intel_lrc.c 76.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
291
 *
292
 * @ctx: Context to work on
293
 * @engine: Engine the descriptor will be used with
294
 *
295 296 297 298 299 300
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
301
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303
 *    bits 32-52:    ctx ID, a globally unique tag
304 305
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407
static void execlists_context_unqueue(struct intel_engine_cs *engine)
408
{
409
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
410
	struct drm_i915_gem_request *cursor, *tmp;
411

412
	assert_spin_locked(&engine->execlist_lock);
413

414 415 416 417
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
418
	WARN_ON(!intel_irqs_enabled(engine->i915));
419

420
	/* Try to read in pairs */
421
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
422 423 424
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
425
		} else if (req0->ctx == cursor->ctx) {
426 427
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
428
			cursor->elsp_submitted = req0->elsp_submitted;
429 430
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
431 432 433
			req0 = cursor;
		} else {
			req1 = cursor;
434
			WARN_ON(req1->elsp_submitted);
435 436 437 438
			break;
		}
	}

439 440 441
	if (unlikely(!req0))
		return;

442
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
443
		/*
444 445 446 447 448 449
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
450
		 */
451
		struct intel_ringbuffer *ringbuf;
452

453
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
454 455
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
456 457
	}

458
	execlists_submit_requests(req0, req1);
459 460
}

461
static unsigned int
462
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
463
{
464
	struct drm_i915_gem_request *head_req;
465

466
	assert_spin_locked(&engine->execlist_lock);
467

468
	head_req = list_first_entry_or_null(&engine->execlist_queue,
469
					    struct drm_i915_gem_request,
470 471
					    execlist_link);

472 473
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
474 475 476 477 478 479

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

480 481
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
482

483
	return 1;
484 485
}

486
static u32
487
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
488
		   u32 *context_id)
B
Ben Widawsky 已提交
489
{
490
	struct drm_i915_private *dev_priv = engine->i915;
491
	u32 status;
B
Ben Widawsky 已提交
492

493 494
	read_pointer %= GEN8_CSB_ENTRIES;

495
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
496 497 498

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
499

500
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
501 502 503
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
504 505
}

506
/**
507
 * intel_lrc_irq_handler() - handle Context Switch interrupts
508
 * @data: tasklet handler passed in unsigned long
509 510 511 512
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
513
static void intel_lrc_irq_handler(unsigned long data)
514
{
515
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
516
	struct drm_i915_private *dev_priv = engine->i915;
517
	u32 status_pointer;
518
	unsigned int read_pointer, write_pointer;
519 520
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
521 522
	unsigned int submit_contexts = 0;

523
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
524

525
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
526

527
	read_pointer = engine->next_context_status_buffer;
528
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
529
	if (read_pointer > write_pointer)
530
		write_pointer += GEN8_CSB_ENTRIES;
531 532

	while (read_pointer < write_pointer) {
533 534 535 536 537 538
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
539

540 541 542 543 544 545 546 547
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

548
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
549 550 551 552 553 554 555

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
556 557 558 559 560
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

561
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
562 563
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
564
				execlists_check_remove_request(engine, csb[i][1]);
565 566
	}

567
	if (submit_contexts) {
568
		if (!engine->disable_lite_restore_wa ||
569 570
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
571
	}
572

573
	spin_unlock(&engine->execlist_lock);
574 575 576

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
577 578
}

579
static void execlists_context_queue(struct drm_i915_gem_request *request)
580
{
581
	struct intel_engine_cs *engine = request->engine;
582
	struct drm_i915_gem_request *cursor;
583
	int num_elements = 0;
584

585
	spin_lock_bh(&engine->execlist_lock);
586

587
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
588 589 590 591
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
592
		struct drm_i915_gem_request *tail_req;
593

594
		tail_req = list_last_entry(&engine->execlist_queue,
595
					   struct drm_i915_gem_request,
596 597
					   execlist_link);

598
		if (request->ctx == tail_req->ctx) {
599
			WARN(tail_req->elsp_submitted != 0,
600
				"More than 2 already-submitted reqs queued\n");
601 602
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
603 604 605
		}
	}

606
	i915_gem_request_reference(request);
607
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
608
	request->ctx_hw_id = request->ctx->hw_id;
609
	if (num_elements == 0)
610
		execlists_context_unqueue(engine);
611

612
	spin_unlock_bh(&engine->execlist_lock);
613 614
}

615
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
616
{
617
	struct intel_engine_cs *engine = req->engine;
618 619 620 621
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
622
	if (engine->gpu_caches_dirty)
623 624
		flush_domains = I915_GEM_GPU_DOMAINS;

625
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
626 627 628
	if (ret)
		return ret;

629
	engine->gpu_caches_dirty = false;
630 631 632
	return 0;
}

633
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
634 635
				 struct list_head *vmas)
{
636
	const unsigned other_rings = ~intel_engine_flag(req->engine);
637 638 639 640 641 642 643 644
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

645
		if (obj->active & other_rings) {
646
			ret = i915_gem_object_sync(obj, req->engine, &req);
647 648 649
			if (ret)
				return ret;
		}
650 651 652 653 654 655 656 657 658 659 660 661 662

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
663
	return logical_ring_invalidate_all_caches(req);
664 665
}

666
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
667
{
668
	struct intel_engine_cs *engine = request->engine;
669
	struct intel_context *ce = &request->ctx->engine[engine->id];
670
	int ret;
671

672 673 674 675
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
676
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
677

678
	if (!ce->state) {
679 680 681 682 683
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

684
	request->ringbuf = ce->ringbuf;
685

686 687 688 689 690 691
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
692
		ret = i915_guc_wq_check_space(request);
693 694 695 696
		if (ret)
			return ret;
	}

697 698 699
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
700

701 702 703 704
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

705
	if (!ce->initialised) {
706 707 708 709
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

710
		ce->initialised = true;
711 712 713 714 715 716 717 718 719
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

720
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
721 722 723
	return 0;

err_unpin:
724
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
725
	return ret;
726 727 728 729
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
730
 * @request: Request to advance the logical ringbuffer of.
731 732 733 734 735 736
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
737
static int
738
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
739
{
740
	struct intel_ringbuffer *ringbuf = request->ringbuf;
741
	struct intel_engine_cs *engine = request->engine;
742

743 744
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
745

746 747 748 749 750 751 752 753 754
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
755

756
	if (intel_engine_stopped(engine))
757
		return 0;
758

759 760 761 762 763 764 765 766
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
767

768 769
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
770 771
	else
		execlists_context_queue(request);
772 773

	return 0;
774 775
}

776 777
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
778
 * @params: execbuffer call parameters.
779 780 781 782 783 784 785 786
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
787
int intel_execlists_submission(struct i915_execbuffer_params *params,
788
			       struct drm_i915_gem_execbuffer2 *args,
789
			       struct list_head *vmas)
790
{
791
	struct drm_device       *dev = params->dev;
792
	struct intel_engine_cs *engine = params->engine;
793
	struct drm_i915_private *dev_priv = dev->dev_private;
794
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
795
	u64 exec_start;
796 797 798 799 800 801 802 803 804 805
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
806
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

831
	ret = execlists_move_to_gpu(params->request, vmas);
832 833 834
	if (ret)
		return ret;

835
	if (engine == &dev_priv->engine[RCS] &&
836
	    instp_mode != dev_priv->relative_constants_mode) {
837
		ret = intel_ring_begin(params->request, 4);
838 839 840 841 842
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
843
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
844 845 846 847 848 849
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

850 851 852
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

853
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
854 855 856
	if (ret)
		return ret;

857
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
858

859
	i915_gem_execbuffer_move_to_active(vmas, params->request);
860

861 862 863
	return 0;
}

864
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
865
{
866
	struct drm_i915_gem_request *req, *tmp;
867
	LIST_HEAD(cancel_list);
868

869
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
870

871
	spin_lock_bh(&engine->execlist_lock);
872
	list_replace_init(&engine->execlist_queue, &cancel_list);
873
	spin_unlock_bh(&engine->execlist_lock);
874

875
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
876
		list_del(&req->execlist_link);
877
		i915_gem_request_unreference(req);
878 879 880
	}
}

881
void intel_logical_ring_stop(struct intel_engine_cs *engine)
882
{
883
	struct drm_i915_private *dev_priv = engine->i915;
884 885
	int ret;

886
	if (!intel_engine_initialized(engine))
887 888
		return;

889
	ret = intel_engine_idle(engine);
890
	if (ret)
891
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
892
			  engine->name, ret);
893 894

	/* TODO: Is this correct with Execlists enabled? */
895 896 897
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
898 899
		return;
	}
900
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
901 902
}

903
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
904
{
905
	struct intel_engine_cs *engine = req->engine;
906 907
	int ret;

908
	if (!engine->gpu_caches_dirty)
909 910
		return 0;

911
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
912 913 914
	if (ret)
		return ret;

915
	engine->gpu_caches_dirty = false;
916 917 918
	return 0;
}

919
static int intel_lr_context_pin(struct i915_gem_context *ctx,
920
				struct intel_engine_cs *engine)
921
{
922
	struct drm_i915_private *dev_priv = ctx->i915;
923
	struct intel_context *ce = &ctx->engine[engine->id];
924 925
	void *vaddr;
	u32 *lrc_reg_state;
926
	int ret;
927

928
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
929

930
	if (ce->pin_count++)
931 932
		return 0;

933 934
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
935
	if (ret)
936
		goto err;
937

938
	vaddr = i915_gem_object_pin_map(ce->state);
939 940
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
941 942 943
		goto unpin_ctx_obj;
	}

944 945
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

946
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
947
	if (ret)
948
		goto unpin_map;
949

950
	i915_gem_context_reference(ctx);
951
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
952
	intel_lr_context_descriptor_update(ctx, engine);
953 954 955 956

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
957

958 959 960
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
961

962
	return 0;
963

964
unpin_map:
965
	i915_gem_object_unpin_map(ce->state);
966
unpin_ctx_obj:
967
	i915_gem_object_ggtt_unpin(ce->state);
968
err:
969
	ce->pin_count = 0;
970 971 972
	return ret;
}

973
void intel_lr_context_unpin(struct i915_gem_context *ctx,
974
			    struct intel_engine_cs *engine)
975
{
976
	struct intel_context *ce = &ctx->engine[engine->id];
977

978
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
979
	GEM_BUG_ON(ce->pin_count == 0);
980

981
	if (--ce->pin_count)
982
		return;
983

984
	intel_unpin_ringbuffer_obj(ce->ringbuf);
985

986 987
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
988

989 990 991
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
992

993
	i915_gem_context_unreference(ctx);
994 995
}

996
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
997 998
{
	int ret, i;
999
	struct intel_engine_cs *engine = req->engine;
1000
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1001
	struct i915_workarounds *w = &req->i915->workarounds;
1002

1003
	if (w->count == 0)
1004 1005
		return 0;

1006
	engine->gpu_caches_dirty = true;
1007
	ret = logical_ring_flush_all_caches(req);
1008 1009 1010
	if (ret)
		return ret;

1011
	ret = intel_ring_begin(req, w->count * 2 + 2);
1012 1013 1014 1015 1016
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1017
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1018 1019 1020 1021 1022 1023
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1024
	engine->gpu_caches_dirty = true;
1025
	ret = logical_ring_flush_all_caches(req);
1026 1027 1028 1029 1030 1031
	if (ret)
		return ret;

	return 0;
}

1032
#define wa_ctx_emit(batch, index, cmd)					\
1033
	do {								\
1034 1035
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1036 1037
			return -ENOSPC;					\
		}							\
1038
		batch[__index] = (cmd);					\
1039 1040
	} while (0)

V
Ville Syrjälä 已提交
1041
#define wa_ctx_emit_reg(batch, index, reg) \
1042
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1060
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1061 1062 1063 1064 1065
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1066
	/*
1067
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1068 1069 1070 1071
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1072 1073
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1074 1075
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1076
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1077
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1078
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1079
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1080 1081 1082
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1083
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1094
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1095
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1096
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1097
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1098
	wa_ctx_emit(batch, index, 0);
1099 1100 1101 1102

	return index;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1125
 * @engine: only applicable for RCS
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1141
 *
1142 1143 1144 1145 1146 1147 1148 1149
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1150
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1151 1152 1153 1154
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1155
	uint32_t scratch_addr;
1156 1157
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1158
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1159
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1160

1161
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1162
	if (IS_BROADWELL(engine->i915)) {
1163
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1164 1165 1166
		if (rc < 0)
			return rc;
		index = rc;
1167 1168
	}

1169 1170
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1171
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1182

1183 1184
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1185
		wa_ctx_emit(batch, index, MI_NOOP);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1199
 * @engine: only applicable for RCS
1200 1201 1202
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1203
 * @batch: page in which WA are loaded
1204 1205 1206 1207 1208 1209 1210 1211 1212
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1213
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1214 1215 1216 1217 1218 1219
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1220
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1221
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1222

1223
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1224 1225 1226 1227

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1228
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1229 1230 1231 1232
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1233
	int ret;
1234 1235
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1236
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1237 1238
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1239
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1240

1241
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1242
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1243 1244 1245 1246
	if (ret < 0)
		return ret;
	index = ret;

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1263 1264 1265 1266 1267 1268 1269
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1270
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1271 1272 1273 1274 1275 1276
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1277
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1278 1279
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1280
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1281
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1282 1283 1284 1285 1286
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1287
	/* WaClearTdlStateAckDirtyBits:bxt */
1288
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1306
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1307 1308
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1309 1310
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1311 1312 1313 1314 1315
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1316
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1317 1318 1319
{
	int ret;

1320
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1321
						   PAGE_ALIGN(size));
1322
	if (IS_ERR(engine->wa_ctx.obj)) {
1323
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1324 1325 1326
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1327 1328
	}

1329
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1330 1331 1332
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1333
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1334 1335 1336 1337 1338 1339
		return ret;
	}

	return 0;
}

1340
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1341
{
1342 1343 1344 1345
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1346 1347 1348
	}
}

1349
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1350 1351 1352 1353 1354
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1355
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1356

1357
	WARN_ON(engine->id != RCS);
1358

1359
	/* update this when WA for higher Gen are added */
1360
	if (INTEL_GEN(engine->i915) > 9) {
1361
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1362
			  INTEL_GEN(engine->i915));
1363
		return 0;
1364
	}
1365

1366
	/* some WA perform writes to scratch page, ensure it is valid */
1367 1368
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1369 1370 1371
		return -EINVAL;
	}

1372
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1373 1374 1375 1376 1377
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1378
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1379 1380 1381
	batch = kmap_atomic(page);
	offset = 0;

1382
	if (IS_GEN8(engine->i915)) {
1383
		ret = gen8_init_indirectctx_bb(engine,
1384 1385 1386 1387 1388 1389
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1390
		ret = gen8_init_perctx_bb(engine,
1391 1392 1393 1394 1395
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1396
	} else if (IS_GEN9(engine->i915)) {
1397
		ret = gen9_init_indirectctx_bb(engine,
1398 1399 1400 1401 1402 1403
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1404
		ret = gen9_init_perctx_bb(engine,
1405 1406 1407 1408 1409
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1410 1411 1412 1413 1414
	}

out:
	kunmap_atomic(batch);
	if (ret)
1415
		lrc_destroy_wa_ctx_obj(engine);
1416 1417 1418 1419

	return ret;
}

1420 1421
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1422
	struct drm_i915_private *dev_priv = engine->i915;
1423 1424 1425 1426 1427 1428

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1429
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1430
{
1431
	struct drm_i915_private *dev_priv = engine->i915;
1432
	unsigned int next_context_status_buffer_hw;
1433

1434
	lrc_init_hws(engine);
1435

1436 1437 1438
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1439

1440
	I915_WRITE(RING_MODE_GEN7(engine),
1441 1442
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1443
	POSTING_READ(RING_MODE_GEN7(engine));
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1454 1455
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1456
	 */
1457
	next_context_status_buffer_hw =
1458
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1459 1460 1461 1462 1463 1464 1465 1466 1467

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1468 1469
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1470

1471
	intel_engine_init_hangcheck(engine);
1472

1473
	return intel_mocs_init_engine(engine);
1474 1475
}

1476
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1477
{
1478
	struct drm_i915_private *dev_priv = engine->i915;
1479 1480
	int ret;

1481
	ret = gen8_init_common_ring(engine);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1495
	return init_workarounds_ring(engine);
1496 1497
}

1498
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1499 1500 1501
{
	int ret;

1502
	ret = gen8_init_common_ring(engine);
1503 1504 1505
	if (ret)
		return ret;

1506
	return init_workarounds_ring(engine);
1507 1508
}

1509 1510 1511
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1512
	struct intel_engine_cs *engine = req->engine;
1513 1514 1515 1516
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1517
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1518 1519 1520 1521 1522 1523 1524
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1525 1526
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1527
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1528 1529
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1530 1531 1532 1533 1534 1535 1536 1537 1538
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1539
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1540
			      u64 offset, unsigned dispatch_flags)
1541
{
1542
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1543
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1544 1545
	int ret;

1546 1547 1548 1549
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1550 1551
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1552
	if (req->ctx->ppgtt &&
1553
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1554
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1555
		    !intel_vgpu_active(req->i915)) {
1556 1557 1558 1559
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1560

1561
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1562 1563
	}

1564
	ret = intel_ring_begin(req, 4);
1565 1566 1567 1568
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1569 1570 1571 1572
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1573 1574 1575 1576 1577 1578 1579 1580
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1581
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1582
{
1583
	struct drm_i915_private *dev_priv = engine->i915;
1584 1585
	unsigned long flags;

1586
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1587 1588 1589
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1590 1591 1592 1593
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1594 1595 1596 1597 1598 1599
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1600
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1601
{
1602
	struct drm_i915_private *dev_priv = engine->i915;
1603 1604 1605
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1606 1607 1608
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1609 1610 1611 1612
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1613
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1614 1615 1616
			   u32 invalidate_domains,
			   u32 unused)
{
1617
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1618
	struct intel_engine_cs *engine = ringbuf->engine;
1619
	struct drm_i915_private *dev_priv = request->i915;
1620 1621 1622
	uint32_t cmd;
	int ret;

1623
	ret = intel_ring_begin(request, 4);
1624 1625 1626 1627 1628
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1629 1630 1631 1632 1633 1634 1635 1636 1637
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1638
		if (engine == &dev_priv->engine[VCS])
1639
			cmd |= MI_INVALIDATE_BSD;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1653
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1654 1655 1656
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1657
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1658
	struct intel_engine_cs *engine = ringbuf->engine;
1659
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1660
	bool vf_flush_wa = false, dc_flush_wa = false;
1661 1662
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1663
	int len;
1664 1665 1666 1667 1668 1669

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1670
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1671
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1684 1685 1686 1687
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1688
		if (IS_GEN9(request->i915))
1689
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1690 1691 1692 1693

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1694
	}
1695

M
Mika Kuoppala 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1705 1706 1707
	if (ret)
		return ret;

1708 1709 1710 1711 1712 1713 1714 1715 1716
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1726 1727 1728 1729 1730 1731
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1742 1743 1744 1745 1746
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1747
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1748
{
1749
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1750 1751
}

1752
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1753
{
1754
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1755 1756
}

1757
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1769
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1770 1771
}

1772
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1773
{
1774
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1775 1776

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1777
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1778 1779
}

1780 1781 1782 1783 1784 1785 1786
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1787
static int gen8_emit_request(struct drm_i915_gem_request *request)
1788
{
1789
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1790 1791
	int ret;

1792
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1793 1794 1795
	if (ret)
		return ret;

1796 1797
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1798 1799

	intel_logical_ring_emit(ringbuf,
1800 1801
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1802
				intel_hws_seqno_address(request->engine) |
1803
				MI_FLUSH_DW_USE_GTT);
1804
	intel_logical_ring_emit(ringbuf, 0);
1805
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1806 1807
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1808 1809
	return intel_logical_ring_advance_and_submit(request);
}
1810

1811 1812 1813 1814
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1815

1816
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1817 1818 1819
	if (ret)
		return ret;

1820 1821 1822
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1823 1824 1825 1826
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1827
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1828 1829 1830 1831
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1832 1833
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1834 1835
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1836 1837
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1838
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1839
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1840
	return intel_logical_ring_advance_and_submit(request);
1841 1842
}

1843
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1844 1845 1846 1847
{
	struct render_state so;
	int ret;

1848
	ret = i915_gem_render_state_prepare(req->engine, &so);
1849 1850 1851 1852 1853 1854
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1855
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1856
				       I915_DISPATCH_SECURE);
1857 1858 1859
	if (ret)
		goto out;

1860
	ret = req->engine->emit_bb_start(req,
1861 1862 1863 1864 1865
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1866
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1867 1868 1869 1870 1871 1872

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1873
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1874 1875 1876
{
	int ret;

1877
	ret = intel_logical_ring_workarounds_emit(req);
1878 1879 1880
	if (ret)
		return ret;

1881 1882 1883 1884 1885 1886 1887 1888
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1889
	return intel_lr_context_render_state_init(req);
1890 1891
}

1892 1893 1894
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1895
 * @engine: Engine Command Streamer.
1896 1897
 *
 */
1898
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1899
{
1900
	struct drm_i915_private *dev_priv;
1901

1902
	if (!intel_engine_initialized(engine))
1903 1904
		return;

1905 1906 1907 1908 1909 1910 1911
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1912
	dev_priv = engine->i915;
1913

1914 1915 1916
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1917
	}
1918

1919 1920
	if (engine->cleanup)
		engine->cleanup(engine);
1921

1922 1923
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1924

1925
	if (engine->status_page.obj) {
1926
		i915_gem_object_unpin_map(engine->status_page.obj);
1927
		engine->status_page.obj = NULL;
1928
	}
1929
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1930

1931 1932 1933
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1934

1935
	lrc_destroy_wa_ctx_obj(engine);
1936
	engine->i915 = NULL;
1937 1938
}

1939
static void
1940
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1941 1942
{
	/* Default vfuncs which can be overriden by each engine. */
1943 1944 1945 1946 1947 1948
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1949 1950
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1951
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1952
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1953
		engine->set_seqno = bxt_a_set_seqno;
1954 1955 1956
	}
}

1957
static inline void
1958
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1959
{
1960 1961
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1962
	init_waitqueue_head(&engine->irq_queue);
1963 1964
}

1965
static int
1966 1967 1968
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1969
	void *hws;
1970 1971 1972 1973

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1974 1975 1976 1977
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1978
	engine->status_page.obj = dctx_obj;
1979 1980

	return 0;
1981 1982
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2029
{
2030
	const struct logical_ring_info *info = &logical_rings[id];
2031
	struct drm_i915_private *dev_priv = to_i915(dev);
2032
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2033
	enum forcewake_domains fw_domains;
2034

2035 2036 2037 2038 2039
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2040

2041
	engine->i915 = dev_priv;
2042

2043 2044
	/* Intentionally left blank. */
	engine->buffer = NULL;
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2074
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2075 2076 2077 2078 2079 2080 2081

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2082
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2083 2084
	int ret;

2085
	ret = i915_cmd_parser_init_ring(engine);
2086
	if (ret)
2087
		goto error;
2088

2089
	ret = execlists_context_deferred_alloc(dctx, engine);
2090
	if (ret)
2091
		goto error;
2092 2093

	/* As this is the default context, always pin it */
2094
	ret = intel_lr_context_pin(dctx, engine);
2095
	if (ret) {
2096 2097
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2098
		goto error;
2099
	}
2100

2101
	/* And setup the hardware status page. */
2102 2103 2104 2105 2106
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2107

2108 2109 2110
	return 0;

error:
2111
	intel_logical_ring_cleanup(engine);
2112
	return ret;
2113 2114 2115 2116
}

static int logical_render_ring_init(struct drm_device *dev)
{
2117
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2118
	int ret;
2119

2120
	if (HAS_L3_DPF(dev))
2121
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2122

2123
	/* Override some for render ring. */
2124
	if (INTEL_INFO(dev)->gen >= 9)
2125
		engine->init_hw = gen9_init_render_ring;
2126
	else
2127 2128 2129 2130 2131
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2132

2133
	ret = intel_init_pipe_control(engine);
2134 2135 2136
	if (ret)
		return ret;

2137
	ret = intel_init_workaround_bb(engine);
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2148
	ret = logical_ring_init(engine);
2149
	if (ret) {
2150
		lrc_destroy_wa_ctx_obj(engine);
2151
	}
2152 2153

	return ret;
2154 2155 2156 2157
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2158
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2159

2160
	return logical_ring_init(engine);
2161 2162 2163 2164
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2165
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2166

2167
	return logical_ring_init(engine);
2168 2169 2170 2171
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2172
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2173

2174
	return logical_ring_init(engine);
2175 2176 2177 2178
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2179
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2180

2181
	return logical_ring_init(engine);
2182 2183
}

2184 2185 2186 2187 2188
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2189
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2190 2191 2192 2193
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2230
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2231
cleanup_blt_ring:
2232
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2233
cleanup_bsd_ring:
2234
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2235
cleanup_render_ring:
2236
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2237 2238 2239 2240

	return ret;
}

2241
static u32
2242
make_rpcs(struct drm_i915_private *dev_priv)
2243 2244 2245 2246 2247 2248 2249
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2250
	if (INTEL_GEN(dev_priv) < 9)
2251 2252 2253 2254 2255 2256 2257 2258
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2259
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2260
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2261
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2262 2263 2264 2265
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2266
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2267
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2268
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2269 2270 2271 2272
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2273 2274
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2275
			GEN8_RPCS_EU_MIN_SHIFT;
2276
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2277 2278 2279 2280 2281 2282 2283
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2284
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2285 2286 2287
{
	u32 indirect_ctx_offset;

2288
	switch (INTEL_GEN(engine->i915)) {
2289
	default:
2290
		MISSING_CASE(INTEL_GEN(engine->i915));
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2305
static int
2306
populate_lr_context(struct i915_gem_context *ctx,
2307
		    struct drm_i915_gem_object *ctx_obj,
2308 2309
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2310
{
2311
	struct drm_i915_private *dev_priv = ctx->i915;
2312
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2313 2314
	void *vaddr;
	u32 *reg_state;
2315 2316
	int ret;

2317 2318 2319
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2320 2321 2322 2323 2324 2325
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2326 2327 2328 2329
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2330 2331
		return ret;
	}
2332
	ctx_obj->dirty = true;
2333 2334 2335

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2336
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2337 2338 2339 2340 2341 2342

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2343
	reg_state[CTX_LRI_HEADER_0] =
2344 2345 2346
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2347 2348
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2349
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2350
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2351 2352 2353 2354
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2355 2356 2357
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2358 2359 2360 2361
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2362
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2363 2364 2365 2366 2367 2368
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2369
		       RING_BB_PPGTT);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2385 2386 2387 2388 2389 2390 2391
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2392
				intel_lr_indirect_ctx_offset(engine) << 6;
2393 2394 2395 2396 2397

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2398
	}
2399
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2400 2401
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2402
	/* PDP values well be assigned later if needed */
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2419

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2432
		execlists_update_context_pdps(ppgtt, reg_state);
2433 2434
	}

2435
	if (engine->id == RCS) {
2436
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2437
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2438
			       make_rpcs(dev_priv));
2439 2440
	}

2441
	i915_gem_object_unpin_map(ctx_obj);
2442 2443 2444 2445

	return 0;
}

2446 2447
/**
 * intel_lr_context_size() - return the size of the context for an engine
2448
 * @engine: which engine to find the context size for
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2460
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2461 2462 2463
{
	int ret = 0;

2464
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2465

2466
	switch (engine->id) {
2467
	case RCS:
2468
		if (INTEL_GEN(engine->i915) >= 9)
2469 2470 2471
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2482 2483
}

2484
/**
2485
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2486
 * @ctx: LR context to create.
2487
 * @engine: engine to be used with the context.
2488 2489 2490 2491 2492 2493 2494
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2495
 * Return: non-zero on error.
2496
 */
2497
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2498
					    struct intel_engine_cs *engine)
2499
{
2500
	struct drm_i915_gem_object *ctx_obj;
2501
	struct intel_context *ce = &ctx->engine[engine->id];
2502
	uint32_t context_size;
2503
	struct intel_ringbuffer *ringbuf;
2504 2505
	int ret;

2506
	WARN_ON(ce->state);
2507

2508
	context_size = round_up(intel_lr_context_size(engine), 4096);
2509

2510 2511 2512
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2513
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2514
	if (IS_ERR(ctx_obj)) {
2515
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2516
		return PTR_ERR(ctx_obj);
2517 2518
	}

2519
	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2520 2521
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2522
		goto error_deref_obj;
2523 2524
	}

2525
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2526 2527
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2528
		goto error_ringbuf;
2529 2530
	}

2531 2532 2533
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2534 2535

	return 0;
2536

2537 2538
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2539
error_deref_obj:
2540
	drm_gem_object_unreference(&ctx_obj->base);
2541 2542
	ce->ringbuf = NULL;
	ce->state = NULL;
2543
	return ret;
2544
}
2545

2546
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2547
			    struct i915_gem_context *ctx)
2548
{
2549
	struct intel_engine_cs *engine;
2550

2551
	for_each_engine(engine, dev_priv) {
2552 2553
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2554
		void *vaddr;
2555 2556 2557 2558 2559
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2560 2561
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2562
			continue;
2563 2564 2565

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2566 2567 2568 2569

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2570
		i915_gem_object_unpin_map(ctx_obj);
2571

2572 2573
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2574 2575
	}
}