intel_lrc.c 77.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
291
 *
292
 * @ctx: Context to work on
293
 * @engine: Engine the descriptor will be used with
294
 *
295 296 297 298 299 300
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
301
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303
 *    bits 32-52:    ctx ID, a globally unique tag
304 305
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443 444
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
445 446 447
			req0 = cursor;
		} else {
			req1 = cursor;
448
			WARN_ON(req1->elsp_submitted);
449 450 451 452
			break;
		}
	}

453 454 455
	if (unlikely(!req0))
		return;

456 457 458 459 460 461
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

462
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
463
		/*
464 465 466 467 468 469
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
470
		 */
471
		struct intel_ringbuffer *ringbuf;
472

473
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
474 475
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
476 477
	}

478
	execlists_submit_requests(req0, req1);
479 480
}

481
static unsigned int
482
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
483
{
484
	struct drm_i915_gem_request *head_req;
485

486
	assert_spin_locked(&engine->execlist_lock);
487

488
	head_req = list_first_entry_or_null(&engine->execlist_queue,
489
					    struct drm_i915_gem_request,
490 491
					    execlist_link);

492 493
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
494 495 496 497 498 499

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

500 501
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

502 503
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
504

505
	return 1;
506 507
}

508
static u32
509
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
510
		   u32 *context_id)
B
Ben Widawsky 已提交
511
{
512
	struct drm_i915_private *dev_priv = engine->i915;
513
	u32 status;
B
Ben Widawsky 已提交
514

515 516
	read_pointer %= GEN8_CSB_ENTRIES;

517
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
518 519 520

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
521

522
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
523 524 525
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
526 527
}

528
/**
529
 * intel_lrc_irq_handler() - handle Context Switch interrupts
530
 * @data: tasklet handler passed in unsigned long
531 532 533 534
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
535
static void intel_lrc_irq_handler(unsigned long data)
536
{
537
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538
	struct drm_i915_private *dev_priv = engine->i915;
539
	u32 status_pointer;
540
	unsigned int read_pointer, write_pointer;
541 542
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
543 544
	unsigned int submit_contexts = 0;

545
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
546

547
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
548

549
	read_pointer = engine->next_context_status_buffer;
550
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
551
	if (read_pointer > write_pointer)
552
		write_pointer += GEN8_CSB_ENTRIES;
553 554

	while (read_pointer < write_pointer) {
555 556 557 558 559 560
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
561

562 563 564 565 566 567 568 569
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

570
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
571 572 573 574 575 576 577

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
578 579 580 581 582
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

583
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
584 585
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
586
				execlists_check_remove_request(engine, csb[i][1]);
587 588
	}

589
	if (submit_contexts) {
590
		if (!engine->disable_lite_restore_wa ||
591 592
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
593
	}
594

595
	spin_unlock(&engine->execlist_lock);
596 597 598

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
599 600
}

601
static void execlists_context_queue(struct drm_i915_gem_request *request)
602
{
603
	struct intel_engine_cs *engine = request->engine;
604
	struct drm_i915_gem_request *cursor;
605
	int num_elements = 0;
606

607
	spin_lock_bh(&engine->execlist_lock);
608

609
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
610 611 612 613
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
614
		struct drm_i915_gem_request *tail_req;
615

616
		tail_req = list_last_entry(&engine->execlist_queue,
617
					   struct drm_i915_gem_request,
618 619
					   execlist_link);

620
		if (request->ctx == tail_req->ctx) {
621
			WARN(tail_req->elsp_submitted != 0,
622
				"More than 2 already-submitted reqs queued\n");
623 624
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
625 626 627
		}
	}

628
	i915_gem_request_reference(request);
629
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
630
	request->ctx_hw_id = request->ctx->hw_id;
631
	if (num_elements == 0)
632
		execlists_context_unqueue(engine);
633

634
	spin_unlock_bh(&engine->execlist_lock);
635 636
}

637
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
638
{
639
	struct intel_engine_cs *engine = req->engine;
640 641 642 643
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
644
	if (engine->gpu_caches_dirty)
645 646
		flush_domains = I915_GEM_GPU_DOMAINS;

647
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
648 649 650
	if (ret)
		return ret;

651
	engine->gpu_caches_dirty = false;
652 653 654
	return 0;
}

655
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
656 657
				 struct list_head *vmas)
{
658
	const unsigned other_rings = ~intel_engine_flag(req->engine);
659 660 661 662 663 664 665 666
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

667
		if (obj->active & other_rings) {
668
			ret = i915_gem_object_sync(obj, req->engine, &req);
669 670 671
			if (ret)
				return ret;
		}
672 673 674 675 676 677 678 679 680 681 682 683 684

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
685
	return logical_ring_invalidate_all_caches(req);
686 687
}

688
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
689
{
690
	struct intel_engine_cs *engine = request->engine;
691
	struct intel_context *ce = &request->ctx->engine[engine->id];
692
	int ret;
693

694 695 696 697
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
698
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
699

700
	if (!ce->state) {
701 702 703 704 705
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

706
	request->ringbuf = ce->ringbuf;
707

708 709 710 711 712 713
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
714
		ret = i915_guc_wq_check_space(request);
715 716 717 718
		if (ret)
			return ret;
	}

719 720 721
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
722

723 724 725 726
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

727
	if (!ce->initialised) {
728 729 730 731
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

732
		ce->initialised = true;
733 734 735 736 737 738 739 740 741
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

742
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
743 744 745
	return 0;

err_unpin:
746
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
747
	return ret;
748 749 750 751
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
752
 * @request: Request to advance the logical ringbuffer of.
753 754 755 756 757 758
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
759
static int
760
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
761
{
762
	struct intel_ringbuffer *ringbuf = request->ringbuf;
763
	struct intel_engine_cs *engine = request->engine;
764

765 766
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
767

768 769 770 771 772 773 774 775 776
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
777

778
	if (intel_engine_stopped(engine))
779
		return 0;
780

781 782 783 784 785 786 787 788
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
789

790 791
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
792 793
	else
		execlists_context_queue(request);
794 795

	return 0;
796 797
}

798 799
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
800
 * @params: execbuffer call parameters.
801 802 803 804 805 806 807 808
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
809
int intel_execlists_submission(struct i915_execbuffer_params *params,
810
			       struct drm_i915_gem_execbuffer2 *args,
811
			       struct list_head *vmas)
812
{
813
	struct drm_device       *dev = params->dev;
814
	struct intel_engine_cs *engine = params->engine;
815
	struct drm_i915_private *dev_priv = dev->dev_private;
816
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
817
	u64 exec_start;
818 819 820 821 822 823 824 825 826 827
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
828
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

853
	ret = execlists_move_to_gpu(params->request, vmas);
854 855 856
	if (ret)
		return ret;

857
	if (engine == &dev_priv->engine[RCS] &&
858
	    instp_mode != dev_priv->relative_constants_mode) {
859
		ret = intel_ring_begin(params->request, 4);
860 861 862 863 864
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
865
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
866 867 868 869 870 871
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

872 873 874
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

875
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
876 877 878
	if (ret)
		return ret;

879
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
880

881
	i915_gem_execbuffer_move_to_active(vmas, params->request);
882

883 884 885
	return 0;
}

886
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
887
{
888
	struct drm_i915_gem_request *req, *tmp;
889
	LIST_HEAD(cancel_list);
890

891
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
892

893
	spin_lock_bh(&engine->execlist_lock);
894
	list_replace_init(&engine->execlist_queue, &cancel_list);
895
	spin_unlock_bh(&engine->execlist_lock);
896

897
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
898
		list_del(&req->execlist_link);
899
		i915_gem_request_unreference(req);
900 901 902
	}
}

903
void intel_logical_ring_stop(struct intel_engine_cs *engine)
904
{
905
	struct drm_i915_private *dev_priv = engine->i915;
906 907
	int ret;

908
	if (!intel_engine_initialized(engine))
909 910
		return;

911
	ret = intel_engine_idle(engine);
912
	if (ret)
913
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
914
			  engine->name, ret);
915 916

	/* TODO: Is this correct with Execlists enabled? */
917 918 919
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
920 921
		return;
	}
922
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
923 924
}

925
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
926
{
927
	struct intel_engine_cs *engine = req->engine;
928 929
	int ret;

930
	if (!engine->gpu_caches_dirty)
931 932
		return 0;

933
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
934 935 936
	if (ret)
		return ret;

937
	engine->gpu_caches_dirty = false;
938 939 940
	return 0;
}

941
static int intel_lr_context_pin(struct i915_gem_context *ctx,
942
				struct intel_engine_cs *engine)
943
{
944
	struct drm_i915_private *dev_priv = ctx->i915;
945
	struct intel_context *ce = &ctx->engine[engine->id];
946 947
	void *vaddr;
	u32 *lrc_reg_state;
948
	int ret;
949

950
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
951

952
	if (ce->pin_count++)
953 954
		return 0;

955 956
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
957
	if (ret)
958
		goto err;
959

960
	vaddr = i915_gem_object_pin_map(ce->state);
961 962
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
963 964 965
		goto unpin_ctx_obj;
	}

966 967
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

968
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
969
	if (ret)
970
		goto unpin_map;
971

972
	i915_gem_context_reference(ctx);
973
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
974
	intel_lr_context_descriptor_update(ctx, engine);
975 976 977 978

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
979

980 981 982
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
983

984
	return 0;
985

986
unpin_map:
987
	i915_gem_object_unpin_map(ce->state);
988
unpin_ctx_obj:
989
	i915_gem_object_ggtt_unpin(ce->state);
990
err:
991
	ce->pin_count = 0;
992 993 994
	return ret;
}

995
void intel_lr_context_unpin(struct i915_gem_context *ctx,
996
			    struct intel_engine_cs *engine)
997
{
998
	struct intel_context *ce = &ctx->engine[engine->id];
999

1000
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1001
	GEM_BUG_ON(ce->pin_count == 0);
1002

1003
	if (--ce->pin_count)
1004
		return;
1005

1006
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1007

1008 1009
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1010

1011 1012 1013
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1014

1015
	i915_gem_context_unreference(ctx);
1016 1017
}

1018
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1019 1020
{
	int ret, i;
1021
	struct intel_engine_cs *engine = req->engine;
1022
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1023
	struct i915_workarounds *w = &req->i915->workarounds;
1024

1025
	if (w->count == 0)
1026 1027
		return 0;

1028
	engine->gpu_caches_dirty = true;
1029
	ret = logical_ring_flush_all_caches(req);
1030 1031 1032
	if (ret)
		return ret;

1033
	ret = intel_ring_begin(req, w->count * 2 + 2);
1034 1035 1036 1037 1038
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1039
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1040 1041 1042 1043 1044 1045
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1046
	engine->gpu_caches_dirty = true;
1047
	ret = logical_ring_flush_all_caches(req);
1048 1049 1050 1051 1052 1053
	if (ret)
		return ret;

	return 0;
}

1054
#define wa_ctx_emit(batch, index, cmd)					\
1055
	do {								\
1056 1057
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1058 1059
			return -ENOSPC;					\
		}							\
1060
		batch[__index] = (cmd);					\
1061 1062
	} while (0)

V
Ville Syrjälä 已提交
1063
#define wa_ctx_emit_reg(batch, index, reg) \
1064
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1082
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1083 1084 1085 1086 1087
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1088
	/*
1089
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1090 1091 1092 1093
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1094 1095
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1096 1097
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1098
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1099
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1100
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1101
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1102 1103 1104
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1105
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1116
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1117
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1118
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1119
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1120
	wa_ctx_emit(batch, index, 0);
1121 1122 1123 1124

	return index;
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1147
 * @engine: only applicable for RCS
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1163
 *
1164 1165 1166 1167 1168 1169 1170 1171
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1172
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1173 1174 1175 1176
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1177
	uint32_t scratch_addr;
1178 1179
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1180
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1181
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1182

1183
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1184
	if (IS_BROADWELL(engine->i915)) {
1185
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1186 1187 1188
		if (rc < 0)
			return rc;
		index = rc;
1189 1190
	}

1191 1192
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1193
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1204

1205 1206
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1207
		wa_ctx_emit(batch, index, MI_NOOP);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1221
 * @engine: only applicable for RCS
1222 1223 1224
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1225
 * @batch: page in which WA are loaded
1226 1227 1228 1229 1230 1231 1232 1233 1234
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1235
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1236 1237 1238 1239 1240 1241
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1242
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1243
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1244

1245
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1246 1247 1248 1249

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1250
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1251 1252 1253 1254
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1255
	int ret;
1256 1257
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1258
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1259 1260
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1261
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1262

1263
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1264
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1265 1266 1267 1268
	if (ret < 0)
		return ret;
	index = ret;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1285 1286 1287 1288 1289 1290 1291
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1292
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1293 1294 1295 1296 1297 1298
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1299
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1300 1301
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1302
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1303
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1304 1305 1306 1307 1308
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1309
	/* WaClearTdlStateAckDirtyBits:bxt */
1310
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1328
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1329 1330
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1331 1332
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1333 1334 1335 1336 1337
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1338
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1339 1340 1341
{
	int ret;

1342
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1343
						   PAGE_ALIGN(size));
1344
	if (IS_ERR(engine->wa_ctx.obj)) {
1345
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1346 1347 1348
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1349 1350
	}

1351
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1352 1353 1354
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1355
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1356 1357 1358 1359 1360 1361
		return ret;
	}

	return 0;
}

1362
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1363
{
1364 1365 1366 1367
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1368 1369 1370
	}
}

1371
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1372 1373 1374 1375 1376
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1377
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1378

1379
	WARN_ON(engine->id != RCS);
1380

1381
	/* update this when WA for higher Gen are added */
1382
	if (INTEL_GEN(engine->i915) > 9) {
1383
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1384
			  INTEL_GEN(engine->i915));
1385
		return 0;
1386
	}
1387

1388
	/* some WA perform writes to scratch page, ensure it is valid */
1389 1390
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1391 1392 1393
		return -EINVAL;
	}

1394
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1395 1396 1397 1398 1399
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1400
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1401 1402 1403
	batch = kmap_atomic(page);
	offset = 0;

1404
	if (IS_GEN8(engine->i915)) {
1405
		ret = gen8_init_indirectctx_bb(engine,
1406 1407 1408 1409 1410 1411
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1412
		ret = gen8_init_perctx_bb(engine,
1413 1414 1415 1416 1417
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1418
	} else if (IS_GEN9(engine->i915)) {
1419
		ret = gen9_init_indirectctx_bb(engine,
1420 1421 1422 1423 1424 1425
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1426
		ret = gen9_init_perctx_bb(engine,
1427 1428 1429 1430 1431
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1432 1433 1434 1435 1436
	}

out:
	kunmap_atomic(batch);
	if (ret)
1437
		lrc_destroy_wa_ctx_obj(engine);
1438 1439 1440 1441

	return ret;
}

1442 1443
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1444
	struct drm_i915_private *dev_priv = engine->i915;
1445 1446 1447 1448 1449 1450

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1451
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1452
{
1453
	struct drm_i915_private *dev_priv = engine->i915;
1454
	unsigned int next_context_status_buffer_hw;
1455

1456
	lrc_init_hws(engine);
1457

1458 1459 1460
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1461

1462
	I915_WRITE(RING_MODE_GEN7(engine),
1463 1464
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1465
	POSTING_READ(RING_MODE_GEN7(engine));
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1476 1477
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1478
	 */
1479
	next_context_status_buffer_hw =
1480
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1481 1482 1483 1484 1485 1486 1487 1488 1489

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1490 1491
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1492

1493
	intel_engine_init_hangcheck(engine);
1494

1495
	return intel_mocs_init_engine(engine);
1496 1497
}

1498
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1499
{
1500
	struct drm_i915_private *dev_priv = engine->i915;
1501 1502
	int ret;

1503
	ret = gen8_init_common_ring(engine);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1517
	return init_workarounds_ring(engine);
1518 1519
}

1520
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1521 1522 1523
{
	int ret;

1524
	ret = gen8_init_common_ring(engine);
1525 1526 1527
	if (ret)
		return ret;

1528
	return init_workarounds_ring(engine);
1529 1530
}

1531 1532 1533
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1534
	struct intel_engine_cs *engine = req->engine;
1535 1536 1537 1538
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1539
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1540 1541 1542 1543 1544 1545 1546
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1547 1548
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1549
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1550 1551
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1552 1553 1554 1555 1556 1557 1558 1559 1560
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1561
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1562
			      u64 offset, unsigned dispatch_flags)
1563
{
1564
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1565
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1566 1567
	int ret;

1568 1569 1570 1571
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1572 1573
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1574
	if (req->ctx->ppgtt &&
1575
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1576
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1577
		    !intel_vgpu_active(req->i915)) {
1578 1579 1580 1581
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1582

1583
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1584 1585
	}

1586
	ret = intel_ring_begin(req, 4);
1587 1588 1589 1590
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1591 1592 1593 1594
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1595 1596 1597 1598 1599 1600 1601 1602
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1603
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1604
{
1605
	struct drm_i915_private *dev_priv = engine->i915;
1606 1607
	unsigned long flags;

1608
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1609 1610 1611
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1612 1613 1614 1615
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1616 1617 1618 1619 1620 1621
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1622
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1623
{
1624
	struct drm_i915_private *dev_priv = engine->i915;
1625 1626 1627
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1628 1629 1630
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1631 1632 1633 1634
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1635
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1636 1637 1638
			   u32 invalidate_domains,
			   u32 unused)
{
1639
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1640
	struct intel_engine_cs *engine = ringbuf->engine;
1641
	struct drm_i915_private *dev_priv = request->i915;
1642 1643 1644
	uint32_t cmd;
	int ret;

1645
	ret = intel_ring_begin(request, 4);
1646 1647 1648 1649 1650
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1651 1652 1653 1654 1655 1656 1657 1658 1659
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1660
		if (engine == &dev_priv->engine[VCS])
1661
			cmd |= MI_INVALIDATE_BSD;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1675
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1676 1677 1678
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1679
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1680
	struct intel_engine_cs *engine = ringbuf->engine;
1681
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1682
	bool vf_flush_wa = false, dc_flush_wa = false;
1683 1684
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1685
	int len;
1686 1687 1688 1689 1690 1691

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1692
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1693
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1706 1707 1708 1709
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1710
		if (IS_GEN9(request->i915))
1711
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1712 1713 1714 1715

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1716
	}
1717

M
Mika Kuoppala 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1727 1728 1729
	if (ret)
		return ret;

1730 1731 1732 1733 1734 1735 1736 1737 1738
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1748 1749 1750 1751 1752 1753
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1764 1765 1766 1767 1768
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1769
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1770
{
1771
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1772 1773
}

1774
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1775
{
1776
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1777 1778
}

1779
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1791
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1792 1793
}

1794
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1795
{
1796
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1797 1798

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1799
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1800 1801
}

1802 1803 1804 1805 1806 1807 1808
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1809
static int gen8_emit_request(struct drm_i915_gem_request *request)
1810
{
1811
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1812 1813
	int ret;

1814
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1815 1816 1817
	if (ret)
		return ret;

1818 1819
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1820 1821

	intel_logical_ring_emit(ringbuf,
1822 1823
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1824
				intel_hws_seqno_address(request->engine) |
1825
				MI_FLUSH_DW_USE_GTT);
1826
	intel_logical_ring_emit(ringbuf, 0);
1827
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1828 1829
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1830 1831
	return intel_logical_ring_advance_and_submit(request);
}
1832

1833 1834 1835 1836
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1837

1838
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1839 1840 1841
	if (ret)
		return ret;

1842 1843 1844
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1845 1846 1847 1848
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1849
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1850 1851 1852 1853
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1854 1855
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1856 1857
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1858 1859
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1860
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1861
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1862
	return intel_logical_ring_advance_and_submit(request);
1863 1864
}

1865
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1866 1867 1868 1869
{
	struct render_state so;
	int ret;

1870
	ret = i915_gem_render_state_prepare(req->engine, &so);
1871 1872 1873 1874 1875 1876
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1877
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1878
				       I915_DISPATCH_SECURE);
1879 1880 1881
	if (ret)
		goto out;

1882
	ret = req->engine->emit_bb_start(req,
1883 1884 1885 1886 1887
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1888
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1889 1890 1891 1892 1893 1894

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1895
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1896 1897 1898
{
	int ret;

1899
	ret = intel_logical_ring_workarounds_emit(req);
1900 1901 1902
	if (ret)
		return ret;

1903 1904 1905 1906 1907 1908 1909 1910
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1911
	return intel_lr_context_render_state_init(req);
1912 1913
}

1914 1915 1916
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1917
 * @engine: Engine Command Streamer.
1918 1919
 *
 */
1920
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1921
{
1922
	struct drm_i915_private *dev_priv;
1923

1924
	if (!intel_engine_initialized(engine))
1925 1926
		return;

1927 1928 1929 1930 1931 1932 1933
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1934
	dev_priv = engine->i915;
1935

1936 1937 1938
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1939
	}
1940

1941 1942
	if (engine->cleanup)
		engine->cleanup(engine);
1943

1944 1945
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1946

1947
	if (engine->status_page.obj) {
1948
		i915_gem_object_unpin_map(engine->status_page.obj);
1949
		engine->status_page.obj = NULL;
1950
	}
1951
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1952

1953 1954 1955
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1956

1957
	lrc_destroy_wa_ctx_obj(engine);
1958
	engine->i915 = NULL;
1959 1960
}

1961
static void
1962
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1963 1964
{
	/* Default vfuncs which can be overriden by each engine. */
1965 1966 1967 1968 1969 1970
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1971 1972
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1973
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1974
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1975
		engine->set_seqno = bxt_a_set_seqno;
1976 1977 1978
	}
}

1979
static inline void
1980
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1981
{
1982 1983
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1984
	init_waitqueue_head(&engine->irq_queue);
1985 1986
}

1987
static int
1988 1989 1990
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1991
	void *hws;
1992 1993 1994 1995

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1996 1997 1998 1999
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2000
	engine->status_page.obj = dctx_obj;
2001 2002

	return 0;
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2051
{
2052
	const struct logical_ring_info *info = &logical_rings[id];
2053
	struct drm_i915_private *dev_priv = to_i915(dev);
2054
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2055
	enum forcewake_domains fw_domains;
2056

2057 2058 2059 2060 2061
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2062

2063
	engine->i915 = dev_priv;
2064

2065 2066
	/* Intentionally left blank. */
	engine->buffer = NULL;
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2096
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2097 2098 2099 2100 2101 2102 2103

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2104
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2105 2106
	int ret;

2107
	ret = i915_cmd_parser_init_ring(engine);
2108
	if (ret)
2109
		goto error;
2110

2111
	ret = execlists_context_deferred_alloc(dctx, engine);
2112
	if (ret)
2113
		goto error;
2114 2115

	/* As this is the default context, always pin it */
2116
	ret = intel_lr_context_pin(dctx, engine);
2117
	if (ret) {
2118 2119
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2120
		goto error;
2121
	}
2122

2123
	/* And setup the hardware status page. */
2124 2125 2126 2127 2128
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2129

2130 2131 2132
	return 0;

error:
2133
	intel_logical_ring_cleanup(engine);
2134
	return ret;
2135 2136 2137 2138
}

static int logical_render_ring_init(struct drm_device *dev)
{
2139
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2140
	int ret;
2141

2142
	if (HAS_L3_DPF(dev))
2143
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2144

2145
	/* Override some for render ring. */
2146
	if (INTEL_INFO(dev)->gen >= 9)
2147
		engine->init_hw = gen9_init_render_ring;
2148
	else
2149 2150 2151 2152 2153
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2154

2155
	ret = intel_init_pipe_control(engine);
2156 2157 2158
	if (ret)
		return ret;

2159
	ret = intel_init_workaround_bb(engine);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2170
	ret = logical_ring_init(engine);
2171
	if (ret) {
2172
		lrc_destroy_wa_ctx_obj(engine);
2173
	}
2174 2175

	return ret;
2176 2177 2178 2179
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2180
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2181

2182
	return logical_ring_init(engine);
2183 2184 2185 2186
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2187
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2188

2189
	return logical_ring_init(engine);
2190 2191 2192 2193
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2194
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2195

2196
	return logical_ring_init(engine);
2197 2198 2199 2200
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2201
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2202

2203
	return logical_ring_init(engine);
2204 2205
}

2206 2207 2208 2209 2210
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2211
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2212 2213 2214 2215
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2252
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2253
cleanup_blt_ring:
2254
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2255
cleanup_bsd_ring:
2256
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2257
cleanup_render_ring:
2258
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2259 2260 2261 2262

	return ret;
}

2263
static u32
2264
make_rpcs(struct drm_i915_private *dev_priv)
2265 2266 2267 2268 2269 2270 2271
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2272
	if (INTEL_GEN(dev_priv) < 9)
2273 2274 2275 2276 2277 2278 2279 2280
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2281
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2282
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2283
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2284 2285 2286 2287
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2288
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2289
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2290
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2291 2292 2293 2294
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2295 2296
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2297
			GEN8_RPCS_EU_MIN_SHIFT;
2298
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2299 2300 2301 2302 2303 2304 2305
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2306
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2307 2308 2309
{
	u32 indirect_ctx_offset;

2310
	switch (INTEL_GEN(engine->i915)) {
2311
	default:
2312
		MISSING_CASE(INTEL_GEN(engine->i915));
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2327
static int
2328
populate_lr_context(struct i915_gem_context *ctx,
2329
		    struct drm_i915_gem_object *ctx_obj,
2330 2331
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2332
{
2333
	struct drm_i915_private *dev_priv = ctx->i915;
2334
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2335 2336
	void *vaddr;
	u32 *reg_state;
2337 2338
	int ret;

2339 2340 2341
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2342 2343 2344 2345 2346 2347
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2348 2349 2350 2351
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2352 2353
		return ret;
	}
2354
	ctx_obj->dirty = true;
2355 2356 2357

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2358
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2359 2360 2361 2362 2363 2364

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2365
	reg_state[CTX_LRI_HEADER_0] =
2366 2367 2368
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2369 2370
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2371
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2372
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2373 2374 2375 2376
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2377 2378 2379
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2380 2381 2382 2383
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2384
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2385 2386 2387 2388 2389 2390
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2391
		       RING_BB_PPGTT);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2407 2408 2409 2410 2411 2412 2413
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2414
				intel_lr_indirect_ctx_offset(engine) << 6;
2415 2416 2417 2418 2419

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2420
	}
2421
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2422 2423
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2424
	/* PDP values well be assigned later if needed */
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2441

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2454
		execlists_update_context_pdps(ppgtt, reg_state);
2455 2456
	}

2457
	if (engine->id == RCS) {
2458
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2459
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2460
			       make_rpcs(dev_priv));
2461 2462
	}

2463
	i915_gem_object_unpin_map(ctx_obj);
2464 2465 2466 2467

	return 0;
}

2468 2469
/**
 * intel_lr_context_size() - return the size of the context for an engine
2470
 * @engine: which engine to find the context size for
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2482
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2483 2484 2485
{
	int ret = 0;

2486
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2487

2488
	switch (engine->id) {
2489
	case RCS:
2490
		if (INTEL_GEN(engine->i915) >= 9)
2491 2492 2493
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2504 2505
}

2506
/**
2507
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2508
 * @ctx: LR context to create.
2509
 * @engine: engine to be used with the context.
2510 2511 2512 2513 2514 2515 2516
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2517
 * Return: non-zero on error.
2518
 */
2519
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2520
					    struct intel_engine_cs *engine)
2521
{
2522
	struct drm_i915_gem_object *ctx_obj;
2523
	struct intel_context *ce = &ctx->engine[engine->id];
2524
	uint32_t context_size;
2525
	struct intel_ringbuffer *ringbuf;
2526 2527
	int ret;

2528
	WARN_ON(ce->state);
2529

2530
	context_size = round_up(intel_lr_context_size(engine), 4096);
2531

2532 2533 2534
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2535
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2536
	if (IS_ERR(ctx_obj)) {
2537
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2538
		return PTR_ERR(ctx_obj);
2539 2540
	}

2541
	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2542 2543
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2544
		goto error_deref_obj;
2545 2546
	}

2547
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2548 2549
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2550
		goto error_ringbuf;
2551 2552
	}

2553 2554 2555
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2556 2557

	return 0;
2558

2559 2560
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2561
error_deref_obj:
2562
	drm_gem_object_unreference(&ctx_obj->base);
2563 2564
	ce->ringbuf = NULL;
	ce->state = NULL;
2565
	return ret;
2566
}
2567

2568
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2569
			    struct i915_gem_context *ctx)
2570
{
2571
	struct intel_engine_cs *engine;
2572

2573
	for_each_engine(engine, dev_priv) {
2574 2575
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2576
		void *vaddr;
2577 2578 2579 2580 2581
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2582 2583
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2584
			continue;
2585 2586 2587

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2588 2589 2590 2591

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2592
		i915_gem_object_unpin_map(ctx_obj);
2593

2594 2595
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2596 2597
	}
}