sched.c 159.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
58
#include <linux/tsacct_kern.h>
59
#include <linux/kprobes.h>
60
#include <linux/delayacct.h>
61
#include <linux/reciprocal_div.h>
62
#include <linux/unistd.h>
L
Linus Torvalds 已提交
63

64
#include <asm/tlb.h>
L
Linus Torvalds 已提交
65

66 67 68 69 70 71 72 73 74 75
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
134 135 136
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

137
/*
I
Ingo Molnar 已提交
138
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 140
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
141
static unsigned int static_prio_timeslice(int static_prio)
142
{
I
Ingo Molnar 已提交
143 144 145 146 147 148 149
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
164
/*
I
Ingo Molnar 已提交
165
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
166
 */
I
Ingo Molnar 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
209

I
Ingo Molnar 已提交
210 211 212 213 214 215 216
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
217 218 219 220 221 222 223
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
224
struct rq {
I
Ingo Molnar 已提交
225
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
226 227 228 229 230 231

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
232 233
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234
	unsigned char idle_at_tick;
235 236 237
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
238 239 240 241 242 243 244
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
245
#endif
I
Ingo Molnar 已提交
246
	struct rt_rq  rt;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

256
	struct task_struct *curr, *idle;
257
	unsigned long next_balance;
L
Linus Torvalds 已提交
258
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
259 260 261 262 263 264 265 266 267

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
276
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
277

278
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
301
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
302 303
};

304
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
305
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
306

I
Ingo Molnar 已提交
307 308 309 310 311
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

312 313 314 315 316 317 318 319 320
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
367 368
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
369
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
370 371 372 373
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
374 375
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
376 377 378 379 380 381

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391 392 393
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
394
#ifndef prepare_arch_switch
395 396 397 398 399 400 401
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
402
static inline int task_running(struct rq *rq, struct task_struct *p)
403 404 405 406
{
	return rq->curr == p;
}

407
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
408 409 410
{
}

411
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
412
{
413 414 415 416
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
417 418 419 420 421 422 423
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

424 425 426 427
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
428
static inline int task_running(struct rq *rq, struct task_struct *p)
429 430 431 432 433 434 435 436
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

437
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

454
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
455 456 457 458 459 460 461 462 463 464 465 466
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
467
#endif
468 469
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
470

471 472 473 474
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
475
static inline struct rq *__task_rq_lock(struct task_struct *p)
476 477
	__acquires(rq->lock)
{
478
	struct rq *rq;
479 480 481 482 483 484 485 486 487 488 489

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
490 491 492 493 494
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
495
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
496 497
	__acquires(rq->lock)
{
498
	struct rq *rq;
L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506 507 508 509 510

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

511
static inline void __task_rq_unlock(struct rq *rq)
512 513 514 515 516
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

517
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
518 519 520 521 522 523
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
524
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
525
 */
526
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
527 528
	__acquires(rq->lock)
{
529
	struct rq *rq;
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
I
Ingo Molnar 已提交
721
#define load_weight(lp) \
722 723
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
I
Ingo Molnar 已提交
724
	load_weight(static_prio_timeslice(prio))
725
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
I
Ingo Molnar 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))

#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
739 740 741
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
742 743 744 745 746 747 748 749 750
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

751 752 753 754 755 756 757
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
758 759 760 761
static const u32 prio_to_wmult[40] = {
	48356,   60446,   75558,   94446,  118058,  147573,
	184467,  230589,  288233,  360285,  450347,
	562979,  703746,  879575, 1099582, 1374389,
762
	1717986, 2147483, 2684354, 3355443, 4194304,
763
	5244160, 6557201, 8196502, 10250518, 12782640,
I
Ingo Molnar 已提交
764 765 766 767
	16025997, 19976592, 24970740, 31350126, 39045157,
	49367440, 61356675, 76695844, 95443717, 119304647,
	148102320, 186737708, 238609294, 286331153,
};
768

769
static inline void
I
Ingo Molnar 已提交
770
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
771
{
I
Ingo Molnar 已提交
772 773
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
774 775
}

776
static inline void
I
Ingo Molnar 已提交
777
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
778
{
I
Ingo Molnar 已提交
779 780
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
781 782
}

I
Ingo Molnar 已提交
783
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
784 785
{
	rq->nr_running++;
I
Ingo Molnar 已提交
786
	inc_load(rq, p, now);
787 788
}

I
Ingo Molnar 已提交
789
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
790 791
{
	rq->nr_running--;
I
Ingo Molnar 已提交
792
	dec_load(rq, p, now);
793 794
}

I
Ingo Molnar 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

825 826
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
827 828 829
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

830
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
831 832 833 834
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
835

I
Ingo Molnar 已提交
836 837 838 839 840 841 842 843
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
844

I
Ingo Molnar 已提交
845 846
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
847 848
}

I
Ingo Molnar 已提交
849 850
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
851
{
I
Ingo Molnar 已提交
852 853 854
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
855 856
}

I
Ingo Molnar 已提交
857 858
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
859
{
I
Ingo Molnar 已提交
860 861
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
862 863
}

864
/*
I
Ingo Molnar 已提交
865
 * __normal_prio - return the priority that is based on the static prio
866 867 868
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
869
	return p->static_prio;
870 871
}

872 873 874 875 876 877 878
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
879
static inline int normal_prio(struct task_struct *p)
880 881 882
{
	int prio;

883
	if (task_has_rt_policy(p))
884 885 886 887 888 889 890 891 892 893 894 895 896
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
897
static int effective_prio(struct task_struct *p)
898 899 900 901 902 903 904 905 906 907 908 909
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
910
/*
I
Ingo Molnar 已提交
911
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
912
 */
I
Ingo Molnar 已提交
913
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
914
{
I
Ingo Molnar 已提交
915
	u64 now = rq_clock(rq);
916

I
Ingo Molnar 已提交
917 918
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
919

I
Ingo Molnar 已提交
920 921
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
922 923 924
}

/*
I
Ingo Molnar 已提交
925
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
926
 */
I
Ingo Molnar 已提交
927
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
928
{
I
Ingo Molnar 已提交
929
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
930

I
Ingo Molnar 已提交
931 932
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
933

I
Ingo Molnar 已提交
934 935
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
936 937 938 939 940
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
941
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
942
{
I
Ingo Molnar 已提交
943 944 945 946 947 948 949
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
950 951 952 953 954 955
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
956
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
957 958 959 960
{
	return cpu_curr(task_cpu(p)) == p;
}

961 962 963
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
964 965 966 967 968 969 970 971 972
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
973 974
}

L
Linus Torvalds 已提交
975
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
976

I
Ingo Molnar 已提交
977
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
978
{
I
Ingo Molnar 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
998 999
}

1000
struct migration_req {
L
Linus Torvalds 已提交
1001 1002
	struct list_head list;

1003
	struct task_struct *task;
L
Linus Torvalds 已提交
1004 1005 1006
	int dest_cpu;

	struct completion done;
1007
};
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1013
static int
1014
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1015
{
1016
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1022
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028 1029 1030
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1031

L
Linus Torvalds 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1044
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1045 1046
{
	unsigned long flags;
I
Ingo Molnar 已提交
1047
	int running, on_rq;
1048
	struct rq *rq;
L
Linus Torvalds 已提交
1049 1050

repeat:
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1078
	rq = task_rq_lock(p, &flags);
1079
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1080
	on_rq = p->se.on_rq;
1081 1082 1083 1084 1085 1086 1087 1088 1089
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1090 1091 1092
		cpu_relax();
		goto repeat;
	}
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1103
	if (unlikely(on_rq)) {
1104 1105 1106 1107 1108 1109 1110 1111 1112
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1128
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1140 1141
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1142 1143 1144 1145
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1146
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1147
{
1148
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1149
	unsigned long total = weighted_cpuload(cpu);
1150

1151
	if (type == 0)
I
Ingo Molnar 已提交
1152
		return total;
1153

I
Ingo Molnar 已提交
1154
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1155 1156 1157
}

/*
1158 1159
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1160
 */
N
Nick Piggin 已提交
1161
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1162
{
1163
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1164
	unsigned long total = weighted_cpuload(cpu);
1165

N
Nick Piggin 已提交
1166
	if (type == 0)
I
Ingo Molnar 已提交
1167
		return total;
1168

I
Ingo Molnar 已提交
1169
	return max(rq->cpu_load[type-1], total);
1170 1171 1172 1173 1174 1175 1176
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1177
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1178
	unsigned long total = weighted_cpuload(cpu);
1179 1180
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1181
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1182 1183
}

N
Nick Piggin 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1201 1202 1203 1204
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1221 1222
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1223 1224 1225 1226 1227 1228 1229 1230

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1231
nextgroup:
N
Nick Piggin 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1241
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1242
 */
I
Ingo Molnar 已提交
1243 1244
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1245
{
1246
	cpumask_t tmp;
N
Nick Piggin 已提交
1247 1248 1249 1250
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1251 1252 1253 1254
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1255
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1281

1282
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1283 1284 1285
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1286 1287
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1288 1289
		if (tmp->flags & flag)
			sd = tmp;
1290
	}
N
Nick Piggin 已提交
1291 1292 1293 1294

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1295 1296 1297 1298 1299 1300
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1301 1302 1303

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1304 1305 1306 1307
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1308

1309
		new_cpu = find_idlest_cpu(group, t, cpu);
1310 1311 1312 1313 1314
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1315

1316
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1343
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1359 1360 1361 1362
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1363
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1364 1365 1366 1367
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1368
		} else {
N
Nick Piggin 已提交
1369
			break;
I
Ingo Molnar 已提交
1370
		}
L
Linus Torvalds 已提交
1371 1372 1373 1374
	}
	return cpu;
}
#else
1375
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1395
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1396 1397 1398 1399
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1400
	struct rq *rq;
L
Linus Torvalds 已提交
1401
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1402
	struct sched_domain *sd, *this_sd = NULL;
1403
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410 1411
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1412
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1422 1423
	new_cpu = cpu;

L
Linus Torvalds 已提交
1424 1425 1426
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1427 1428 1429 1430 1431 1432 1433 1434
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1435 1436 1437
		}
	}

N
Nick Piggin 已提交
1438
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1439 1440 1441
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1442
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1443
	 */
N
Nick Piggin 已提交
1444 1445 1446
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1447

1448 1449
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1450 1451
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1452

N
Nick Piggin 已提交
1453 1454
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1455 1456
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1457 1458 1459
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1460

L
Linus Torvalds 已提交
1461
			/*
1462 1463 1464
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1465
			 */
1466
			if (sync)
I
Ingo Molnar 已提交
1467
				tl -= current->se.load.weight;
1468 1469

			if ((tl <= load &&
1470
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1471
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1505
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512 1513
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1514
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1515 1516 1517 1518 1519 1520 1521 1522
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1523 1524
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1535
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1542
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1574

I
Ingo Molnar 已提交
1575 1576
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1577

L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583 1584
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1600 1601 1602 1603 1604 1605

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1606
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1607
	if (likely(sched_info_on()))
1608
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1609
#endif
1610
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1611 1612
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1613
#ifdef CONFIG_PREEMPT
1614
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1615
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1616
#endif
N
Nick Piggin 已提交
1617
	put_cpu();
L
Linus Torvalds 已提交
1618 1619
}

I
Ingo Molnar 已提交
1620 1621 1622 1623 1624 1625
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1633
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1634 1635
{
	unsigned long flags;
I
Ingo Molnar 已提交
1636 1637
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1638 1639

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1640
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1641
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1642 1643 1644

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1645 1646 1647
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1648 1649
	} else {
		/*
I
Ingo Molnar 已提交
1650 1651
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1652
		 */
I
Ingo Molnar 已提交
1653
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1654
	}
I
Ingo Molnar 已提交
1655 1656
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1671
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1672 1673 1674 1675 1676
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1677 1678
/**
 * finish_task_switch - clean up after a task-switch
1679
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1680 1681
 * @prev: the thread we just switched away from.
 *
1682 1683 1684 1685
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1692
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1693 1694 1695
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1696
	long prev_state;
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1702
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1703 1704
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1705
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1711
	prev_state = prev->state;
1712 1713
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1714 1715
	if (mm)
		mmdrop(mm);
1716
	if (unlikely(prev_state == TASK_DEAD)) {
1717 1718 1719
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1720
		 */
1721
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1722
		put_task_struct(prev);
1723
	}
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1730
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1731 1732
	__releases(rq->lock)
{
1733 1734
	struct rq *rq = this_rq();

1735 1736 1737 1738 1739
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744 1745 1746 1747
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1748
static inline void
1749
context_switch(struct rq *rq, struct task_struct *prev,
1750
	       struct task_struct *next)
L
Linus Torvalds 已提交
1751
{
I
Ingo Molnar 已提交
1752
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1753

I
Ingo Molnar 已提交
1754 1755 1756
	prepare_task_switch(rq, next);
	mm = next->mm;
	oldmm = prev->active_mm;
1757 1758 1759 1760 1761 1762 1763
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1764
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769 1770
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1771
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1772 1773 1774
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1775 1776 1777 1778 1779 1780 1781
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1782
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1783
#endif
L
Linus Torvalds 已提交
1784 1785 1786 1787

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1788 1789 1790 1791 1792 1793 1794
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1818
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1833 1834
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1835

1836
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1846
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1867
/*
I
Ingo Molnar 已提交
1868 1869
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1870
 */
I
Ingo Molnar 已提交
1871
static void update_cpu_load(struct rq *this_rq)
1872
{
I
Ingo Molnar 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1922 1923
}

I
Ingo Molnar 已提交
1924 1925
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1932
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1933 1934 1935
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1936
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1937 1938 1939 1940
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1941
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1957
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1971
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1972 1973 1974 1975
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1976 1977 1978 1979 1980
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
1981
	if (unlikely(!spin_trylock(&busiest->lock))) {
1982
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
1997
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
1998
{
1999
	struct migration_req req;
L
Linus Torvalds 已提交
2000
	unsigned long flags;
2001
	struct rq *rq;
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2012

L
Linus Torvalds 已提交
2013 2014 2015 2016 2017
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2018

L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024 2025
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2026 2027
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2028 2029 2030 2031
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2032
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2033
	put_cpu();
N
Nick Piggin 已提交
2034 2035
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2042 2043
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2044
{
I
Ingo Molnar 已提交
2045
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2046
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2047
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2048 2049 2050 2051
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2052
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2053 2054 2055 2056 2057
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2058
static
2059
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2060
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2061
		     int *all_pinned)
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2071 2072 2073 2074
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2075 2076

	/*
I
Ingo Molnar 已提交
2077
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2078
	 */
I
Ingo Molnar 已提交
2079
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2085
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2086
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2087
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2088 2089 2090
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2091
{
I
Ingo Molnar 已提交
2092 2093 2094
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2095

2096
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2097 2098
		goto out;

2099 2100
	pinned = 1;

L
Linus Torvalds 已提交
2101
	/*
I
Ingo Molnar 已提交
2102
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2103
	 */
I
Ingo Molnar 已提交
2104 2105 2106
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2107
		goto out;
2108 2109 2110 2111 2112
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2113 2114 2115 2116
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2117
	if (skip_for_load ||
I
Ingo Molnar 已提交
2118
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2119

I
Ingo Molnar 已提交
2120 2121 2122
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2123 2124
	}

I
Ingo Molnar 已提交
2125
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2126
	pulled++;
I
Ingo Molnar 已提交
2127
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2128

2129 2130 2131 2132 2133
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2134 2135 2136 2137
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143 2144 2145
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2146 2147 2148

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2149
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2150 2151 2152
	return pulled;
}

I
Ingo Molnar 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2182 2183
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2184 2185
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2186 2187 2188
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2189 2190
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2191 2192 2193
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2194
	unsigned long max_pull;
2195 2196
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2197
	int load_idx;
2198 2199 2200 2201 2202 2203
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2204 2205

	max_load = this_load = total_load = total_pwr = 0;
2206 2207
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2208
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2209
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2210
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2211 2212 2213
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2214 2215

	do {
2216
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2217 2218
		int local_group;
		int i;
2219
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2220
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2221 2222 2223

		local_group = cpu_isset(this_cpu, group->cpumask);

2224 2225 2226
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2227
		/* Tally up the load of all CPUs in the group */
2228
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2229 2230

		for_each_cpu_mask(i, group->cpumask) {
2231 2232 2233 2234 2235 2236
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2237

N
Nick Piggin 已提交
2238 2239 2240
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2241
			/* Bias balancing toward cpus of our domain */
2242 2243 2244 2245 2246 2247
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2248
				load = target_load(i, load_idx);
2249
			} else
N
Nick Piggin 已提交
2250
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2251 2252

			avg_load += load;
2253
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2254
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2255 2256
		}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2267
		total_load += avg_load;
2268
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2269 2270

		/* Adjust by relative CPU power of the group */
2271 2272
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2273

2274
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2275

L
Linus Torvalds 已提交
2276 2277 2278
		if (local_group) {
			this_load = avg_load;
			this = group;
2279 2280 2281
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2282
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2283 2284
			max_load = avg_load;
			busiest = group;
2285 2286
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2287
		}
2288 2289 2290 2291 2292 2293

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2294 2295 2296
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2297 2298 2299 2300 2301 2302 2303 2304 2305

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2306
		/*
2307 2308
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2309 2310
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2311
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2312
			goto group_next;
2313

I
Ingo Molnar 已提交
2314
		/*
2315
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2316 2317 2318 2319 2320
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2321 2322
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2323 2324
			group_min = group;
			min_nr_running = sum_nr_running;
2325 2326
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2327
		}
2328

I
Ingo Molnar 已提交
2329
		/*
2330
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2342
		}
2343 2344
group_next:
#endif
L
Linus Torvalds 已提交
2345 2346 2347
		group = group->next;
	} while (group != sd->groups);

2348
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2357
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2381 2382

	/* Don't want to pull so many tasks that a group would go idle */
2383
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2384

L
Linus Torvalds 已提交
2385
	/* How much load to actually move to equalise the imbalance */
2386 2387
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2388 2389
			/ SCHED_LOAD_SCALE;

2390 2391 2392 2393 2394 2395
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2396
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2397
		unsigned long tmp, pwr_now, pwr_move;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2409

I
Ingo Molnar 已提交
2410 2411
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2412
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2422 2423 2424 2425
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2426 2427 2428
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2429 2430
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2431
		if (max_load > tmp)
2432
			pwr_move += busiest->__cpu_power *
2433
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2434 2435

		/* Amount of load we'd add */
2436
		if (max_load * busiest->__cpu_power <
2437
				busiest_load_per_task * SCHED_LOAD_SCALE)
2438 2439
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2440
		else
2441 2442 2443 2444
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2451
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456
	}

	return busiest;

out_balanced:
2457
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2458
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2459
		goto ret;
L
Linus Torvalds 已提交
2460

2461 2462 2463 2464 2465
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2466
ret:
L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472 2473
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2474
static struct rq *
I
Ingo Molnar 已提交
2475
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2476
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2477
{
2478
	struct rq *busiest = NULL, *rq;
2479
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2480 2481 2482
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2483
		unsigned long wl;
2484 2485 2486 2487

		if (!cpu_isset(i, *cpus))
			continue;

2488
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2489
		wl = weighted_cpuload(i);
2490

I
Ingo Molnar 已提交
2491
		if (rq->nr_running == 1 && wl > imbalance)
2492
			continue;
L
Linus Torvalds 已提交
2493

I
Ingo Molnar 已提交
2494 2495
		if (wl > max_load) {
			max_load = wl;
2496
			busiest = rq;
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501 2502
		}
	}

	return busiest;
}

2503 2504 2505 2506 2507 2508
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2509 2510 2511 2512 2513
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2514 2515 2516 2517
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2518
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2519
			struct sched_domain *sd, enum cpu_idle_type idle,
2520
			int *balance)
L
Linus Torvalds 已提交
2521
{
2522
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2523 2524
	struct sched_group *group;
	unsigned long imbalance;
2525
	struct rq *busiest;
2526
	cpumask_t cpus = CPU_MASK_ALL;
2527
	unsigned long flags;
N
Nick Piggin 已提交
2528

2529 2530 2531
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2532
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2533
	 * portraying it as CPU_NOT_IDLE.
2534
	 */
I
Ingo Molnar 已提交
2535
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2536
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2537
		sd_idle = 1;
L
Linus Torvalds 已提交
2538 2539 2540

	schedstat_inc(sd, lb_cnt[idle]);

2541 2542
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2543 2544
				   &cpus, balance);

2545
	if (*balance == 0)
2546 2547
		goto out_balanced;

L
Linus Torvalds 已提交
2548 2549 2550 2551 2552
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2553
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2559
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2571
		local_irq_save(flags);
N
Nick Piggin 已提交
2572
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2573
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2574 2575
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2576
		double_rq_unlock(this_rq, busiest);
2577
		local_irq_restore(flags);
2578

2579 2580 2581 2582 2583 2584
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2585
		/* All tasks on this runqueue were pinned by CPU affinity */
2586 2587 2588 2589
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2590
			goto out_balanced;
2591
		}
L
Linus Torvalds 已提交
2592
	}
2593

L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2600
			spin_lock_irqsave(&busiest->lock, flags);
2601 2602 2603 2604 2605

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2606
				spin_unlock_irqrestore(&busiest->lock, flags);
2607 2608 2609 2610
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2611 2612 2613
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2614
				active_balance = 1;
L
Linus Torvalds 已提交
2615
			}
2616
			spin_unlock_irqrestore(&busiest->lock, flags);
2617
			if (active_balance)
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2624
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2625
		}
2626
	} else
L
Linus Torvalds 已提交
2627 2628
		sd->nr_balance_failed = 0;

2629
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2630 2631
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2632 2633 2634 2635 2636 2637 2638 2639 2640
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2641 2642
	}

2643
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2644
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2645
		return -1;
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2651
	sd->nr_balance_failed = 0;
2652 2653

out_one_pinned:
L
Linus Torvalds 已提交
2654
	/* tune up the balancing interval */
2655 2656
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2657 2658
		sd->balance_interval *= 2;

2659
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2660
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2661
		return -1;
L
Linus Torvalds 已提交
2662 2663 2664 2665 2666 2667 2668
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2669
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2670 2671
 * this_rq is locked.
 */
2672
static int
2673
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2674 2675
{
	struct sched_group *group;
2676
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2677 2678
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2679
	int sd_idle = 0;
2680
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2681

2682 2683 2684 2685
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2686
	 * portraying it as CPU_NOT_IDLE.
2687 2688 2689
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2690
		sd_idle = 1;
L
Linus Torvalds 已提交
2691

I
Ingo Molnar 已提交
2692
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2693
redo:
I
Ingo Molnar 已提交
2694
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2695
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2696
	if (!group) {
I
Ingo Molnar 已提交
2697
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2698
		goto out_balanced;
L
Linus Torvalds 已提交
2699 2700
	}

I
Ingo Molnar 已提交
2701
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2702
				&cpus);
N
Nick Piggin 已提交
2703
	if (!busiest) {
I
Ingo Molnar 已提交
2704
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2705
		goto out_balanced;
L
Linus Torvalds 已提交
2706 2707
	}

N
Nick Piggin 已提交
2708 2709
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2710
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2711 2712 2713 2714 2715 2716

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2717
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2718
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2719
		spin_unlock(&busiest->lock);
2720 2721 2722 2723 2724 2725

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2726 2727
	}

N
Nick Piggin 已提交
2728
	if (!nr_moved) {
I
Ingo Molnar 已提交
2729
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2730 2731
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2732 2733
			return -1;
	} else
2734
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2735 2736

	return nr_moved;
2737 2738

out_balanced:
I
Ingo Molnar 已提交
2739
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2740
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2741
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2742
		return -1;
2743
	sd->nr_balance_failed = 0;
2744

2745
	return 0;
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750 2751
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2752
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2753 2754
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2755 2756
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2757 2758

	for_each_domain(this_cpu, sd) {
2759 2760 2761 2762 2763 2764
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2765
			/* If we've pulled tasks over stop searching: */
2766
			pulled_task = load_balance_newidle(this_cpu,
2767 2768 2769 2770 2771 2772 2773
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2774
	}
I
Ingo Molnar 已提交
2775
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2776 2777 2778 2779 2780
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2781
	}
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2792
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2793
{
2794
	int target_cpu = busiest_rq->push_cpu;
2795 2796
	struct sched_domain *sd;
	struct rq *target_rq;
2797

2798
	/* Is there any task to move? */
2799 2800 2801 2802
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2803 2804

	/*
2805 2806 2807
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2808
	 */
2809
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2810

2811 2812 2813 2814
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2815
	for_each_domain(target_cpu, sd) {
2816
		if ((sd->flags & SD_LOAD_BALANCE) &&
2817
		    cpu_isset(busiest_cpu, sd->span))
2818
				break;
2819
	}
2820

2821 2822
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2823

2824
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2825
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2826 2827 2828 2829 2830
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2831
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2843
/*
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2854
 *
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2911 2912 2913 2914 2915
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2916
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2917
{
2918 2919
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2920 2921
	unsigned long interval;
	struct sched_domain *sd;
2922
	/* Earliest time when we have to do rebalance again */
2923
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2924

2925
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2926 2927 2928 2929
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2930
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2931 2932 2933 2934 2935 2936
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
2937 2938 2939
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
2940

2941 2942 2943 2944 2945
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2946
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2947
			if (load_balance(cpu, rq, sd, idle, &balance)) {
2948 2949
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2950 2951 2952
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
2953
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
2954
			}
2955
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
2956
		}
2957 2958 2959
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
2960 2961
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
2962 2963 2964 2965 2966 2967 2968 2969

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
2970
	}
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
2981 2982 2983 2984
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
2985

I
Ingo Molnar 已提交
2986
	rebalance_domains(this_cpu, idle);
2987 2988 2989 2990 2991 2992 2993

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
2994 2995
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
2996 2997 2998 2999
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3000
		cpu_clear(this_cpu, cpus);
3001 3002 3003 3004 3005 3006 3007 3008 3009
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3010
			rebalance_domains(balance_cpu, SCHED_IDLE);
3011 3012

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3013 3014
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3027
static inline void trigger_load_balance(struct rq *rq, int cpu)
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3079
}
I
Ingo Molnar 已提交
3080 3081 3082

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3083 3084 3085
/*
 * on UP we do not need to balance between CPUs:
 */
3086
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3087 3088
{
}
I
Ingo Molnar 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3110 3111
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3112
 */
3113
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3114 3115
{
	unsigned long flags;
3116 3117
	u64 ns, delta_exec;
	struct rq *rq;
3118

3119 3120 3121 3122 3123 3124 3125 3126
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3127

L
Linus Torvalds 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3162
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3192
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3215 3216 3217 3218 3219 3220 3221
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3222

3223
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3224 3225
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3226
#endif
L
Linus Torvalds 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3236 3237
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3238 3239 3240 3241
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3242 3243
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3244 3245 3246 3247 3248 3249 3250 3251
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3252 3253
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3254 3255 3256
	/*
	 * Is the spinlock portion underflowing?
	 */
3257 3258 3259 3260
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3261 3262 3263 3264 3265 3266 3267
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3268
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3269
 */
I
Ingo Molnar 已提交
3270
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3271
{
I
Ingo Molnar 已提交
3272 3273 3274 3275 3276 3277 3278
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3279

I
Ingo Molnar 已提交
3280 3281 3282 3283 3284
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3285 3286 3287 3288 3289
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3290 3291 3292
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3293 3294
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3306 3307

	/*
I
Ingo Molnar 已提交
3308 3309
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3310
	 */
I
Ingo Molnar 已提交
3311 3312 3313 3314
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3315 3316
	}

I
Ingo Molnar 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3329

I
Ingo Molnar 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3353 3354

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3355
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3356 3357 3358

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3359
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3360
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3361 3362
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3363
		}
I
Ingo Molnar 已提交
3364
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3365 3366
	}

I
Ingo Molnar 已提交
3367
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3368 3369
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3370 3371 3372
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3373 3374

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3375

L
Linus Torvalds 已提交
3376 3377 3378 3379 3380
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3381
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3382 3383 3384
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3385 3386 3387
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3388
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3389
	}
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394 3395 3396 3397
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3398
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3413
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3441
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3453
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3483 3484
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3485
{
3486
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3505 3506 3507
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3508
		if (curr->func(curr, mode, sync, key) &&
3509
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3510 3511 3512 3513 3514 3515 3516 3517 3518
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3519
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3520 3521
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3522
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3541
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3553 3554
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3598

L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3717 3718 3719 3720 3721
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3722
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3723
}
L
Linus Torvalds 已提交
3724

I
Ingo Molnar 已提交
3725 3726 3727 3728 3729 3730 3731
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3732

I
Ingo Molnar 已提交
3733
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3734
{
I
Ingo Molnar 已提交
3735 3736 3737 3738
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3739 3740 3741

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3742
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3743
	schedule();
I
Ingo Molnar 已提交
3744
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3745 3746 3747
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3748
long __sched
I
Ingo Molnar 已提交
3749
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3750
{
I
Ingo Molnar 已提交
3751 3752 3753 3754
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3755 3756 3757

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3758
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3759
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3760
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3761 3762 3763 3764 3765

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3766
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3767
{
I
Ingo Molnar 已提交
3768 3769 3770 3771
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3772 3773 3774

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3775
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3776
	schedule();
I
Ingo Molnar 已提交
3777
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3778 3779 3780
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3781
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3782
{
I
Ingo Molnar 已提交
3783 3784 3785 3786
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3787 3788 3789

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3790
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3791
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3792
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3793 3794 3795 3796 3797

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3810
void rt_mutex_setprio(struct task_struct *p, int prio)
3811 3812
{
	unsigned long flags;
I
Ingo Molnar 已提交
3813
	int oldprio, on_rq;
3814
	struct rq *rq;
I
Ingo Molnar 已提交
3815
	u64 now;
3816 3817 3818 3819

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3820
	now = rq_clock(rq);
3821

3822
	oldprio = p->prio;
I
Ingo Molnar 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3832 3833
	p->prio = prio;

I
Ingo Molnar 已提交
3834 3835
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3836 3837
		/*
		 * Reschedule if we are currently running on this runqueue and
3838 3839
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3840
		 */
3841 3842 3843
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3844 3845 3846
		} else {
			check_preempt_curr(rq, p);
		}
3847 3848 3849 3850 3851 3852
	}
	task_rq_unlock(rq, &flags);
}

#endif

3853
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3854
{
I
Ingo Molnar 已提交
3855
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3856
	unsigned long flags;
3857
	struct rq *rq;
I
Ingo Molnar 已提交
3858
	u64 now;
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865 3866

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3867
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3868 3869 3870 3871
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3872
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3873
	 */
3874
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3875 3876 3877
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3878 3879 3880 3881
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3882
	}
L
Linus Torvalds 已提交
3883 3884

	p->static_prio = NICE_TO_PRIO(nice);
3885
	set_load_weight(p);
3886 3887 3888
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3889

I
Ingo Molnar 已提交
3890 3891 3892
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3893
		/*
3894 3895
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3896
		 */
3897
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902 3903 3904
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3905 3906 3907 3908 3909
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3910
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3911
{
3912 3913
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3914

M
Matt Mackall 已提交
3915 3916 3917 3918
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3930
	long nice, retval;
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3937 3938
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3948 3949 3950
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3969
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976 3977
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3978
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3997
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002 4003 4004 4005
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4006
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4007 4008 4009 4010 4011
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4012 4013
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4014
{
I
Ingo Molnar 已提交
4015
	BUG_ON(p->se.on_rq);
4016

L
Linus Torvalds 已提交
4017
	p->policy = policy;
I
Ingo Molnar 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4030
	p->rt_priority = prio;
4031 4032 4033
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4034
	set_load_weight(p);
L
Linus Torvalds 已提交
4035 4036 4037
}

/**
4038
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4039 4040 4041
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4042
 *
4043
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4044
 */
I
Ingo Molnar 已提交
4045 4046
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4047
{
I
Ingo Molnar 已提交
4048
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4049
	unsigned long flags;
4050
	struct rq *rq;
L
Linus Torvalds 已提交
4051

4052 4053
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4059 4060
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4061
		return -EINVAL;
L
Linus Torvalds 已提交
4062 4063
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4064 4065
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4066 4067
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4068
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4069
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4070
		return -EINVAL;
4071
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4072 4073
		return -EINVAL;

4074 4075 4076 4077
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4078
		if (rt_policy(policy)) {
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4095 4096 4097 4098 4099 4100
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4101

4102 4103 4104 4105 4106
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4107 4108 4109 4110

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4111 4112 4113 4114 4115
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4116 4117 4118 4119
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4120
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4121 4122 4123
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4124 4125
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4126 4127
		goto recheck;
	}
I
Ingo Molnar 已提交
4128 4129 4130
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4131
	oldprio = p->prio;
I
Ingo Molnar 已提交
4132 4133 4134
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4135 4136
		/*
		 * Reschedule if we are currently running on this runqueue and
4137 4138
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4139
		 */
4140 4141 4142
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4143 4144 4145
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4146
	}
4147 4148 4149
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4150 4151
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4152 4153 4154 4155
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4156 4157
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4158 4159 4160
{
	struct sched_param lparam;
	struct task_struct *p;
4161
	int retval;
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4167 4168 4169

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4170
	p = find_process_by_pid(pid);
4171 4172 4173
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4174

L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4187 4188 4189 4190
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4210
	struct task_struct *p;
L
Linus Torvalds 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4238
	struct task_struct *p;
L
Linus Torvalds 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4273 4274
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4275

4276
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4277 4278 4279 4280 4281
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4282
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4299 4300 4301 4302
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4309
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4350
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4351 4352 4353
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4354
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4355 4356
EXPORT_SYMBOL(cpu_online_map);

4357
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4358
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4359 4360 4361 4362
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4363
	struct task_struct *p;
L
Linus Torvalds 已提交
4364 4365
	int retval;

4366
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371 4372 4373
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4374 4375 4376 4377
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4378
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4379 4380 4381

out_unlock:
	read_unlock(&tasklist_lock);
4382
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4417 4418
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4419 4420 4421
 */
asmlinkage long sys_sched_yield(void)
{
4422
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4423 4424

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4425
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4426
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4427 4428
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4435
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4436 4437 4438 4439 4440 4441 4442 4443
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4444
static void __cond_resched(void)
L
Linus Torvalds 已提交
4445
{
4446 4447 4448
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4449 4450 4451 4452 4453
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4463 4464
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4480
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4481
{
J
Jan Kara 已提交
4482 4483
	int ret = 0;

L
Linus Torvalds 已提交
4484 4485 4486
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4487
		ret = 1;
L
Linus Torvalds 已提交
4488 4489
		spin_lock(lock);
	}
4490
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4491
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4492 4493 4494
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4495
		ret = 1;
L
Linus Torvalds 已提交
4496 4497
		spin_lock(lock);
	}
J
Jan Kara 已提交
4498
	return ret;
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4506
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4507
		local_bh_enable();
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4519
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4538
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4539

4540
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4541 4542 4543
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4544
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4550
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4551 4552
	long ret;

4553
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4554 4555 4556
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4557
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4578
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4579
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4603
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4604
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4621
	struct task_struct *p;
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4638
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4639
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4649
static const char stat_nam[] = "RSDTtZX";
4650 4651

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4652 4653
{
	unsigned long free = 0;
4654
	unsigned state;
L
Linus Torvalds 已提交
4655 4656

	state = p->state ? __ffs(p->state) + 1 : 0;
4657 4658
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4659
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4660
	if (state == TASK_RUNNING)
4661
		printk(" running  ");
L
Linus Torvalds 已提交
4662
	else
4663
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4664 4665
#else
	if (state == TASK_RUNNING)
4666
		printk("  running task    ");
L
Linus Torvalds 已提交
4667 4668 4669 4670 4671
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4672
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4673 4674
		while (!*n)
			n++;
4675
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4676 4677
	}
#endif
4678
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4684
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4685
{
4686
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4687

4688 4689 4690
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4691
#else
4692 4693
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4694 4695 4696 4697 4698 4699 4700 4701
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4702
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4703
			show_task(p);
L
Linus Torvalds 已提交
4704 4705
	} while_each_thread(g, p);

4706 4707
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4708 4709 4710
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4711
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4712 4713 4714 4715 4716
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4717 4718
}

I
Ingo Molnar 已提交
4719 4720
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4721
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4722 4723
}

4724 4725 4726 4727 4728 4729 4730 4731
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4732
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4733
{
4734
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4735 4736
	unsigned long flags;

I
Ingo Molnar 已提交
4737 4738 4739
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4740
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4741
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4742
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4743 4744 4745

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4746 4747 4748
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4749 4750 4751 4752
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4753
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4754
#else
A
Al Viro 已提交
4755
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4756
#endif
I
Ingo Molnar 已提交
4757 4758 4759 4760
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4784
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4794 4795 4796 4797
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4798
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4820
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4821
{
4822
	struct migration_req req;
L
Linus Torvalds 已提交
4823
	unsigned long flags;
4824
	struct rq *rq;
4825
	int ret = 0;
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4848

L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4861 4862
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4863
 */
4864
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4865
{
4866
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4867
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4868 4869

	if (unlikely(cpu_is_offline(dest_cpu)))
4870
		return ret;
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4883 4884 4885
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4886
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4887 4888 4889
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4890
	}
4891
	ret = 1;
L
Linus Torvalds 已提交
4892 4893
out:
	double_rq_unlock(rq_src, rq_dest);
4894
	return ret;
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899 4900 4901
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4902
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4903 4904
{
	int cpu = (long)data;
4905
	struct rq *rq;
L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4912
		struct migration_req *req;
L
Linus Torvalds 已提交
4913 4914
		struct list_head *head;

4915
		try_to_freeze();
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4937
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4938 4939
		list_del_init(head->next);

N
Nick Piggin 已提交
4940 4941 4942
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
4961 4962 4963 4964
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
4965
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
4966
{
4967
	unsigned long flags;
L
Linus Torvalds 已提交
4968
	cpumask_t mask;
4969 4970
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
4971

4972
restart:
L
Linus Torvalds 已提交
4973 4974
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
4975
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
4976 4977 4978 4979
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
4980
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
4981 4982 4983

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
4984 4985 4986
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
4987
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
4994
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
4995 4996
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
4997
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
4998
	}
4999
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5000
		goto restart;
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5010
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5011
{
5012
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5026
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5027 5028 5029

	write_lock_irq(&tasklist_lock);

5030 5031
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5032 5033
			continue;

5034 5035 5036
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5037 5038 5039 5040

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5041 5042
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5043
 * It does so by boosting its priority to highest possible and adding it to
5044
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5045 5046 5047
 */
void sched_idle_next(void)
{
5048
	int this_cpu = smp_processor_id();
5049
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5050 5051 5052 5053
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5054
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5055

5056 5057 5058
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5059 5060 5061
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5062
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5063 5064

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5065
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5066 5067 5068 5069

	spin_unlock_irqrestore(&rq->lock, flags);
}

5070 5071
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5085
/* called under rq->lock with disabled interrupts */
5086
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5087
{
5088
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5089 5090

	/* Must be exiting, otherwise would be on tasklist. */
5091
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5092 5093

	/* Cannot have done final schedule yet: would have vanished. */
5094
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5095

5096
	get_task_struct(p);
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5102
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5103
	 */
5104
	spin_unlock(&rq->lock);
5105
	move_task_off_dead_cpu(dead_cpu, p);
5106
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5107

5108
	put_task_struct(p);
L
Linus Torvalds 已提交
5109 5110 5111 5112 5113
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5114
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5115
	struct task_struct *next;
5116

I
Ingo Molnar 已提交
5117 5118 5119 5120 5121 5122 5123
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
L
Linus Torvalds 已提交
5124 5125 5126 5127 5128 5129 5130 5131
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5132 5133
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5134 5135
{
	struct task_struct *p;
5136
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5137
	unsigned long flags;
5138
	struct rq *rq;
L
Linus Torvalds 已提交
5139 5140

	switch (action) {
5141 5142 5143 5144
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5145
	case CPU_UP_PREPARE:
5146
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5147
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5148 5149 5150 5151 5152 5153
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5154
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5155 5156 5157
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5158

L
Linus Torvalds 已提交
5159
	case CPU_ONLINE:
5160
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5161 5162 5163
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5164

L
Linus Torvalds 已提交
5165 5166
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5167
	case CPU_UP_CANCELED_FROZEN:
5168 5169
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5170
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5171 5172
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5173 5174 5175
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5176

L
Linus Torvalds 已提交
5177
	case CPU_DEAD:
5178
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183 5184
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5185
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5186
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5187 5188
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5189 5190 5191 5192 5193 5194
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5195
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5196 5197 5198
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5199 5200
			struct migration_req *req;

L
Linus Torvalds 已提交
5201
			req = list_entry(rq->migration_queue.next,
5202
					 struct migration_req, list);
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5209 5210 5211
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5219
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224 5225 5226
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5227
	int err;
5228 5229

	/* Start one for the boot CPU: */
5230 5231
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5232 5233
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5234

L
Linus Torvalds 已提交
5235 5236 5237 5238 5239
	return 0;
}
#endif

#ifdef CONFIG_SMP
5240 5241 5242 5243 5244

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5245
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5246 5247 5248 5249 5250
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5251 5252 5253 5254 5255
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5275 5276
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5283 5284
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5285
		if (!cpu_isset(cpu, group->cpumask))
5286 5287
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5300
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5301
				printk("\n");
5302 5303
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5326 5327
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5328 5329 5330

		level++;
		sd = sd->parent;
5331 5332
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5333

5334 5335 5336
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5337 5338 5339 5340

	} while (sd);
}
#else
5341
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5342 5343
#endif

5344
static int sd_degenerate(struct sched_domain *sd)
5345 5346 5347 5348 5349 5350 5351 5352
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5353 5354 5355
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5369 5370
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5389 5390 5391
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5392 5393 5394 5395 5396 5397 5398
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5399 5400 5401 5402
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5403
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5404
{
5405
	struct rq *rq = cpu_rq(cpu);
5406 5407 5408 5409 5410 5411 5412
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5413
		if (sd_parent_degenerate(tmp, parent)) {
5414
			tmp->parent = parent->parent;
5415 5416 5417
			if (parent->parent)
				parent->parent->child = tmp;
		}
5418 5419
	}

5420
	if (sd && sd_degenerate(sd)) {
5421
		sd = sd->parent;
5422 5423 5424
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5425 5426 5427

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5428
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5429 5430 5431
}

/* cpus with isolated domains */
5432
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5450 5451 5452 5453
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5454 5455 5456 5457 5458
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5459
static void
5460 5461 5462
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5469 5470
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5471 5472 5473 5474 5475 5476
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5477
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5478 5479

		for_each_cpu_mask(j, span) {
5480
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5495
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5496

5497
#ifdef CONFIG_NUMA
5498

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5551 5552
	cpumask_t span, nodemask;
	int i;
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5563

5564 5565 5566 5567 5568 5569 5570 5571
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5572
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5573

5574
/*
5575
 * SMT sched-domains:
5576
 */
L
Linus Torvalds 已提交
5577 5578
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5579
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5580

5581 5582
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5583
{
5584 5585
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5586 5587 5588 5589
	return cpu;
}
#endif

5590 5591 5592
/*
 * multi-core sched-domains:
 */
5593 5594
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5595
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5596 5597 5598
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5599 5600
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5601
{
5602
	int group;
5603 5604
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5605 5606 5607 5608
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5609 5610
}
#elif defined(CONFIG_SCHED_MC)
5611 5612
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5613
{
5614 5615
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5616 5617 5618 5619
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5620
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5621
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5622

5623 5624
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5625
{
5626
	int group;
5627
#ifdef CONFIG_SCHED_MC
5628
	cpumask_t mask = cpu_coregroup_map(cpu);
5629
	cpus_and(mask, mask, *cpu_map);
5630
	group = first_cpu(mask);
5631
#elif defined(CONFIG_SCHED_SMT)
5632 5633
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5634
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5635
#else
5636
	group = cpu;
L
Linus Torvalds 已提交
5637
#endif
5638 5639 5640
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5641 5642 5643 5644
}

#ifdef CONFIG_NUMA
/*
5645 5646 5647
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5648
 */
5649
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5650
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5651

5652
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5653
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5654

5655 5656
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5657
{
5658 5659 5660 5661 5662 5663 5664 5665 5666
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5667
}
5668

5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5689
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5690 5691 5692 5693 5694
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5695 5696
#endif

5697
#ifdef CONFIG_NUMA
5698 5699 5700
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5701
	int cpu, i;
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5732 5733 5734 5735 5736
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5737

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5764 5765
	sd->groups->__cpu_power = 0;

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5776
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5777 5778 5779 5780 5781 5782 5783 5784
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5785
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5786 5787 5788 5789
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5790
/*
5791 5792
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5793
 */
5794
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5795 5796
{
	int i;
5797 5798
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5799
	int sd_allnodes = 0;
5800 5801 5802 5803

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5804
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5805
					   GFP_KERNEL);
5806 5807
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5808
		return -ENOMEM;
5809 5810 5811
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5812 5813

	/*
5814
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5815
	 */
5816
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5817 5818 5819
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5820
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5821 5822

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5823 5824
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5825 5826 5827
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5828
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5829
			p = sd;
5830
			sd_allnodes = 1;
5831 5832 5833
		} else
			p = NULL;

L
Linus Torvalds 已提交
5834 5835
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5836 5837
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5838 5839
		if (p)
			p->child = sd;
5840
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5841 5842 5843 5844 5845 5846 5847
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5848 5849
		if (p)
			p->child = sd;
5850
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5851

5852 5853 5854 5855 5856 5857 5858
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5859
		p->child = sd;
5860
		cpu_to_core_group(i, cpu_map, &sd->groups);
5861 5862
#endif

L
Linus Torvalds 已提交
5863 5864 5865 5866 5867
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5868
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5869
		sd->parent = p;
5870
		p->child = sd;
5871
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5872 5873 5874 5875 5876
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5877
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5878
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5879
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5880 5881 5882
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
5883 5884
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
5885 5886 5887
	}
#endif

5888 5889 5890 5891 5892 5893 5894
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
5895 5896
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
5897 5898 5899
	}
#endif

L
Linus Torvalds 已提交
5900 5901 5902 5903
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5904
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5905 5906 5907
		if (cpus_empty(nodemask))
			continue;

5908
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5909 5910 5911 5912
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5913
	if (sd_allnodes)
I
Ingo Molnar 已提交
5914 5915
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
5926 5927
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
5928
			continue;
5929
		}
5930 5931 5932 5933

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

5934
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
5935 5936 5937 5938 5939
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
5940 5941 5942
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
5943

5944 5945 5946
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
5947
		sg->__cpu_power = 0;
5948
		sg->cpumask = nodemask;
5949
		sg->next = sg;
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

5968 5969
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
5970 5971 5972
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
5973
				goto error;
5974
			}
5975
			sg->__cpu_power = 0;
5976
			sg->cpumask = tmp;
5977
			sg->next = prev->next;
5978 5979 5980 5981 5982
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
5983 5984 5985
#endif

	/* Calculate CPU power for physical packages and nodes */
5986
#ifdef CONFIG_SCHED_SMT
5987
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5988 5989
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

5990
		init_sched_groups_power(i, sd);
5991
	}
L
Linus Torvalds 已提交
5992
#endif
5993
#ifdef CONFIG_SCHED_MC
5994
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5995 5996
		struct sched_domain *sd = &per_cpu(core_domains, i);

5997
		init_sched_groups_power(i, sd);
5998 5999
	}
#endif
6000

6001
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6002 6003
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6004
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6005 6006
	}

6007
#ifdef CONFIG_NUMA
6008 6009
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6010

6011 6012
	if (sd_allnodes) {
		struct sched_group *sg;
6013

6014
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6015 6016
		init_numa_sched_groups_power(sg);
	}
6017 6018
#endif

L
Linus Torvalds 已提交
6019
	/* Attach the domains */
6020
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6021 6022 6023
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6024 6025
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6026 6027 6028 6029 6030
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6031 6032 6033

	return 0;

6034
#ifdef CONFIG_NUMA
6035 6036 6037
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6038
#endif
L
Linus Torvalds 已提交
6039
}
6040 6041 6042
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6043
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6044 6045
{
	cpumask_t cpu_default_map;
6046
	int err;
L
Linus Torvalds 已提交
6047

6048 6049 6050 6051 6052 6053 6054
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6055 6056 6057
	err = build_sched_domains(&cpu_default_map);

	return err;
6058 6059 6060
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6061
{
6062
	free_sched_groups(cpu_map);
6063
}
L
Linus Torvalds 已提交
6064

6065 6066 6067 6068
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6069
static void detach_destroy_domains(const cpumask_t *cpu_map)
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6087
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6088 6089
{
	cpumask_t change_map;
6090
	int err = 0;
6091 6092 6093 6094 6095 6096 6097 6098

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6099 6100 6101 6102 6103
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6104 6105
}

6106 6107 6108 6109 6110
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6111
	mutex_lock(&sched_hotcpu_mutex);
6112 6113
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6114
	mutex_unlock(&sched_hotcpu_mutex);
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6139

6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6159 6160
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6173 6174
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6175 6176 6177 6178 6179 6180 6181
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6182 6183 6184
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6185
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6186 6187 6188 6189 6190 6191 6192
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6193
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6194
	case CPU_DOWN_PREPARE:
6195
	case CPU_DOWN_PREPARE_FROZEN:
6196
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6197 6198 6199
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6200
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6201
	case CPU_DOWN_FAILED:
6202
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6203
	case CPU_ONLINE:
6204
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6205
	case CPU_DEAD:
6206
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6216
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6217 6218 6219 6220 6221 6222

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6223 6224
	cpumask_t non_isolated_cpus;

6225
	mutex_lock(&sched_hotcpu_mutex);
6226
	arch_init_sched_domains(&cpu_online_map);
6227
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6228 6229
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6230
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6231 6232
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6233 6234 6235 6236

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6237
	sched_init_granularity();
L
Linus Torvalds 已提交
6238 6239 6240 6241
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6242
	sched_init_granularity();
L
Linus Torvalds 已提交
6243 6244 6245 6246 6247 6248 6249
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6250

L
Linus Torvalds 已提交
6251 6252 6253 6254 6255
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6256 6257 6258 6259 6260 6261 6262 6263 6264
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6265 6266
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6267
	u64 now = sched_clock();
6268
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6269 6270 6271 6272 6273 6274 6275 6276
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6277

6278
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6279
		struct rt_prio_array *array;
6280
		struct rq *rq;
L
Linus Torvalds 已提交
6281 6282 6283

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6284
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6285
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6286 6287 6288 6289 6290 6291 6292 6293
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6294

I
Ingo Molnar 已提交
6295 6296
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6297
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6298
		rq->sd = NULL;
L
Linus Torvalds 已提交
6299
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6300
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6301
		rq->push_cpu = 0;
6302
		rq->cpu = i;
L
Linus Torvalds 已提交
6303 6304 6305 6306 6307
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6308 6309 6310 6311
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6312
		}
6313
		highest_cpu = i;
I
Ingo Molnar 已提交
6314 6315
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6316 6317
	}

6318
	set_load_weight(&init_task);
6319

6320
#ifdef CONFIG_SMP
6321
	nr_cpu_ids = highest_cpu + 1;
6322 6323 6324
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6325 6326 6327 6328
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6342 6343 6344 6345
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6346 6347 6348 6349 6350
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6351
#ifdef in_atomic
L
Linus Torvalds 已提交
6352 6353 6354 6355 6356 6357 6358
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6359
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6360 6361 6362
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6363
		debug_show_held_locks(current);
6364 6365
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6376
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6377
	unsigned long flags;
6378
	struct rq *rq;
I
Ingo Molnar 已提交
6379
	int on_rq;
L
Linus Torvalds 已提交
6380 6381

	read_lock_irq(&tasklist_lock);
6382
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6401
			continue;
I
Ingo Molnar 已提交
6402
		}
L
Linus Torvalds 已提交
6403

6404 6405
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6406 6407 6408 6409 6410 6411 6412
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6413

I
Ingo Molnar 已提交
6414 6415 6416 6417 6418 6419
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6420 6421
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6422 6423 6424
#ifdef CONFIG_SMP
 out_unlock:
#endif
6425 6426
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6427 6428
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6429 6430 6431 6432
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6451
struct task_struct *curr_task(int cpu)
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6471
void set_curr_task(int cpu, struct task_struct *p)
6472 6473 6474 6475 6476
{
	cpu_curr(cpu) = p;
}

#endif