context *ce = &ctx->engine[engine->id];
2478
	uint32_t context_size;
2479
	struct intel_ringbuffer *ringbuf;
2480 2481
	int ret;

2482
	WARN_ON(ce->state);
2483

2484
	context_size = round_up(intel_lr_context_size(engine), 4096);
2485

2486 2487 2488
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2489
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2490
	if (IS_ERR(ctx_obj)) {
2491
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2492
		return PTR_ERR(ctx_obj);
2493 2494
	}

2495
	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2496 2497
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2498
		goto error_deref_obj;
2499 2500
	}

2501
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2502 2503
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2504
		goto error_ringbuf;
2505 2506
	}

2507 2508 2509
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2510 2511

	return 0;
2512

2513 2514
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2515
error_deref_obj:
2516
	drm_gem_object_unreference(&ctx_obj->base);
2517 2518
	ce->ringbuf = NULL;
	ce->state = NULL;
2519
	return ret;
2520
}
2521

2522
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2523
			    struct i915_gem_context *ctx)
2524
{
2525
	struct intel_engine_cs *engine;
2526

2527
	for_each_engine(engine, dev_priv) {
2528 2529
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2530
		void *vaddr;
2531 2532 2533 2534 2535
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2536 2537
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2538
			continue;
2539 2540 2541

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2542 2543 2544 2545

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2546
		i915_gem_object_unpin_map(ctx_obj);
2547

2548 2549
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2550 2551
	}
}