intel_lrc.c 76.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235
					    struct intel_engine_cs *engine);
236
static int intel_lr_context_pin(struct i915_gem_context *ctx,
237
				struct intel_engine_cs *engine);
238

239 240
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241
 * @dev_priv: i915 device private
242 243 244
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263 264 265
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
266 267 268 269
		return 1;

	return 0;
}
270

271
static void
272
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273
{
274
	struct drm_i915_private *dev_priv = engine->i915;
275

276
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277
		engine->idle_lite_restore_wa = ~0;
278

279 280
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281
					(engine->id == VCS || engine->id == VCS2);
282

283
	engine->ctx_desc_template = GEN8_CTX_VALID;
284
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
286
	if (IS_GEN8(dev_priv))
287 288
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289 290 291 292 293 294 295

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296 297
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 299
}

300
/**
301 302
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
303
 *
304
 * @ctx: Context to work on
305
 * @engine: Engine the descriptor will be used with
306
 *
307 308 309 310 311 312
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
313
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
314
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
315
 *    bits 32-52:    ctx ID, a globally unique tag
316 317
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
318
 */
319
static void
320
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
321
				   struct intel_engine_cs *engine)
322
{
323
	struct intel_context *ce = &ctx->engine[engine->id];
324
	u64 desc;
325

326
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327

328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
329 330
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
331
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
332

333
	ce->lrc_desc = desc;
334 335
}

336
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
337
				     struct intel_engine_cs *engine)
338
{
339
	return ctx->engine[engine->id].lrc_desc;
340
}
341

342 343
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
344
{
345

346
	struct intel_engine_cs *engine = rq0->engine;
347
	struct drm_i915_private *dev_priv = rq0->i915;
348
	uint64_t desc[2];
349

350
	if (rq1) {
351
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
352 353 354 355
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
356

357
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
358
	rq0->elsp_submitted++;
359

360
	/* You must always write both descriptors in the order below. */
361 362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
363

364
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
365
	/* The context is automatically loaded after the following */
366
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
367

368
	/* ELSP is a wo register, use another nearby reg for posting */
369
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
370 371
}

372 373 374 375 376 377 378 379 380 381
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
382
{
383
	struct intel_engine_cs *engine = rq->engine;
384
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
385
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
386

387
	reg_state[CTX_RING_TAIL+1] = rq->tail;
388

389 390 391 392 393 394 395
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
396 397
}

398 399
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
400
{
401
	struct drm_i915_private *dev_priv = rq0->i915;
402
	unsigned int fw_domains = rq0->engine->fw_domains;
403

404
	execlists_update_context(rq0);
405

406
	if (rq1)
407
		execlists_update_context(rq1);
408

409
	spin_lock_irq(&dev_priv->uncore.lock);
410
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
411

412
	execlists_elsp_write(rq0, rq1);
413

414
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
415
	spin_unlock_irq(&dev_priv->uncore.lock);
416 417
}

418
static void execlists_context_unqueue(struct intel_engine_cs *engine)
419
{
420
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
421
	struct drm_i915_gem_request *cursor, *tmp;
422

423
	assert_spin_locked(&engine->execlist_lock);
424

425 426 427 428
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
429
	WARN_ON(!intel_irqs_enabled(engine->i915));
430

431
	/* Try to read in pairs */
432
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
433 434 435
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
436
		} else if (req0->ctx == cursor->ctx) {
437 438
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
439
			cursor->elsp_submitted = req0->elsp_submitted;
440 441
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
442 443 444
			req0 = cursor;
		} else {
			req1 = cursor;
445
			WARN_ON(req1->elsp_submitted);
446 447 448 449
			break;
		}
	}

450 451 452
	if (unlikely(!req0))
		return;

453
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
454
		/*
455 456 457 458 459 460
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
461
		 */
462
		struct intel_ringbuffer *ringbuf;
463

464
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
465 466
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
467 468
	}

469
	execlists_submit_requests(req0, req1);
470 471
}

472
static unsigned int
473
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
474
{
475
	struct drm_i915_gem_request *head_req;
476

477
	assert_spin_locked(&engine->execlist_lock);
478

479
	head_req = list_first_entry_or_null(&engine->execlist_queue,
480
					    struct drm_i915_gem_request,
481 482
					    execlist_link);

483 484
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
485 486 487 488 489 490

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

491 492
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
493

494
	return 1;
495 496
}

497
static u32
498
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
499
		   u32 *context_id)
B
Ben Widawsky 已提交
500
{
501
	struct drm_i915_private *dev_priv = engine->i915;
502
	u32 status;
B
Ben Widawsky 已提交
503

504 505
	read_pointer %= GEN8_CSB_ENTRIES;

506
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
507 508 509

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
510

511
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
512 513 514
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
515 516
}

517
/**
518
 * intel_lrc_irq_handler() - handle Context Switch interrupts
519
 * @data: tasklet handler passed in unsigned long
520 521 522 523
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
524
static void intel_lrc_irq_handler(unsigned long data)
525
{
526
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527
	struct drm_i915_private *dev_priv = engine->i915;
528
	u32 status_pointer;
529
	unsigned int read_pointer, write_pointer;
530 531
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
532 533
	unsigned int submit_contexts = 0;

534
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
535

536
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
537

538
	read_pointer = engine->next_context_status_buffer;
539
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
540
	if (read_pointer > write_pointer)
541
		write_pointer += GEN8_CSB_ENTRIES;
542 543

	while (read_pointer < write_pointer) {
544 545 546 547 548 549
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
550

551 552 553 554 555 556 557 558
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

559
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
560 561 562 563 564 565 566

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
567 568 569 570 571
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

572
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
573 574
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
575
				execlists_check_remove_request(engine, csb[i][1]);
576 577
	}

578
	if (submit_contexts) {
579
		if (!engine->disable_lite_restore_wa ||
580 581
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
582
	}
583

584
	spin_unlock(&engine->execlist_lock);
585 586 587

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
588 589
}

590
static void execlists_context_queue(struct drm_i915_gem_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593
	struct drm_i915_gem_request *cursor;
594
	int num_elements = 0;
595

596
	spin_lock_bh(&engine->execlist_lock);
597

598
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
599 600 601 602
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
603
		struct drm_i915_gem_request *tail_req;
604

605
		tail_req = list_last_entry(&engine->execlist_queue,
606
					   struct drm_i915_gem_request,
607 608
					   execlist_link);

609
		if (request->ctx == tail_req->ctx) {
610
			WARN(tail_req->elsp_submitted != 0,
611
				"More than 2 already-submitted reqs queued\n");
612 613
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
614 615 616
		}
	}

617
	i915_gem_request_reference(request);
618
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
619
	request->ctx_hw_id = request->ctx->hw_id;
620
	if (num_elements == 0)
621
		execlists_context_unqueue(engine);
622

623
	spin_unlock_bh(&engine->execlist_lock);
624 625
}

626
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627
{
628
	struct intel_engine_cs *engine = req->engine;
629 630 631 632
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
633
	if (engine->gpu_caches_dirty)
634 635
		flush_domains = I915_GEM_GPU_DOMAINS;

636
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637 638 639
	if (ret)
		return ret;

640
	engine->gpu_caches_dirty = false;
641 642 643
	return 0;
}

644
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645 646
				 struct list_head *vmas)
{
647
	const unsigned other_rings = ~intel_engine_flag(req->engine);
648 649 650 651 652 653 654 655
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

656
		if (obj->active & other_rings) {
657
			ret = i915_gem_object_sync(obj, req->engine, &req);
658 659 660
			if (ret)
				return ret;
		}
661 662 663 664 665 666 667 668 669 670 671 672 673

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
674
	return logical_ring_invalidate_all_caches(req);
675 676
}

677
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678
{
679
	struct intel_engine_cs *engine = request->engine;
680
	struct intel_context *ce = &request->ctx->engine[engine->id];
681
	int ret;
682

683 684 685 686
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
687
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
688

689
	if (!ce->state) {
690 691 692 693 694
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

695
	request->ringbuf = ce->ringbuf;
696

697 698 699 700 701 702
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
703
		ret = i915_guc_wq_check_space(request);
704 705 706 707
		if (ret)
			return ret;
	}

708 709 710
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
711

712 713 714 715
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

716
	if (!ce->initialised) {
717 718 719 720
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

721
		ce->initialised = true;
722 723 724 725 726 727 728 729 730
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

731
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 733 734
	return 0;

err_unpin:
735
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
736
	return ret;
737 738 739 740
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741
 * @request: Request to advance the logical ringbuffer of.
742 743 744 745 746 747
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
748
static int
749
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750
{
751
	struct intel_ringbuffer *ringbuf = request->ringbuf;
752
	struct intel_engine_cs *engine = request->engine;
753

754 755
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
756

757 758 759 760 761 762 763 764 765
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
766

767
	if (intel_engine_stopped(engine))
768
		return 0;
769

770 771 772 773 774 775 776 777
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
778

779 780
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
781 782
	else
		execlists_context_queue(request);
783 784

	return 0;
785 786
}

787 788
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
789
 * @params: execbuffer call parameters.
790 791 792 793 794 795 796 797
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
798
int intel_execlists_submission(struct i915_execbuffer_params *params,
799
			       struct drm_i915_gem_execbuffer2 *args,
800
			       struct list_head *vmas)
801
{
802
	struct drm_device       *dev = params->dev;
803
	struct intel_engine_cs *engine = params->engine;
804
	struct drm_i915_private *dev_priv = dev->dev_private;
805
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
806
	u64 exec_start;
807 808 809 810 811 812 813 814 815 816
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
817
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

842
	ret = execlists_move_to_gpu(params->request, vmas);
843 844 845
	if (ret)
		return ret;

846
	if (engine == &dev_priv->engine[RCS] &&
847
	    instp_mode != dev_priv->relative_constants_mode) {
848
		ret = intel_ring_begin(params->request, 4);
849 850 851 852 853
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
854
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
855 856 857 858 859 860
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

861 862 863
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

864
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
865 866 867
	if (ret)
		return ret;

868
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869

870
	i915_gem_execbuffer_move_to_active(vmas, params->request);
871

872 873 874
	return 0;
}

875
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
876
{
877
	struct drm_i915_gem_request *req, *tmp;
878
	LIST_HEAD(cancel_list);
879

880
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
881

882
	spin_lock_bh(&engine->execlist_lock);
883
	list_replace_init(&engine->execlist_queue, &cancel_list);
884
	spin_unlock_bh(&engine->execlist_lock);
885

886
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
887
		list_del(&req->execlist_link);
888
		i915_gem_request_unreference(req);
889 890 891
	}
}

892
void intel_logical_ring_stop(struct intel_engine_cs *engine)
893
{
894
	struct drm_i915_private *dev_priv = engine->i915;
895 896
	int ret;

897
	if (!intel_engine_initialized(engine))
898 899
		return;

900
	ret = intel_engine_idle(engine);
901
	if (ret)
902
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
903
			  engine->name, ret);
904 905

	/* TODO: Is this correct with Execlists enabled? */
906 907 908
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
909 910
		return;
	}
911
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
912 913
}

914
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
915
{
916
	struct intel_engine_cs *engine = req->engine;
917 918
	int ret;

919
	if (!engine->gpu_caches_dirty)
920 921
		return 0;

922
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
923 924 925
	if (ret)
		return ret;

926
	engine->gpu_caches_dirty = false;
927 928 929
	return 0;
}

930
static int intel_lr_context_pin(struct i915_gem_context *ctx,
931
				struct intel_engine_cs *engine)
932
{
933
	struct drm_i915_private *dev_priv = ctx->i915;
934
	struct intel_context *ce = &ctx->engine[engine->id];
935 936
	void *vaddr;
	u32 *lrc_reg_state;
937
	int ret;
938

939
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
940

941
	if (ce->pin_count++)
942 943
		return 0;

944 945
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
946
	if (ret)
947
		goto err;
948

949
	vaddr = i915_gem_object_pin_map(ce->state);
950 951
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
952 953 954
		goto unpin_ctx_obj;
	}

955 956
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

957
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
958
	if (ret)
959
		goto unpin_map;
960

961
	i915_gem_context_reference(ctx);
962
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
963
	intel_lr_context_descriptor_update(ctx, engine);
964 965 966 967

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
968

969 970 971
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
972

973
	return 0;
974

975
unpin_map:
976
	i915_gem_object_unpin_map(ce->state);
977
unpin_ctx_obj:
978
	i915_gem_object_ggtt_unpin(ce->state);
979
err:
980
	ce->pin_count = 0;
981 982 983
	return ret;
}

984
void intel_lr_context_unpin(struct i915_gem_context *ctx,
985
			    struct intel_engine_cs *engine)
986
{
987
	struct intel_context *ce = &ctx->engine[engine->id];
988

989
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
990
	GEM_BUG_ON(ce->pin_count == 0);
991

992
	if (--ce->pin_count)
993
		return;
994

995
	intel_unpin_ringbuffer_obj(ce->ringbuf);
996

997 998
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
999

1000 1001 1002
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1003

1004
	i915_gem_context_unreference(ctx);
1005 1006
}

1007
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1008 1009
{
	int ret, i;
1010
	struct intel_engine_cs *engine = req->engine;
1011
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1012
	struct i915_workarounds *w = &req->i915->workarounds;
1013

1014
	if (w->count == 0)
1015 1016
		return 0;

1017
	engine->gpu_caches_dirty = true;
1018
	ret = logical_ring_flush_all_caches(req);
1019 1020 1021
	if (ret)
		return ret;

1022
	ret = intel_ring_begin(req, w->count * 2 + 2);
1023 1024 1025 1026 1027
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1028
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1029 1030 1031 1032 1033 1034
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1035
	engine->gpu_caches_dirty = true;
1036
	ret = logical_ring_flush_all_caches(req);
1037 1038 1039 1040 1041 1042
	if (ret)
		return ret;

	return 0;
}

1043
#define wa_ctx_emit(batch, index, cmd)					\
1044
	do {								\
1045 1046
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1047 1048
			return -ENOSPC;					\
		}							\
1049
		batch[__index] = (cmd);					\
1050 1051
	} while (0)

V
Ville Syrjälä 已提交
1052
#define wa_ctx_emit_reg(batch, index, reg) \
1053
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1071
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1072 1073 1074 1075 1076
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1077
	/*
1078
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1079 1080 1081 1082
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1083 1084
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1085 1086
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1087
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1088
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1089
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1090
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1091 1092 1093
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1094
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1105
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1106
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1107
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1108
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1109
	wa_ctx_emit(batch, index, 0);
1110 1111 1112 1113

	return index;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1136
 * @engine: only applicable for RCS
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1152
 *
1153 1154 1155 1156 1157 1158 1159 1160
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1161
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1162 1163 1164 1165
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1166
	uint32_t scratch_addr;
1167 1168
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1169
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1170
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1171

1172
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1173
	if (IS_BROADWELL(engine->i915)) {
1174
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1175 1176 1177
		if (rc < 0)
			return rc;
		index = rc;
1178 1179
	}

1180 1181
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1182
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1193

1194 1195
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1196
		wa_ctx_emit(batch, index, MI_NOOP);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1210
 * @engine: only applicable for RCS
1211 1212 1213
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1214
 * @batch: page in which WA are loaded
1215 1216 1217 1218 1219 1220 1221 1222 1223
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1224
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1225 1226 1227 1228 1229 1230
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1231
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1232
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1233

1234
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1235 1236 1237 1238

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1239
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1240 1241 1242 1243
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1244
	int ret;
1245 1246
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1247
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1248 1249
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1250
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1251

1252
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1253
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1254 1255 1256 1257
	if (ret < 0)
		return ret;
	index = ret;

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1274 1275 1276 1277 1278 1279 1280
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1281
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1282 1283 1284 1285 1286 1287
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1288
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1289 1290
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1291
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1292
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1293 1294 1295 1296 1297
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1298
	/* WaClearTdlStateAckDirtyBits:bxt */
1299
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1317
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1318 1319
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1320 1321
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1322 1323 1324 1325 1326
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1327
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1328 1329 1330
{
	int ret;

1331
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1332
						   PAGE_ALIGN(size));
1333
	if (IS_ERR(engine->wa_ctx.obj)) {
1334
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1335 1336 1337
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1338 1339
	}

1340
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1341 1342 1343
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1344
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1345 1346 1347 1348 1349 1350
		return ret;
	}

	return 0;
}

1351
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1352
{
1353 1354 1355 1356
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1357 1358 1359
	}
}

1360
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1361 1362 1363 1364 1365
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1366
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1367

1368
	WARN_ON(engine->id != RCS);
1369

1370
	/* update this when WA for higher Gen are added */
1371
	if (INTEL_GEN(engine->i915) > 9) {
1372
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1373
			  INTEL_GEN(engine->i915));
1374
		return 0;
1375
	}
1376

1377
	/* some WA perform writes to scratch page, ensure it is valid */
1378 1379
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1380 1381 1382
		return -EINVAL;
	}

1383
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1384 1385 1386 1387 1388
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1389
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1390 1391 1392
	batch = kmap_atomic(page);
	offset = 0;

1393
	if (IS_GEN8(engine->i915)) {
1394
		ret = gen8_init_indirectctx_bb(engine,
1395 1396 1397 1398 1399 1400
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1401
		ret = gen8_init_perctx_bb(engine,
1402 1403 1404 1405 1406
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1407
	} else if (IS_GEN9(engine->i915)) {
1408
		ret = gen9_init_indirectctx_bb(engine,
1409 1410 1411 1412 1413 1414
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1415
		ret = gen9_init_perctx_bb(engine,
1416 1417 1418 1419 1420
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1421 1422 1423 1424 1425
	}

out:
	kunmap_atomic(batch);
	if (ret)
1426
		lrc_destroy_wa_ctx_obj(engine);
1427 1428 1429 1430

	return ret;
}

1431 1432
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1433
	struct drm_i915_private *dev_priv = engine->i915;
1434 1435 1436 1437 1438 1439

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1440
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1441
{
1442
	struct drm_i915_private *dev_priv = engine->i915;
1443
	unsigned int next_context_status_buffer_hw;
1444

1445
	lrc_init_hws(engine);
1446

1447 1448 1449
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1450

1451
	I915_WRITE(RING_MODE_GEN7(engine),
1452 1453
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1454
	POSTING_READ(RING_MODE_GEN7(engine));
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1465 1466
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1467
	 */
1468
	next_context_status_buffer_hw =
1469
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1470 1471 1472 1473 1474 1475 1476 1477 1478

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1479 1480
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1481

1482
	intel_engine_init_hangcheck(engine);
1483

1484
	return intel_mocs_init_engine(engine);
1485 1486
}

1487
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1488
{
1489
	struct drm_i915_private *dev_priv = engine->i915;
1490 1491
	int ret;

1492
	ret = gen8_init_common_ring(engine);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1506
	return init_workarounds_ring(engine);
1507 1508
}

1509
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1510 1511 1512
{
	int ret;

1513
	ret = gen8_init_common_ring(engine);
1514 1515 1516
	if (ret)
		return ret;

1517
	return init_workarounds_ring(engine);
1518 1519
}

1520 1521 1522
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1523
	struct intel_engine_cs *engine = req->engine;
1524 1525 1526 1527
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1528
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1529 1530 1531 1532 1533 1534 1535
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1536 1537
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1538
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1539 1540
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1541 1542 1543 1544 1545 1546 1547 1548 1549
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1550
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1551
			      u64 offset, unsigned dispatch_flags)
1552
{
1553
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1554
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1555 1556
	int ret;

1557 1558 1559 1560
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1561 1562
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1563
	if (req->ctx->ppgtt &&
1564
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1565
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1566
		    !intel_vgpu_active(req->i915)) {
1567 1568 1569 1570
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1571

1572
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1573 1574
	}

1575
	ret = intel_ring_begin(req, 4);
1576 1577 1578 1579
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1580 1581 1582 1583
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1584 1585 1586 1587 1588 1589 1590 1591
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1592
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1593
{
1594
	struct drm_i915_private *dev_priv = engine->i915;
1595 1596
	unsigned long flags;

1597
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598 1599 1600
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601 1602 1603 1604
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1605 1606 1607 1608 1609 1610
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1611
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1612
{
1613
	struct drm_i915_private *dev_priv = engine->i915;
1614 1615 1616
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1617 1618 1619
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1620 1621 1622 1623
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1624
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1625 1626 1627
			   u32 invalidate_domains,
			   u32 unused)
{
1628
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1629
	struct intel_engine_cs *engine = ringbuf->engine;
1630
	struct drm_i915_private *dev_priv = request->i915;
1631 1632 1633
	uint32_t cmd;
	int ret;

1634
	ret = intel_ring_begin(request, 4);
1635 1636 1637 1638 1639
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1640 1641 1642 1643 1644 1645 1646 1647 1648
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1649
		if (engine == &dev_priv->engine[VCS])
1650
			cmd |= MI_INVALIDATE_BSD;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1664
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1665 1666 1667
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1668
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1669
	struct intel_engine_cs *engine = ringbuf->engine;
1670
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1671
	bool vf_flush_wa = false, dc_flush_wa = false;
1672 1673
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1674
	int len;
1675 1676 1677 1678 1679 1680

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1681
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1682
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1695 1696 1697 1698
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1699
		if (IS_GEN9(request->i915))
1700
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1701 1702 1703 1704

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1705
	}
1706

M
Mika Kuoppala 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1716 1717 1718
	if (ret)
		return ret;

1719 1720 1721 1722 1723 1724 1725 1726 1727
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1737 1738 1739 1740 1741 1742
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1753 1754 1755 1756 1757
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1758
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1759
{
1760
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1761 1762
}

1763
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1764
{
1765
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1766 1767
}

1768
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1780
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1781 1782
}

1783
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1784
{
1785
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1786 1787

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1788
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1789 1790
}

1791 1792 1793 1794 1795 1796 1797
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1798
static int gen8_emit_request(struct drm_i915_gem_request *request)
1799
{
1800
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1801 1802
	int ret;

1803
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1804 1805 1806
	if (ret)
		return ret;

1807 1808
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1809 1810

	intel_logical_ring_emit(ringbuf,
1811 1812
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1813
				intel_hws_seqno_address(request->engine) |
1814
				MI_FLUSH_DW_USE_GTT);
1815
	intel_logical_ring_emit(ringbuf, 0);
1816
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1817 1818
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1819 1820
	return intel_logical_ring_advance_and_submit(request);
}
1821

1822 1823 1824 1825
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1826

1827
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1828 1829 1830
	if (ret)
		return ret;

1831 1832 1833
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1834 1835 1836 1837
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1838
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1839 1840 1841 1842
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1843 1844
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1845 1846
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1847 1848
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1849
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1850
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1851
	return intel_logical_ring_advance_and_submit(request);
1852 1853
}

1854
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1855 1856 1857 1858
{
	struct render_state so;
	int ret;

1859
	ret = i915_gem_render_state_prepare(req->engine, &so);
1860 1861 1862 1863 1864 1865
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1866
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1867
				       I915_DISPATCH_SECURE);
1868 1869 1870
	if (ret)
		goto out;

1871
	ret = req->engine->emit_bb_start(req,
1872 1873 1874 1875 1876
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1877
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1878 1879 1880 1881 1882 1883

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1884
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1885 1886 1887
{
	int ret;

1888
	ret = intel_logical_ring_workarounds_emit(req);
1889 1890 1891
	if (ret)
		return ret;

1892 1893 1894 1895 1896 1897 1898 1899
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1900
	return intel_lr_context_render_state_init(req);
1901 1902
}

1903 1904 1905
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1906
 * @engine: Engine Command Streamer.
1907 1908
 *
 */
1909
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1910
{
1911
	struct drm_i915_private *dev_priv;
1912

1913
	if (!intel_engine_initialized(engine))
1914 1915
		return;

1916 1917 1918 1919 1920 1921 1922
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1923
	dev_priv = engine->i915;
1924

1925 1926 1927
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1928
	}
1929

1930 1931
	if (engine->cleanup)
		engine->cleanup(engine);
1932

1933 1934
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1935

1936
	if (engine->status_page.obj) {
1937
		i915_gem_object_unpin_map(engine->status_page.obj);
1938
		engine->status_page.obj = NULL;
1939
	}
1940
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1941

1942 1943 1944
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1945

1946
	lrc_destroy_wa_ctx_obj(engine);
1947
	engine->i915 = NULL;
1948 1949
}

1950
static void
1951
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1952 1953
{
	/* Default vfuncs which can be overriden by each engine. */
1954 1955 1956 1957 1958 1959
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1960 1961
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1962
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1963
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1964
		engine->set_seqno = bxt_a_set_seqno;
1965 1966 1967
	}
}

1968
static inline void
1969
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1970
{
1971 1972
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1973
	init_waitqueue_head(&engine->irq_queue);
1974 1975
}

1976
static int
1977 1978 1979
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1980
	void *hws;
1981 1982 1983 1984

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1985 1986 1987 1988
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1989
	engine->status_page.obj = dctx_obj;
1990 1991

	return 0;
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2040
{
2041
	const struct logical_ring_info *info = &logical_rings[id];
2042
	struct drm_i915_private *dev_priv = to_i915(dev);
2043
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2044
	enum forcewake_domains fw_domains;
2045

2046 2047 2048 2049 2050
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2051

2052
	engine->i915 = dev_priv;
2053

2054 2055
	/* Intentionally left blank. */
	engine->buffer = NULL;
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2085
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2086 2087 2088 2089 2090 2091 2092

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2093
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2094 2095
	int ret;

2096
	ret = i915_cmd_parser_init_ring(engine);
2097
	if (ret)
2098
		goto error;
2099

2100
	ret = execlists_context_deferred_alloc(dctx, engine);
2101
	if (ret)
2102
		goto error;
2103 2104

	/* As this is the default context, always pin it */
2105
	ret = intel_lr_context_pin(dctx, engine);
2106
	if (ret) {
2107 2108
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2109
		goto error;
2110
	}
2111

2112
	/* And setup the hardware status page. */
2113 2114 2115 2116 2117
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2118

2119 2120 2121
	return 0;

error:
2122
	intel_logical_ring_cleanup(engine);
2123
	return ret;
2124 2125 2126 2127
}

static int logical_render_ring_init(struct drm_device *dev)
{
2128
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2129
	int ret;
2130

2131
	if (HAS_L3_DPF(dev))
2132
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2133

2134
	/* Override some for render ring. */
2135
	if (INTEL_INFO(dev)->gen >= 9)
2136
		engine->init_hw = gen9_init_render_ring;
2137
	else
2138 2139 2140 2141 2142
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2143

2144
	ret = intel_init_pipe_control(engine);
2145 2146 2147
	if (ret)
		return ret;

2148
	ret = intel_init_workaround_bb(engine);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2159
	ret = logical_ring_init(engine);
2160
	if (ret) {
2161
		lrc_destroy_wa_ctx_obj(engine);
2162
	}
2163 2164

	return ret;
2165 2166 2167 2168
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2169
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2170

2171
	return logical_ring_init(engine);
2172 2173 2174 2175
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2176
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2177

2178
	return logical_ring_init(engine);
2179 2180 2181 2182
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2183
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2184

2185
	return logical_ring_init(engine);
2186 2187 2188 2189
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2190
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2191

2192
	return logical_ring_init(engine);
2193 2194
}

2195 2196 2197 2198 2199
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2200
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2201 2202 2203 2204
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2241
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2242
cleanup_blt_ring:
2243
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2244
cleanup_bsd_ring:
2245
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2246
cleanup_render_ring:
2247
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2248 2249 2250 2251

	return ret;
}

2252
static u32
2253
make_rpcs(struct drm_i915_private *dev_priv)
2254 2255 2256 2257 2258 2259 2260
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2261
	if (INTEL_GEN(dev_priv) < 9)
2262 2263 2264 2265 2266 2267 2268 2269
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2270
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2271
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2272
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2273 2274 2275 2276
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2277
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2278
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2279
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2280 2281 2282 2283
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2284 2285
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2286
			GEN8_RPCS_EU_MIN_SHIFT;
2287
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2288 2289 2290 2291 2292 2293 2294
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2295
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2296 2297 2298
{
	u32 indirect_ctx_offset;

2299
	switch (INTEL_GEN(engine->i915)) {
2300
	default:
2301
		MISSING_CASE(INTEL_GEN(engine->i915));
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2316
static int
2317
populate_lr_context(struct i915_gem_context *ctx,
2318
		    struct drm_i915_gem_object *ctx_obj,
2319 2320
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2321
{
2322
	struct drm_i915_private *dev_priv = ctx->i915;
2323
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2324 2325
	void *vaddr;
	u32 *reg_state;
2326 2327
	int ret;

2328 2329 2330
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2331 2332 2333 2334 2335 2336
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2337 2338 2339 2340
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2341 2342
		return ret;
	}
2343
	ctx_obj->dirty = true;
2344 2345 2346

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2347
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2348 2349 2350 2351 2352 2353

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2354
	reg_state[CTX_LRI_HEADER_0] =
2355 2356 2357
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2358 2359
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2360
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2361
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2362 2363 2364 2365
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2366 2367 2368
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2369 2370 2371 2372
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2373
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2374 2375 2376 2377 2378 2379
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2380
		       RING_BB_PPGTT);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2396 2397 2398 2399 2400 2401 2402
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2403
				intel_lr_indirect_ctx_offset(engine) << 6;
2404 2405 2406 2407 2408

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2409
	}
2410
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2411 2412
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2413
	/* PDP values well be assigned later if needed */
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2443
		execlists_update_context_pdps(ppgtt, reg_state);
2444 2445
	}

2446
	if (engine->id == RCS) {
2447
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2448
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2449
			       make_rpcs(dev_priv));
2450 2451
	}

2452
	i915_gem_object_unpin_map(ctx_obj);
2453 2454 2455 2456

	return 0;
}

2457 2458
/**
 * intel_lr_context_size() - return the size of the context for an engine
2459
 * @engine: which engine to find the context size for
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2471
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2472 2473 2474
{
	int ret = 0;

2475
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2476

2477
	switch (engine->id) {
2478
	case RCS:
2479
		if (INTEL_GEN(engine->i915) >= 9)
2480 2481 2482
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2493 2494
}

2495
/**
2496
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2497
 * @ctx: LR context to create.
2498
 * @engine: engine to be used with the context.
2499 2500 2501 2502 2503 2504 2505
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2506
 * Return: non-zero on error.
2507
 */
2508
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2509
					    struct intel_engine_cs *engine)
2510
{
2511
	struct drm_i915_gem_object *ctx_obj;
2512
	struct intel_context *ce = &ctx->engine[engine->id];
2513
	uint32_t context_size;
2514
	struct intel_ringbuffer *ringbuf;
2515 2516
	int ret;

2517
	WARN_ON(ce->state);
2518

2519
	context_size = round_up(intel_lr_context_size(engine), 4096);
2520

2521 2522 2523
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2524
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2525
	if (IS_ERR(ctx_obj)) {
2526
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2527
		return PTR_ERR(ctx_obj);
2528 2529
	}

2530
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2531 2532
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2533
		goto error_deref_obj;
2534 2535
	}

2536
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2537 2538
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2539
		goto error_ringbuf;
2540 2541
	}

2542 2543 2544
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2545 2546

	return 0;
2547

2548 2549
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2550
error_deref_obj:
2551
	drm_gem_object_unreference(&ctx_obj->base);
2552 2553
	ce->ringbuf = NULL;
	ce->state = NULL;
2554
	return ret;
2555
}
2556

2557
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2558
			    struct i915_gem_context *ctx)
2559
{
2560
	struct intel_engine_cs *engine;
2561

2562
	for_each_engine(engine, dev_priv) {
2563 2564
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2565
		void *vaddr;
2566 2567 2568 2569 2570
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2571 2572
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2573
			continue;
2574 2575 2576

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2577 2578 2579 2580

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2581
		i915_gem_object_unpin_map(ctx_obj);
2582

2583 2584
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2585 2586
	}
}