intel_lrc.c 76.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234 235
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine);
236 237
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
238

239 240 241 242 243 244
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv))
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_i915_private *dev_priv = engine->i915;
273

274
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
275
		engine->idle_lite_restore_wa = ~0;
276

277 278
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
283
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
284
	if (IS_GEN8(dev_priv))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302 303
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
311
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313
 *    bits 32-52:    ctx ID, a globally unique tag
314 315
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
316
 */
317 318
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
319
				   struct intel_engine_cs *engine)
320
{
321
	u64 desc;
322

323
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324

325 326 327 328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ctx->engine[engine->id].lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
341
{
342

343
	struct intel_engine_cs *engine = rq0->engine;
344
	struct drm_i915_private *dev_priv = rq0->i915;
345
	uint64_t desc[2];
346

347
	if (rq1) {
348
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
349 350 351 352
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
353

354
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
355
	rq0->elsp_submitted++;
356

357
	/* You must always write both descriptors in the order below. */
358 359
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
360

361
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
362
	/* The context is automatically loaded after the following */
363
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
364

365
	/* ELSP is a wo register, use another nearby reg for posting */
366
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
367 368
}

369 370 371 372 373 374 375 376 377 378
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
379
{
380
	struct intel_engine_cs *engine = rq->engine;
381
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
382
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
383

384
	reg_state[CTX_RING_TAIL+1] = rq->tail;
385

386 387 388 389 390 391 392
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
393 394
}

395 396
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
397
{
398
	struct drm_i915_private *dev_priv = rq0->i915;
399
	unsigned int fw_domains = rq0->engine->fw_domains;
400

401
	execlists_update_context(rq0);
402

403
	if (rq1)
404
		execlists_update_context(rq1);
405

406
	spin_lock_irq(&dev_priv->uncore.lock);
407
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
408

409
	execlists_elsp_write(rq0, rq1);
410

411
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
412
	spin_unlock_irq(&dev_priv->uncore.lock);
413 414
}

415
static void execlists_context_unqueue(struct intel_engine_cs *engine)
416
{
417
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
418
	struct drm_i915_gem_request *cursor, *tmp;
419

420
	assert_spin_locked(&engine->execlist_lock);
421

422 423 424 425
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
426
	WARN_ON(!intel_irqs_enabled(engine->i915));
427

428
	/* Try to read in pairs */
429
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
430 431 432
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
433
		} else if (req0->ctx == cursor->ctx) {
434 435
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
436
			cursor->elsp_submitted = req0->elsp_submitted;
437 438
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
439 440 441
			req0 = cursor;
		} else {
			req1 = cursor;
442
			WARN_ON(req1->elsp_submitted);
443 444 445 446
			break;
		}
	}

447 448 449
	if (unlikely(!req0))
		return;

450
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
451
		/*
452 453 454 455 456 457
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
458
		 */
459
		struct intel_ringbuffer *ringbuf;
460

461
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
462 463
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
464 465
	}

466
	execlists_submit_requests(req0, req1);
467 468
}

469
static unsigned int
470
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
471
{
472
	struct drm_i915_gem_request *head_req;
473

474
	assert_spin_locked(&engine->execlist_lock);
475

476
	head_req = list_first_entry_or_null(&engine->execlist_queue,
477
					    struct drm_i915_gem_request,
478 479
					    execlist_link);

480 481
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
482 483 484 485 486 487

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

488 489
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
490

491
	return 1;
492 493
}

494
static u32
495
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
496
		   u32 *context_id)
B
Ben Widawsky 已提交
497
{
498
	struct drm_i915_private *dev_priv = engine->i915;
499
	u32 status;
B
Ben Widawsky 已提交
500

501 502
	read_pointer %= GEN8_CSB_ENTRIES;

503
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
504 505 506

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
507

508
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
509 510 511
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
512 513
}

514
/**
515
 * intel_lrc_irq_handler() - handle Context Switch interrupts
516
 * @engine: Engine Command Streamer to handle.
517 518 519 520
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
521
static void intel_lrc_irq_handler(unsigned long data)
522
{
523
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
524
	struct drm_i915_private *dev_priv = engine->i915;
525
	u32 status_pointer;
526
	unsigned int read_pointer, write_pointer;
527 528
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
529 530
	unsigned int submit_contexts = 0;

531
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
532

533
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
534

535
	read_pointer = engine->next_context_status_buffer;
536
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
537
	if (read_pointer > write_pointer)
538
		write_pointer += GEN8_CSB_ENTRIES;
539 540

	while (read_pointer < write_pointer) {
541 542 543 544 545 546
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
547

548 549 550 551 552 553 554 555
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

556
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
557 558 559 560 561 562 563

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
564 565 566 567 568
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

569
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
570 571
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
572
				execlists_check_remove_request(engine, csb[i][1]);
573 574
	}

575
	if (submit_contexts) {
576
		if (!engine->disable_lite_restore_wa ||
577 578
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
579
	}
580

581
	spin_unlock(&engine->execlist_lock);
582 583 584

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
585 586
}

587
static void execlists_context_queue(struct drm_i915_gem_request *request)
588
{
589
	struct intel_engine_cs *engine = request->engine;
590
	struct drm_i915_gem_request *cursor;
591
	int num_elements = 0;
592

593
	spin_lock_bh(&engine->execlist_lock);
594

595
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
596 597 598 599
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
600
		struct drm_i915_gem_request *tail_req;
601

602
		tail_req = list_last_entry(&engine->execlist_queue,
603
					   struct drm_i915_gem_request,
604 605
					   execlist_link);

606
		if (request->ctx == tail_req->ctx) {
607
			WARN(tail_req->elsp_submitted != 0,
608
				"More than 2 already-submitted reqs queued\n");
609 610
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
611 612 613
		}
	}

614
	i915_gem_request_reference(request);
615
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
616
	request->ctx_hw_id = request->ctx->hw_id;
617
	if (num_elements == 0)
618
		execlists_context_unqueue(engine);
619

620
	spin_unlock_bh(&engine->execlist_lock);
621 622
}

623
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
624
{
625
	struct intel_engine_cs *engine = req->engine;
626 627 628 629
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
630
	if (engine->gpu_caches_dirty)
631 632
		flush_domains = I915_GEM_GPU_DOMAINS;

633
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
634 635 636
	if (ret)
		return ret;

637
	engine->gpu_caches_dirty = false;
638 639 640
	return 0;
}

641
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
642 643
				 struct list_head *vmas)
{
644
	const unsigned other_rings = ~intel_engine_flag(req->engine);
645 646 647 648 649 650 651 652
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

653
		if (obj->active & other_rings) {
654
			ret = i915_gem_object_sync(obj, req->engine, &req);
655 656 657
			if (ret)
				return ret;
		}
658 659 660 661 662 663 664 665 666 667 668 669 670

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
671
	return logical_ring_invalidate_all_caches(req);
672 673
}

674
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
675
{
676
	struct intel_engine_cs *engine = request->engine;
677
	int ret;
678

679 680 681 682
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
683
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
684

685 686 687 688 689 690
	if (request->ctx->engine[engine->id].state == NULL) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

691
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
692

693 694 695 696 697 698 699 700 701 702 703 704 705
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

706 707 708
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
709

710 711 712 713
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

729
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
730 731 732
	return 0;

err_unpin:
733
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
734
	return ret;
735 736 737 738
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
739
 * @request: Request to advance the logical ringbuffer of.
740 741 742 743 744 745
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
746
static int
747
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
748
{
749
	struct intel_ringbuffer *ringbuf = request->ringbuf;
750
	struct drm_i915_private *dev_priv = request->i915;
751
	struct intel_engine_cs *engine = request->engine;
752

753 754
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
755

756 757 758 759 760 761 762 763 764
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
765

766
	if (intel_engine_stopped(engine))
767
		return 0;
768

769 770 771 772 773 774 775 776
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
777

778 779 780 781
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
782 783

	return 0;
784 785
}

786 787 788 789 790 791 792 793 794 795
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
796
 * @dispatch_flags: translated execbuffer call flags.
797 798 799 800 801 802
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
803
int intel_execlists_submission(struct i915_execbuffer_params *params,
804
			       struct drm_i915_gem_execbuffer2 *args,
805
			       struct list_head *vmas)
806
{
807
	struct drm_device       *dev = params->dev;
808
	struct intel_engine_cs *engine = params->engine;
809
	struct drm_i915_private *dev_priv = dev->dev_private;
810
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
811
	u64 exec_start;
812 813 814 815 816 817 818 819 820 821
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
822
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

847
	ret = execlists_move_to_gpu(params->request, vmas);
848 849 850
	if (ret)
		return ret;

851
	if (engine == &dev_priv->engine[RCS] &&
852
	    instp_mode != dev_priv->relative_constants_mode) {
853
		ret = intel_ring_begin(params->request, 4);
854 855 856 857 858
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
859
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
860 861 862 863 864 865
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

866 867 868
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

869
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
870 871 872
	if (ret)
		return ret;

873
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
874

875
	i915_gem_execbuffer_move_to_active(vmas, params->request);
876

877 878 879
	return 0;
}

880
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
881
{
882
	struct drm_i915_gem_request *req, *tmp;
883
	LIST_HEAD(cancel_list);
884

885
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
886

887
	spin_lock_bh(&engine->execlist_lock);
888
	list_replace_init(&engine->execlist_queue, &cancel_list);
889
	spin_unlock_bh(&engine->execlist_lock);
890

891
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
892
		list_del(&req->execlist_link);
893
		i915_gem_request_unreference(req);
894 895 896
	}
}

897
void intel_logical_ring_stop(struct intel_engine_cs *engine)
898
{
899
	struct drm_i915_private *dev_priv = engine->i915;
900 901
	int ret;

902
	if (!intel_engine_initialized(engine))
903 904
		return;

905
	ret = intel_engine_idle(engine);
906
	if (ret)
907
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
908
			  engine->name, ret);
909 910

	/* TODO: Is this correct with Execlists enabled? */
911 912 913
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
914 915
		return;
	}
916
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
917 918
}

919
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
920
{
921
	struct intel_engine_cs *engine = req->engine;
922 923
	int ret;

924
	if (!engine->gpu_caches_dirty)
925 926
		return 0;

927
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
928 929 930
	if (ret)
		return ret;

931
	engine->gpu_caches_dirty = false;
932 933 934
	return 0;
}

935 936
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
937
{
938 939 940
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
941 942
	void *vaddr;
	u32 *lrc_reg_state;
943
	int ret;
944

945
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
946

947 948 949 950
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
951 952 953
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
954
		goto err;
955

956 957 958
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
959 960 961
		goto unpin_ctx_obj;
	}

962 963
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

964
	ringbuf = ctx->engine[engine->id].ringbuf;
965
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
966
	if (ret)
967
		goto unpin_map;
968

969
	i915_gem_context_reference(ctx);
970 971
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
972
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
973
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
974
	ctx_obj->dirty = true;
975

976 977 978
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
979

980
	return 0;
981

982 983
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
984 985
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
986 987
err:
	ctx->engine[engine->id].pin_count = 0;
988 989 990
	return ret;
}

991 992
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
993
{
994
	struct drm_i915_gem_object *ctx_obj;
995

996 997
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
998

999 1000
	if (--ctx->engine[engine->id].pin_count)
		return;
1001

1002
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1003

1004 1005 1006
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1007

1008 1009 1010
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1011

1012
	i915_gem_context_unreference(ctx);
1013 1014
}

1015
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1016 1017
{
	int ret, i;
1018
	struct intel_engine_cs *engine = req->engine;
1019
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1020
	struct i915_workarounds *w = &req->i915->workarounds;
1021

1022
	if (w->count == 0)
1023 1024
		return 0;

1025
	engine->gpu_caches_dirty = true;
1026
	ret = logical_ring_flush_all_caches(req);
1027 1028 1029
	if (ret)
		return ret;

1030
	ret = intel_ring_begin(req, w->count * 2 + 2);
1031 1032 1033 1034 1035
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1036
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1037 1038 1039 1040 1041 1042
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1043
	engine->gpu_caches_dirty = true;
1044
	ret = logical_ring_flush_all_caches(req);
1045 1046 1047 1048 1049 1050
	if (ret)
		return ret;

	return 0;
}

1051
#define wa_ctx_emit(batch, index, cmd)					\
1052
	do {								\
1053 1054
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1055 1056
			return -ENOSPC;					\
		}							\
1057
		batch[__index] = (cmd);					\
1058 1059
	} while (0)

V
Ville Syrjälä 已提交
1060
#define wa_ctx_emit_reg(batch, index, reg) \
1061
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1079
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1080 1081 1082 1083 1084
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1085 1086 1087 1088 1089 1090
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1091
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1092 1093
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1094
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1095
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1096
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1097
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1098 1099 1100
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1101
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1112
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1113
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1114
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1116
	wa_ctx_emit(batch, index, 0);
1117 1118 1119 1120

	return index;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1159
 *
1160 1161 1162 1163 1164 1165 1166 1167
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1168
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1169 1170 1171 1172
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1173
	uint32_t scratch_addr;
1174 1175
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1176
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1177
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1178

1179
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1180
	if (IS_BROADWELL(engine->i915)) {
1181
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1182 1183 1184
		if (rc < 0)
			return rc;
		index = rc;
1185 1186
	}

1187 1188
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1189
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1200

1201 1202
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1203
		wa_ctx_emit(batch, index, MI_NOOP);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1221
 * @batch: page in which WA are loaded
1222 1223 1224 1225 1226 1227 1228 1229 1230
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1231
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1232 1233 1234 1235 1236 1237
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1238
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1239
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1240

1241
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1242 1243 1244 1245

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1246
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1247 1248 1249 1250
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1251
	int ret;
1252 1253
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1254
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1255 1256
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1257
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1258

1259
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1260
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1261 1262 1263 1264
	if (ret < 0)
		return ret;
	index = ret;

1265 1266 1267 1268 1269 1270 1271
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1272
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1273 1274 1275 1276 1277 1278
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1279
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1280 1281
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1282
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1283
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1284 1285 1286 1287 1288
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1289
	/* WaClearTdlStateAckDirtyBits:bxt */
1290
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1308
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1309 1310
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1311 1312
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1313 1314 1315 1316 1317
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1318
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1319 1320 1321
{
	int ret;

1322
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1323
						   PAGE_ALIGN(size));
1324
	if (IS_ERR(engine->wa_ctx.obj)) {
1325
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1326 1327 1328
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1329 1330
	}

1331
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1332 1333 1334
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1335
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1336 1337 1338 1339 1340 1341
		return ret;
	}

	return 0;
}

1342
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1343
{
1344 1345 1346 1347
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1348 1349 1350
	}
}

1351
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1352 1353 1354 1355 1356
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1357
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1358

1359
	WARN_ON(engine->id != RCS);
1360

1361
	/* update this when WA for higher Gen are added */
1362
	if (INTEL_GEN(engine->i915) > 9) {
1363
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1364
			  INTEL_GEN(engine->i915));
1365
		return 0;
1366
	}
1367

1368
	/* some WA perform writes to scratch page, ensure it is valid */
1369 1370
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1371 1372 1373
		return -EINVAL;
	}

1374
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1375 1376 1377 1378 1379
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1380
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1381 1382 1383
	batch = kmap_atomic(page);
	offset = 0;

1384
	if (IS_GEN8(engine->i915)) {
1385
		ret = gen8_init_indirectctx_bb(engine,
1386 1387 1388 1389 1390 1391
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1392
		ret = gen8_init_perctx_bb(engine,
1393 1394 1395 1396 1397
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1398
	} else if (IS_GEN9(engine->i915)) {
1399
		ret = gen9_init_indirectctx_bb(engine,
1400 1401 1402 1403 1404 1405
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1406
		ret = gen9_init_perctx_bb(engine,
1407 1408 1409 1410 1411
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1412 1413 1414 1415 1416
	}

out:
	kunmap_atomic(batch);
	if (ret)
1417
		lrc_destroy_wa_ctx_obj(engine);
1418 1419 1420 1421

	return ret;
}

1422 1423
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1424
	struct drm_i915_private *dev_priv = engine->i915;
1425 1426 1427 1428 1429 1430

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1431
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1432
{
1433
	struct drm_i915_private *dev_priv = engine->i915;
1434
	unsigned int next_context_status_buffer_hw;
1435

1436
	lrc_init_hws(engine);
1437

1438 1439 1440
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1441

1442
	I915_WRITE(RING_MODE_GEN7(engine),
1443 1444
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1445
	POSTING_READ(RING_MODE_GEN7(engine));
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1456 1457
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1458
	 */
1459
	next_context_status_buffer_hw =
1460
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1461 1462 1463 1464 1465 1466 1467 1468 1469

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1470 1471
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1472

1473
	intel_engine_init_hangcheck(engine);
1474

1475
	return intel_mocs_init_engine(engine);
1476 1477
}

1478
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1479
{
1480
	struct drm_i915_private *dev_priv = engine->i915;
1481 1482
	int ret;

1483
	ret = gen8_init_common_ring(engine);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1497
	return init_workarounds_ring(engine);
1498 1499
}

1500
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1501 1502 1503
{
	int ret;

1504
	ret = gen8_init_common_ring(engine);
1505 1506 1507
	if (ret)
		return ret;

1508
	return init_workarounds_ring(engine);
1509 1510
}

1511 1512 1513
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1514
	struct intel_engine_cs *engine = req->engine;
1515 1516 1517 1518
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1519
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1520 1521 1522 1523 1524 1525 1526
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1527 1528
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1529
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1530 1531
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1532 1533 1534 1535 1536 1537 1538 1539 1540
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1541
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1542
			      u64 offset, unsigned dispatch_flags)
1543
{
1544
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1545
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1546 1547
	int ret;

1548 1549 1550 1551
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1552 1553
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1554
	if (req->ctx->ppgtt &&
1555
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1556
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1557
		    !intel_vgpu_active(req->i915)) {
1558 1559 1560 1561
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1562

1563
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1564 1565
	}

1566
	ret = intel_ring_begin(req, 4);
1567 1568 1569 1570
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1571 1572 1573 1574
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1575 1576 1577 1578 1579 1580 1581 1582
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1583
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1584
{
1585
	struct drm_i915_private *dev_priv = engine->i915;
1586 1587
	unsigned long flags;

1588
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1589 1590 1591
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1592 1593 1594 1595
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1596 1597 1598 1599 1600 1601
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1602
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1603
{
1604
	struct drm_i915_private *dev_priv = engine->i915;
1605 1606 1607
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1608 1609 1610
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1611 1612 1613 1614
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1615
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1616 1617 1618
			   u32 invalidate_domains,
			   u32 unused)
{
1619
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1620
	struct intel_engine_cs *engine = ringbuf->engine;
1621
	struct drm_i915_private *dev_priv = request->i915;
1622 1623 1624
	uint32_t cmd;
	int ret;

1625
	ret = intel_ring_begin(request, 4);
1626 1627 1628 1629 1630
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1631 1632 1633 1634 1635 1636 1637 1638 1639
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1640
		if (engine == &dev_priv->engine[VCS])
1641
			cmd |= MI_INVALIDATE_BSD;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1655
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1656 1657 1658
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1659
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1660
	struct intel_engine_cs *engine = ringbuf->engine;
1661
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1662
	bool vf_flush_wa = false;
1663 1664 1665 1666 1667 1668 1669 1670
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1671
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1672
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1685 1686 1687 1688
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1689
		if (IS_GEN9(request->i915))
1690 1691
			vf_flush_wa = true;
	}
1692

1693
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1694 1695 1696
	if (ret)
		return ret;

1697 1698 1699 1700 1701 1702 1703 1704 1705
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1717
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1718
{
1719
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1720 1721
}

1722
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1723
{
1724
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1725 1726
}

1727
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1739
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1740 1741
}

1742
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1743
{
1744
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1745 1746

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1747
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1748 1749
}

1750 1751 1752 1753 1754 1755 1756
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1757
static int gen8_emit_request(struct drm_i915_gem_request *request)
1758
{
1759
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1760 1761
	int ret;

1762
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1763 1764 1765
	if (ret)
		return ret;

1766 1767
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1768 1769

	intel_logical_ring_emit(ringbuf,
1770 1771
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1772
				intel_hws_seqno_address(request->engine) |
1773
				MI_FLUSH_DW_USE_GTT);
1774
	intel_logical_ring_emit(ringbuf, 0);
1775
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1776 1777
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1778 1779
	return intel_logical_ring_advance_and_submit(request);
}
1780

1781 1782 1783 1784
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1785

1786
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1787 1788 1789
	if (ret)
		return ret;

1790 1791 1792
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1793 1794 1795 1796
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1797
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1798 1799 1800 1801
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1802 1803
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1804 1805
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1806 1807
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1808
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1809
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1810
	return intel_logical_ring_advance_and_submit(request);
1811 1812
}

1813
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1814 1815 1816 1817
{
	struct render_state so;
	int ret;

1818
	ret = i915_gem_render_state_prepare(req->engine, &so);
1819 1820 1821 1822 1823 1824
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1825
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1826
				       I915_DISPATCH_SECURE);
1827 1828 1829
	if (ret)
		goto out;

1830
	ret = req->engine->emit_bb_start(req,
1831 1832 1833 1834 1835
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1836
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1837 1838 1839 1840 1841 1842

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1843
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1844 1845 1846
{
	int ret;

1847
	ret = intel_logical_ring_workarounds_emit(req);
1848 1849 1850
	if (ret)
		return ret;

1851 1852 1853 1854 1855 1856 1857 1858
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1859
	return intel_lr_context_render_state_init(req);
1860 1861
}

1862 1863 1864 1865 1866 1867
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1868
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1869
{
1870
	struct drm_i915_private *dev_priv;
1871

1872
	if (!intel_engine_initialized(engine))
1873 1874
		return;

1875 1876 1877 1878 1879 1880 1881
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1882
	dev_priv = engine->i915;
1883

1884 1885 1886
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1887
	}
1888

1889 1890
	if (engine->cleanup)
		engine->cleanup(engine);
1891

1892 1893
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1894

1895
	if (engine->status_page.obj) {
1896
		i915_gem_object_unpin_map(engine->status_page.obj);
1897
		engine->status_page.obj = NULL;
1898
	}
1899
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1900

1901 1902 1903
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1904

1905
	lrc_destroy_wa_ctx_obj(engine);
1906
	engine->i915 = NULL;
1907 1908
}

1909
static void
1910
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1911 1912
{
	/* Default vfuncs which can be overriden by each engine. */
1913 1914 1915 1916 1917 1918
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1919 1920
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1921
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1922
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1923
		engine->set_seqno = bxt_a_set_seqno;
1924 1925 1926
	}
}

1927
static inline void
1928
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1929
{
1930 1931
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1932
	init_waitqueue_head(&engine->irq_queue);
1933 1934
}

1935
static int
1936 1937 1938
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1939
	void *hws;
1940 1941 1942 1943

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1944 1945 1946 1947
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1948
	engine->status_page.obj = dctx_obj;
1949 1950

	return 0;
1951 1952
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
1999
{
2000
	const struct logical_ring_info *info = &logical_rings[id];
2001
	struct drm_i915_private *dev_priv = to_i915(dev);
2002
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2003
	enum forcewake_domains fw_domains;
2004

2005 2006 2007 2008 2009
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2010

2011
	engine->i915 = dev_priv;
2012

2013 2014
	/* Intentionally left blank. */
	engine->buffer = NULL;
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2044
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2045 2046 2047 2048 2049 2050 2051

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2052
	struct intel_context *dctx = engine->i915->kernel_context;
2053 2054
	int ret;

2055
	ret = i915_cmd_parser_init_ring(engine);
2056
	if (ret)
2057
		goto error;
2058

2059
	ret = execlists_context_deferred_alloc(dctx, engine);
2060
	if (ret)
2061
		goto error;
2062 2063

	/* As this is the default context, always pin it */
2064
	ret = intel_lr_context_pin(dctx, engine);
2065
	if (ret) {
2066 2067
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2068
		goto error;
2069
	}
2070

2071
	/* And setup the hardware status page. */
2072 2073 2074 2075 2076
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2077

2078 2079 2080
	return 0;

error:
2081
	intel_logical_ring_cleanup(engine);
2082
	return ret;
2083 2084 2085 2086
}

static int logical_render_ring_init(struct drm_device *dev)
{
2087
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2088
	int ret;
2089

2090
	if (HAS_L3_DPF(dev))
2091
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2092

2093
	/* Override some for render ring. */
2094
	if (INTEL_INFO(dev)->gen >= 9)
2095
		engine->init_hw = gen9_init_render_ring;
2096
	else
2097 2098 2099 2100 2101
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2102

2103
	ret = intel_init_pipe_control(engine);
2104 2105 2106
	if (ret)
		return ret;

2107
	ret = intel_init_workaround_bb(engine);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2118
	ret = logical_ring_init(engine);
2119
	if (ret) {
2120
		lrc_destroy_wa_ctx_obj(engine);
2121
	}
2122 2123

	return ret;
2124 2125 2126 2127
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2128
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2129

2130
	return logical_ring_init(engine);
2131 2132 2133 2134
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2135
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2136

2137
	return logical_ring_init(engine);
2138 2139 2140 2141
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2142
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2143

2144
	return logical_ring_init(engine);
2145 2146 2147 2148
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2149
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2150

2151
	return logical_ring_init(engine);
2152 2153
}

2154 2155 2156 2157 2158
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2159
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2160 2161 2162 2163
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2200
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2201
cleanup_blt_ring:
2202
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2203
cleanup_bsd_ring:
2204
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2205
cleanup_render_ring:
2206
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2207 2208 2209 2210

	return ret;
}

2211
static u32
2212
make_rpcs(struct drm_i915_private *dev_priv)
2213 2214 2215 2216 2217 2218 2219
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2220
	if (INTEL_GEN(dev_priv) < 9)
2221 2222 2223 2224 2225 2226 2227 2228
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2229
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2230
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2231
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2232 2233 2234 2235
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2236
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2237
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2238
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2239 2240 2241 2242
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2243 2244
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2245
			GEN8_RPCS_EU_MIN_SHIFT;
2246
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2247 2248 2249 2250 2251 2252 2253
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2254
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2255 2256 2257
{
	u32 indirect_ctx_offset;

2258
	switch (INTEL_GEN(engine->i915)) {
2259
	default:
2260
		MISSING_CASE(INTEL_GEN(engine->i915));
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2275
static int
2276 2277
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2278 2279
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2280
{
2281
	struct drm_i915_private *dev_priv = ctx->i915;
2282
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2283 2284
	void *vaddr;
	u32 *reg_state;
2285 2286
	int ret;

2287 2288 2289
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2290 2291 2292 2293 2294 2295
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2296 2297 2298 2299
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2300 2301
		return ret;
	}
2302
	ctx_obj->dirty = true;
2303 2304 2305

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2306
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2307 2308 2309 2310 2311 2312

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2313
	reg_state[CTX_LRI_HEADER_0] =
2314 2315 2316
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2317 2318
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2319
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2320
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2321 2322 2323 2324
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2325 2326 2327
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2328 2329 2330 2331
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2332
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2333 2334 2335 2336 2337 2338
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2339
		       RING_BB_PPGTT);
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2355 2356 2357 2358 2359 2360 2361
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2362
				intel_lr_indirect_ctx_offset(engine) << 6;
2363 2364 2365 2366 2367

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2368
	}
2369
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2370 2371
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2372
	/* PDP values well be assigned later if needed */
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2402
		execlists_update_context_pdps(ppgtt, reg_state);
2403 2404
	}

2405
	if (engine->id == RCS) {
2406
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2407
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2408
			       make_rpcs(dev_priv));
2409 2410
	}

2411
	i915_gem_object_unpin_map(ctx_obj);
2412 2413 2414 2415

	return 0;
}

2416 2417 2418 2419 2420 2421 2422 2423
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2424 2425
void intel_lr_context_free(struct intel_context *ctx)
{
2426 2427
	int i;

2428
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2429
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2430
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2431

D
Dave Gordon 已提交
2432 2433
		if (!ctx_obj)
			continue;
2434

D
Dave Gordon 已提交
2435 2436 2437
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2438 2439 2440
	}
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2455
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2456 2457 2458
{
	int ret = 0;

2459
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2460

2461
	switch (engine->id) {
2462
	case RCS:
2463
		if (INTEL_GEN(engine->i915) >= 9)
2464 2465 2466
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2477 2478
}

2479
/**
2480
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2481
 * @ctx: LR context to create.
2482
 * @engine: engine to be used with the context.
2483 2484 2485 2486 2487 2488 2489
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2490
 * Return: non-zero on error.
2491
 */
2492 2493
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine)
2494
{
2495 2496
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2497
	struct intel_ringbuffer *ringbuf;
2498 2499
	int ret;

2500
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2501
	WARN_ON(ctx->engine[engine->id].state);
2502

2503
	context_size = round_up(intel_lr_context_size(engine), 4096);
2504

2505 2506 2507
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2508
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2509
	if (IS_ERR(ctx_obj)) {
2510
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2511
		return PTR_ERR(ctx_obj);
2512 2513
	}

2514
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2515 2516
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2517
		goto error_deref_obj;
2518 2519
	}

2520
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2521 2522
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2523
		goto error_ringbuf;
2524 2525
	}

2526 2527
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2528
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2529 2530

	return 0;
2531

2532 2533
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2534
error_deref_obj:
2535
	drm_gem_object_unreference(&ctx_obj->base);
2536 2537
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2538
	return ret;
2539
}
2540

2541 2542
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2543
{
2544
	struct intel_engine_cs *engine;
2545

2546
	for_each_engine(engine, dev_priv) {
2547
		struct drm_i915_gem_object *ctx_obj =
2548
				ctx->engine[engine->id].state;
2549
		struct intel_ringbuffer *ringbuf =
2550
				ctx->engine[engine->id].ringbuf;
2551
		void *vaddr;
2552 2553 2554 2555 2556
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2557 2558
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2559
			continue;
2560 2561 2562

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2563 2564 2565 2566

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2567
		i915_gem_object_unpin_map(ctx_obj);
2568 2569 2570 2571 2572

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}