hugetlb.c 75.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64 65 66 67 68
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
409 410
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
411 412 413
{
	int i;

414
	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
H
Hannes Eder 已提交
415 416 417
		clear_gigantic_page(page, addr, sz);
		return;
	}
418

419
	might_sleep();
420
	for (i = 0; i < sz/PAGE_SIZE; i++) {
421
		cond_resched();
422
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423 424 425
	}
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
443
static void copy_huge_page(struct page *dst, struct page *src,
444
			   unsigned long addr, struct vm_area_struct *vma)
445 446
{
	int i;
447
	struct hstate *h = hstate_vma(vma);
448

H
Hannes Eder 已提交
449 450 451 452
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
453

454
	might_sleep();
455
	for (i = 0; i < pages_per_huge_page(h); i++) {
456
		cond_resched();
457
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
458 459 460
	}
}

461
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
462 463
{
	int nid = page_to_nid(page);
464 465 466
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
467 468
}

469 470
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
471
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
472
{
473
	int nid;
L
Linus Torvalds 已提交
474
	struct page *page = NULL;
475
	struct mempolicy *mpol;
476
	nodemask_t *nodemask;
477
	struct zonelist *zonelist;
478 479
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
480

481 482 483
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
484 485 486 487 488
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
489
	if (!vma_has_reserves(vma) &&
490
			h->free_huge_pages - h->resv_huge_pages == 0)
491
		goto err;
492

493
	/* If reserves cannot be used, ensure enough pages are in the pool */
494
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
495
		goto err;;
496

497 498
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
499 500
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
501 502
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
503 504
					  struct page, lru);
			list_del(&page->lru);
505 506
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
507 508

			if (!avoid_reserve)
509
				decrement_hugepage_resv_vma(h, vma);
510

K
Ken Chen 已提交
511
			break;
A
Andrew Morton 已提交
512
		}
L
Linus Torvalds 已提交
513
	}
514
err:
515
	mpol_cond_put(mpol);
516
	put_mems_allowed();
L
Linus Torvalds 已提交
517 518 519
	return page;
}

520
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
521 522
{
	int i;
523

524 525
	VM_BUG_ON(h->order >= MAX_ORDER);

526 527 528
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
529 530 531 532 533 534
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
535
	arch_release_hugepage(page);
536
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
537 538
}

539 540 541 542 543 544 545 546 547 548 549
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

550 551
static void free_huge_page(struct page *page)
{
552 553 554 555
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
556
	struct hstate *h = page_hstate(page);
557
	int nid = page_to_nid(page);
558
	struct address_space *mapping;
559

560
	mapping = (struct address_space *) page_private(page);
561
	set_page_private(page, 0);
562
	page->mapping = NULL;
563
	BUG_ON(page_count(page));
564
	BUG_ON(page_mapcount(page));
565 566 567
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
568
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
569 570 571
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
572
	} else {
573
		enqueue_huge_page(h, page);
574
	}
575
	spin_unlock(&hugetlb_lock);
576
	if (mapping)
577
		hugetlb_put_quota(mapping, 1);
578 579
}

580
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
581 582 583
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
584 585
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
586 587 588 589
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

618 619
EXPORT_SYMBOL_GPL(PageHuge);

620
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
621 622
{
	struct page *page;
623

624 625 626
	if (h->order >= MAX_ORDER)
		return NULL;

627
	page = alloc_pages_exact_node(nid,
628 629
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
630
		huge_page_order(h));
L
Linus Torvalds 已提交
631
	if (page) {
632
		if (arch_prepare_hugepage(page)) {
633
			__free_pages(page, huge_page_order(h));
634
			return NULL;
635
		}
636
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
637
	}
638 639 640 641

	return page;
}

642
/*
643 644 645 646 647
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
648
 */
649
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
650
{
651
	nid = next_node(nid, *nodes_allowed);
652
	if (nid == MAX_NUMNODES)
653
		nid = first_node(*nodes_allowed);
654 655 656 657 658
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

659 660 661 662 663 664 665
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

666
/*
667 668 669 670
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
671
 */
672 673
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
674
{
675 676 677 678 679 680
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
681 682

	return nid;
683 684
}

685
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
686 687 688 689 690 691
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

692
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
693
	next_nid = start_nid;
694 695

	do {
696
		page = alloc_fresh_huge_page_node(h, next_nid);
697
		if (page) {
698
			ret = 1;
699 700
			break;
		}
701
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
702
	} while (next_nid != start_nid);
703

704 705 706 707 708
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

709
	return ret;
L
Linus Torvalds 已提交
710 711
}

712
/*
713 714 715 716
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
717
 */
718
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
719
{
720 721 722 723 724 725
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
726 727

	return nid;
728 729 730 731 732 733 734 735
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
736 737
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
738 739 740 741 742
{
	int start_nid;
	int next_nid;
	int ret = 0;

743
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
744 745 746
	next_nid = start_nid;

	do {
747 748 749 750 751 752
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
753 754 755 756 757 758
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
759 760 761 762
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
763 764
			update_and_free_page(h, page);
			ret = 1;
765
			break;
766
		}
767
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
768
	} while (next_nid != start_nid);
769 770 771 772

	return ret;
}

773 774
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
775 776
{
	struct page *page;
777
	unsigned int nid;
778

779 780 781
	if (h->order >= MAX_ORDER)
		return NULL;

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
806
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
807 808 809
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
810 811
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
812 813 814
	}
	spin_unlock(&hugetlb_lock);

815 816
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
817
					huge_page_order(h));
818

819 820 821 822 823
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

824
	spin_lock(&hugetlb_lock);
825
	if (page) {
826 827 828 829 830 831
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
832
		nid = page_to_nid(page);
833
		set_compound_page_dtor(page, free_huge_page);
834 835 836
		/*
		 * We incremented the global counters already
		 */
837 838
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
839
		__count_vm_event(HTLB_BUDDY_PGALLOC);
840
	} else {
841 842
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
843
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
844
	}
845
	spin_unlock(&hugetlb_lock);
846 847 848 849

	return page;
}

850 851 852 853
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
854
static int gather_surplus_pages(struct hstate *h, int delta)
855 856 857 858 859 860
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

861
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
862
	if (needed <= 0) {
863
		h->resv_huge_pages += delta;
864
		return 0;
865
	}
866 867 868 869 870 871 872 873

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
874
		page = alloc_buddy_huge_page(h, NULL, 0);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
895 896
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
897 898 899 900 901 902 903
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
904 905 906
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
907 908
	 */
	needed += allocated;
909
	h->resv_huge_pages += delta;
910 911
	ret = 0;
free:
912
	/* Free the needed pages to the hugetlb pool */
913
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
914 915
		if ((--needed) < 0)
			break;
916
		list_del(&page->lru);
917
		enqueue_huge_page(h, page);
918 919 920 921 922 923 924
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
925
			/*
926 927 928
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
929 930 931
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
932
			free_huge_page(page);
933
		}
934
		spin_lock(&hugetlb_lock);
935 936 937 938 939 940 941 942 943
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
944
 * Called with hugetlb_lock held.
945
 */
946 947
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
948 949 950
{
	unsigned long nr_pages;

951
	/* Uncommit the reservation */
952
	h->resv_huge_pages -= unused_resv_pages;
953

954 955 956 957
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

958
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
959

960 961
	/*
	 * We want to release as many surplus pages as possible, spread
962 963 964 965 966
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
967 968
	 */
	while (nr_pages--) {
969
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
970
			break;
971 972 973
	}
}

974 975 976 977 978 979 980 981 982
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
983
static long vma_needs_reservation(struct hstate *h,
984
			struct vm_area_struct *vma, unsigned long addr)
985 986 987 988
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

989
	if (vma->vm_flags & VM_MAYSHARE) {
990
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 992 993
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

994 995
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
996

997
	} else  {
998
		long err;
999
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1000 1001 1002 1003 1004 1005 1006
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1007
}
1008 1009
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1010 1011 1012 1013
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1014
	if (vma->vm_flags & VM_MAYSHARE) {
1015
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1017 1018

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1019
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1020 1021 1022 1023
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1024 1025 1026
	}
}

1027
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1028
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1029
{
1030
	struct hstate *h = hstate_vma(vma);
1031
	struct page *page;
1032 1033
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1034
	long chg;
1035 1036 1037 1038 1039

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1040 1041
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1042
	 */
1043
	chg = vma_needs_reservation(h, vma, addr);
1044 1045 1046
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1047 1048
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1049 1050

	spin_lock(&hugetlb_lock);
1051
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1052
	spin_unlock(&hugetlb_lock);
1053

K
Ken Chen 已提交
1054
	if (!page) {
1055
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1056
		if (!page) {
1057
			hugetlb_put_quota(inode->i_mapping, chg);
1058
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1059 1060
		}
	}
1061

1062 1063
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1064

1065
	vma_commit_reservation(h, vma, addr);
1066

1067
	return page;
1068 1069
}

1070
int __weak alloc_bootmem_huge_page(struct hstate *h)
1071 1072
{
	struct huge_bootmem_page *m;
1073
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1074 1075 1076 1077 1078

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1079
				NODE_DATA(hstate_next_node_to_alloc(h,
1080
						&node_states[N_HIGH_MEMORY])),
1081 1082 1083 1084 1085 1086 1087 1088 1089
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1090
			goto found;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1104 1105 1106 1107 1108 1109 1110 1111
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1122
		prep_compound_huge_page(page, h->order);
1123 1124 1125 1126
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1127
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1128 1129
{
	unsigned long i;
1130

1131
	for (i = 0; i < h->max_huge_pages; ++i) {
1132 1133 1134
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1135 1136
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1137 1138
			break;
	}
1139
	h->max_huge_pages = i;
1140 1141 1142 1143 1144 1145 1146
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1147 1148 1149
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1150 1151 1152
	}
}

A
Andi Kleen 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1164 1165 1166 1167 1168
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1169 1170 1171 1172 1173
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1174 1175 1176
	}
}

L
Linus Torvalds 已提交
1177
#ifdef CONFIG_HIGHMEM
1178 1179
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1180
{
1181 1182
	int i;

1183 1184 1185
	if (h->order >= MAX_ORDER)
		return;

1186
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1187
		struct page *page, *next;
1188 1189 1190
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1191
				return;
L
Linus Torvalds 已提交
1192 1193 1194
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1195
			update_and_free_page(h, page);
1196 1197
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1198 1199 1200 1201
		}
	}
}
#else
1202 1203
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1204 1205 1206 1207
{
}
#endif

1208 1209 1210 1211 1212
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1213 1214
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1215
{
1216
	int start_nid, next_nid;
1217 1218 1219 1220
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1221
	if (delta < 0)
1222
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1223
	else
1224
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1225 1226 1227 1228 1229 1230 1231 1232
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1233
			if (!h->surplus_huge_pages_node[nid]) {
1234 1235
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1236
				continue;
1237
			}
1238 1239 1240 1241 1242 1243
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1244
						h->nr_huge_pages_node[nid]) {
1245 1246
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1247
				continue;
1248
			}
1249
		}
1250 1251 1252 1253 1254

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1255
	} while (next_nid != start_nid);
1256 1257 1258 1259

	return ret;
}

1260
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1261 1262
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1263
{
1264
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1265

1266 1267 1268
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1269 1270 1271 1272
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1273 1274 1275 1276 1277 1278
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1279
	 */
L
Linus Torvalds 已提交
1280
	spin_lock(&hugetlb_lock);
1281
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1282
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1283 1284 1285
			break;
	}

1286
	while (count > persistent_huge_pages(h)) {
1287 1288 1289 1290 1291 1292
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1293
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1294 1295 1296 1297
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1298 1299 1300
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1301 1302 1303 1304 1305 1306 1307 1308
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1309 1310 1311 1312 1313 1314 1315 1316
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1317
	 */
1318
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1319
	min_count = max(count, min_count);
1320
	try_to_free_low(h, min_count, nodes_allowed);
1321
	while (min_count < persistent_huge_pages(h)) {
1322
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1323 1324
			break;
	}
1325
	while (count < persistent_huge_pages(h)) {
1326
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1327 1328 1329
			break;
	}
out:
1330
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1331
	spin_unlock(&hugetlb_lock);
1332
	return ret;
L
Linus Torvalds 已提交
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1345 1346 1347
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1348 1349
{
	int i;
1350

1351
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1352 1353 1354
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1355
			return &hstates[i];
1356 1357 1358
		}

	return kobj_to_node_hstate(kobj, nidp);
1359 1360
}

1361
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1362 1363
					struct kobj_attribute *attr, char *buf)
{
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1375
}
1376 1377 1378
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1379 1380
{
	int err;
1381
	int nid;
1382
	unsigned long count;
1383
	struct hstate *h;
1384
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1385

1386
	err = strict_strtoul(buf, 10, &count);
1387 1388 1389
	if (err)
		return 0;

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1410
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1411

1412
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		NODEMASK_FREE(nodes_allowed);

	return len;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1428 1429 1430
}
HSTATE_ATTR(nr_hugepages);

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1452 1453 1454
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1455
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1456 1457 1458 1459 1460 1461 1462
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1463
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1491 1492 1493 1494 1495 1496
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1497
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1498 1499 1500 1501 1502 1503 1504
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1516 1517 1518 1519 1520 1521 1522 1523 1524
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1525 1526 1527
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1528 1529 1530 1531 1532 1533 1534
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1535 1536 1537
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1538 1539
{
	int retval;
1540
	int hi = h - hstates;
1541

1542 1543
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1544 1545
		return -ENOMEM;

1546
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1547
	if (retval)
1548
		kobject_put(hstate_kobjs[hi]);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1563 1564
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1565 1566 1567 1568 1569 1570
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1633
		return;		/* no hstate attributes */
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1698 1699 1700
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1701 1702 1703 1704 1705
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1706
	for_each_node_state(nid, N_HIGH_MEMORY) {
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1735 1736 1737 1738
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1739 1740
	hugetlb_unregister_all_nodes();

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1751 1752 1753 1754 1755 1756
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1757

1758 1759 1760 1761
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1762
	}
1763 1764 1765
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1766 1767 1768

	hugetlb_init_hstates();

1769 1770
	gather_bootmem_prealloc();

1771 1772 1773 1774
	report_hugepages();

	hugetlb_sysfs_init();

1775 1776
	hugetlb_register_all_nodes();

1777 1778 1779 1780 1781 1782 1783 1784
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1785 1786
	unsigned long i;

1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1796 1797 1798 1799
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1800 1801
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1802 1803
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1804

1805 1806 1807
	parsed_hstate = h;
}

1808
static int __init hugetlb_nrpages_setup(char *s)
1809 1810
{
	unsigned long *mhp;
1811
	static unsigned long *last_mhp;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1822 1823 1824 1825 1826 1827
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1828 1829 1830
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1841 1842
	return 1;
}
1843 1844 1845 1846 1847 1848 1849 1850
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1864 1865 1866
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1867
{
1868 1869 1870 1871 1872 1873 1874 1875
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1876
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1877

1878
	if (write) {
1879 1880
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1891

L
Linus Torvalds 已提交
1892 1893
	return 0;
}
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1912
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1913
			void __user *buffer,
1914 1915
			size_t *length, loff_t *ppos)
{
1916
	proc_dointvec(table, write, buffer, length, ppos);
1917 1918 1919 1920 1921 1922 1923
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1924
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1925
			void __user *buffer,
1926 1927
			size_t *length, loff_t *ppos)
{
1928
	struct hstate *h = &default_hstate;
1929 1930 1931 1932 1933 1934 1935
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1936
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1937 1938 1939 1940 1941 1942 1943

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1944 1945 1946
	return 0;
}

L
Linus Torvalds 已提交
1947 1948
#endif /* CONFIG_SYSCTL */

1949
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1950
{
1951
	struct hstate *h = &default_hstate;
1952
	seq_printf(m,
1953 1954 1955 1956 1957
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1958 1959 1960 1961 1962
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1963 1964 1965 1966
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1967
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1968 1969
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1970 1971
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1972 1973 1974
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1980 1981
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1982 1983
}

1984
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2007
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2008 2009
			goto out;

2010 2011
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2012 2013 2014 2015 2016 2017
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2018
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2019 2020 2021 2022 2023 2024

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2041 2042
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2043
	struct hstate *h = hstate_vma(vma);
2044 2045 2046 2047 2048 2049
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2050 2051
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2052 2053 2054 2055 2056 2057

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2058
		if (reserve) {
2059
			hugetlb_acct_memory(h, -reserve);
2060 2061
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2062
	}
2063 2064
}

L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2071
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2072 2073
{
	BUG();
N
Nick Piggin 已提交
2074
	return 0;
L
Linus Torvalds 已提交
2075 2076
}

2077
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2078
	.fault = hugetlb_vm_op_fault,
2079
	.open = hugetlb_vm_op_open,
2080
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2081 2082
};

2083 2084
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2085 2086 2087
{
	pte_t entry;

2088
	if (writable) {
D
David Gibson 已提交
2089 2090 2091
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2092
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2093 2094 2095 2096 2097 2098 2099
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2100 2101 2102 2103 2104
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2105 2106
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2107
		update_mmu_cache(vma, address, ptep);
2108
	}
2109 2110 2111
}


D
David Gibson 已提交
2112 2113 2114 2115 2116
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2117
	unsigned long addr;
2118
	int cow;
2119 2120
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2121 2122

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2123

2124
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2125 2126 2127
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2128
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2129 2130
		if (!dst_pte)
			goto nomem;
2131 2132 2133 2134 2135

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2136
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2137
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2138
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2139
			if (cow)
2140 2141
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2142 2143
			ptepage = pte_page(entry);
			get_page(ptepage);
2144
			page_dup_rmap(ptepage);
2145 2146 2147
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2148
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2149 2150 2151 2152 2153 2154 2155
	}
	return 0;

nomem:
	return -ENOMEM;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
		return 1;
	} else
		return 0;
}

2169
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2170
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2171 2172 2173
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2174
	pte_t *ptep;
D
David Gibson 已提交
2175 2176
	pte_t pte;
	struct page *page;
2177
	struct page *tmp;
2178 2179 2180
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2181 2182 2183 2184 2185
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2186
	LIST_HEAD(page_list);
D
David Gibson 已提交
2187 2188

	WARN_ON(!is_vm_hugetlb_page(vma));
2189 2190
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2191

A
Andrea Arcangeli 已提交
2192
	mmu_notifier_invalidate_range_start(mm, start, end);
2193
	spin_lock(&mm->page_table_lock);
2194
	for (address = start; address < end; address += sz) {
2195
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2196
		if (!ptep)
2197 2198
			continue;

2199 2200 2201
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2223
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2224
		if (huge_pte_none(pte))
D
David Gibson 已提交
2225
			continue;
2226

2227 2228 2229 2230 2231 2232
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2233
		page = pte_page(pte);
2234 2235
		if (pte_dirty(pte))
			set_page_dirty(page);
2236
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2237
	}
L
Linus Torvalds 已提交
2238
	spin_unlock(&mm->page_table_lock);
2239
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2240
	mmu_notifier_invalidate_range_end(mm, start, end);
2241
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2242
		page_remove_rmap(page);
2243 2244 2245
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2246
}
D
David Gibson 已提交
2247

2248
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2249
			  unsigned long end, struct page *ref_page)
2250
{
2251 2252 2253
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2254 2255
}

2256 2257 2258 2259 2260 2261
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2262 2263
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2264
{
2265
	struct hstate *h = hstate_vma(vma);
2266 2267 2268 2269 2270 2271 2272 2273 2274
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2275
	address = address & huge_page_mask(h);
2276 2277 2278 2279
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2280 2281 2282 2283 2284 2285
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	spin_lock(&mapping->i_mmap_lock);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2299
			__unmap_hugepage_range(iter_vma,
2300
				address, address + huge_page_size(h),
2301 2302
				page);
	}
2303
	spin_unlock(&mapping->i_mmap_lock);
2304 2305 2306 2307

	return 1;
}

2308 2309 2310
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 */
2311
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2312 2313
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2314
{
2315
	struct hstate *h = hstate_vma(vma);
2316
	struct page *old_page, *new_page;
2317
	int avoidcopy;
2318
	int outside_reserve = 0;
2319 2320 2321

	old_page = pte_page(pte);

2322
retry_avoidcopy:
2323 2324
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2325
	avoidcopy = (page_mapcount(old_page) == 1);
2326
	if (avoidcopy) {
2327 2328
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2329
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2330
		return 0;
2331 2332
	}

2333 2334 2335 2336 2337 2338 2339 2340 2341
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2342
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2343 2344 2345 2346
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2347
	page_cache_get(old_page);
2348 2349 2350

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2351
	new_page = alloc_huge_page(vma, address, outside_reserve);
2352

2353
	if (IS_ERR(new_page)) {
2354
		page_cache_release(old_page);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2368
				spin_lock(&mm->page_table_lock);
2369 2370 2371 2372 2373
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2374 2375
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2376
		return -PTR_ERR(new_page);
2377 2378
	}

2379 2380 2381 2382 2383 2384 2385
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

2386
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2387
	__SetPageUptodate(new_page);
2388

2389 2390 2391 2392 2393
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2394
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2395
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2396
		/* Break COW */
2397 2398 2399
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2400
		huge_ptep_clear_flush(vma, address, ptep);
2401 2402
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2403
		page_remove_rmap(old_page);
2404
		hugepage_add_new_anon_rmap(new_page, vma, address);
2405 2406
		/* Make the old page be freed below */
		new_page = old_page;
2407 2408 2409
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2410 2411 2412
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2413
	return 0;
2414 2415
}

2416
/* Return the pagecache page at a given address within a VMA */
2417 2418
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2419 2420
{
	struct address_space *mapping;
2421
	pgoff_t idx;
2422 2423

	mapping = vma->vm_file->f_mapping;
2424
	idx = vma_hugecache_offset(h, vma, address);
2425 2426 2427 2428

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2429 2430 2431 2432 2433
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2449
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2450
			unsigned long address, pte_t *ptep, unsigned int flags)
2451
{
2452
	struct hstate *h = hstate_vma(vma);
2453
	int ret = VM_FAULT_SIGBUS;
2454
	pgoff_t idx;
A
Adam Litke 已提交
2455 2456 2457
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2458
	pte_t new_pte;
A
Adam Litke 已提交
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2472
	mapping = vma->vm_file->f_mapping;
2473
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2474 2475 2476 2477 2478

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2479 2480 2481
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2482
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2483 2484
		if (idx >= size)
			goto out;
2485
		page = alloc_huge_page(vma, address, 0);
2486 2487
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2488 2489
			goto out;
		}
2490
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2491
		__SetPageUptodate(page);
2492

2493
		if (vma->vm_flags & VM_MAYSHARE) {
2494
			int err;
K
Ken Chen 已提交
2495
			struct inode *inode = mapping->host;
2496 2497 2498 2499 2500 2501 2502 2503

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2504 2505

			spin_lock(&inode->i_lock);
2506
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2507
			spin_unlock(&inode->i_lock);
2508
			page_dup_rmap(page);
2509
		} else {
2510
			lock_page(page);
2511 2512 2513 2514 2515
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			hugepage_add_new_anon_rmap(page, vma, address);
2516
		}
2517 2518
	} else {
		page_dup_rmap(page);
2519
	}
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	/*
	 * Since memory error handler replaces pte into hwpoison swap entry
	 * at the time of error handling, a process which reserved but not have
	 * the mapping to the error hugepage does not have hwpoison swap entry.
	 * So we need to block accesses from such a process by checking
	 * PG_hwpoison bit here.
	 */
	if (unlikely(PageHWPoison(page))) {
		ret = VM_FAULT_HWPOISON;
		goto backout_unlocked;
2531
	}
2532

2533 2534 2535 2536 2537 2538
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2539
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2540 2541 2542 2543
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2544

2545
	spin_lock(&mm->page_table_lock);
2546
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2547 2548 2549
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2550
	ret = 0;
2551
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2552 2553
		goto backout;

2554 2555 2556 2557
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2558
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2559
		/* Optimization, do the COW without a second fault */
2560
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2561 2562
	}

2563
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2564 2565
	unlock_page(page);
out:
2566
	return ret;
A
Adam Litke 已提交
2567 2568 2569

backout:
	spin_unlock(&mm->page_table_lock);
2570
backout_unlocked:
A
Adam Litke 已提交
2571 2572 2573
	unlock_page(page);
	put_page(page);
	goto out;
2574 2575
}

2576
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2577
			unsigned long address, unsigned int flags)
2578 2579 2580
{
	pte_t *ptep;
	pte_t entry;
2581
	int ret;
2582
	struct page *page = NULL;
2583
	struct page *pagecache_page = NULL;
2584
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2585
	struct hstate *h = hstate_vma(vma);
2586

2587 2588 2589 2590 2591 2592 2593
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
			return VM_FAULT_HWPOISON;
	}

2594
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2595 2596 2597
	if (!ptep)
		return VM_FAULT_OOM;

2598 2599 2600 2601 2602 2603
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2604 2605
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2606
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2607
		goto out_mutex;
2608
	}
2609

N
Nick Piggin 已提交
2610
	ret = 0;
2611

2612 2613 2614 2615 2616 2617 2618 2619
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2620
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2621 2622
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2623
			goto out_mutex;
2624
		}
2625

2626
		if (!(vma->vm_flags & VM_MAYSHARE))
2627 2628 2629 2630
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2631 2632 2633 2634 2635 2636 2637 2638 2639
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2640 2641
		lock_page(page);

2642 2643
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2644 2645 2646 2647
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2648
	if (flags & FAULT_FLAG_WRITE) {
2649
		if (!pte_write(entry)) {
2650 2651
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2652 2653 2654 2655 2656
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2657 2658
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2659
		update_mmu_cache(vma, address, ptep);
2660 2661

out_page_table_lock:
2662
	spin_unlock(&mm->page_table_lock);
2663 2664 2665 2666 2667

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2668
	unlock_page(page);
2669

2670
out_mutex:
2671
	mutex_unlock(&hugetlb_instantiation_mutex);
2672 2673

	return ret;
2674 2675
}

A
Andi Kleen 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2685 2686
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2687
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2688
			unsigned int flags)
D
David Gibson 已提交
2689
{
2690 2691
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2692
	int remainder = *length;
2693
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2694

2695
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2696
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2697
		pte_t *pte;
H
Hugh Dickins 已提交
2698
		int absent;
A
Adam Litke 已提交
2699
		struct page *page;
D
David Gibson 已提交
2700

A
Adam Litke 已提交
2701 2702
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2703
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2704 2705
		 * first, for the page indexing below to work.
		 */
2706
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2707 2708 2709 2710
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2711 2712 2713 2714
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2715
		 */
H
Hugh Dickins 已提交
2716 2717
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2718 2719 2720
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2721

H
Hugh Dickins 已提交
2722 2723
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2724
			int ret;
D
David Gibson 已提交
2725

A
Adam Litke 已提交
2726
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2727 2728
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2729
			spin_lock(&mm->page_table_lock);
2730
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2731
				continue;
D
David Gibson 已提交
2732

A
Adam Litke 已提交
2733 2734 2735 2736
			remainder = 0;
			break;
		}

2737
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2738
		page = pte_page(huge_ptep_get(pte));
2739
same_page:
2740
		if (pages) {
H
Hugh Dickins 已提交
2741
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2742
			get_page(pages[i]);
2743
		}
D
David Gibson 已提交
2744 2745 2746 2747 2748

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2749
		++pfn_offset;
D
David Gibson 已提交
2750 2751
		--remainder;
		++i;
2752
		if (vaddr < vma->vm_end && remainder &&
2753
				pfn_offset < pages_per_huge_page(h)) {
2754 2755 2756 2757 2758 2759
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2760
	}
2761
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2762 2763 2764
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2765
	return i ? i : -EFAULT;
D
David Gibson 已提交
2766
}
2767 2768 2769 2770 2771 2772 2773 2774

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2775
	struct hstate *h = hstate_vma(vma);
2776 2777 2778 2779

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2780
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2781
	spin_lock(&mm->page_table_lock);
2782
	for (; address < end; address += huge_page_size(h)) {
2783 2784 2785
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2786 2787
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2788
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2789 2790 2791 2792 2793 2794
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2795
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2796 2797 2798 2799

	flush_tlb_range(vma, start, end);
}

2800 2801
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2802 2803
					struct vm_area_struct *vma,
					int acctflag)
2804
{
2805
	long ret, chg;
2806
	struct hstate *h = hstate_inode(inode);
2807

2808 2809 2810 2811 2812 2813 2814 2815
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2816 2817 2818 2819 2820 2821
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2822
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2823
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2824 2825 2826 2827 2828
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2829
		chg = to - from;
2830

2831 2832 2833 2834
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2835 2836
	if (chg < 0)
		return chg;
2837

2838
	/* There must be enough filesystem quota for the mapping */
2839 2840
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2841 2842

	/*
2843 2844
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2845
	 */
2846
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2847 2848
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2849
		return ret;
K
Ken Chen 已提交
2850
	}
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2863
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2864
		region_add(&inode->i_mapping->private_list, from, to);
2865 2866 2867 2868 2869
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2870
	struct hstate *h = hstate_inode(inode);
2871
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2872 2873

	spin_lock(&inode->i_lock);
2874
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2875 2876
	spin_unlock(&inode->i_lock);

2877
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2878
	hugetlb_acct_memory(h, -(chg - freed));
2879
}
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
void __isolate_hwpoisoned_huge_page(struct page *hpage)
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	spin_lock(&hugetlb_lock);
	list_del(&hpage->lru);
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	spin_unlock(&hugetlb_lock);
}