sched.c 159.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
58
#include <linux/tsacct_kern.h>
59
#include <linux/kprobes.h>
60
#include <linux/delayacct.h>
61
#include <linux/reciprocal_div.h>
62
#include <linux/unistd.h>
L
Linus Torvalds 已提交
63

64
#include <asm/tlb.h>
L
Linus Torvalds 已提交
65

66 67 68 69 70 71 72 73 74 75
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
134 135 136
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

137
/*
I
Ingo Molnar 已提交
138
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 140
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
141
static unsigned int static_prio_timeslice(int static_prio)
142
{
I
Ingo Molnar 已提交
143 144 145 146 147 148 149
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
164
/*
I
Ingo Molnar 已提交
165
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
166
 */
I
Ingo Molnar 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
209

I
Ingo Molnar 已提交
210 211 212 213 214 215 216
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
217 218 219 220 221 222 223
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
224
struct rq {
I
Ingo Molnar 已提交
225
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
226 227 228 229 230 231

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
232 233
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234
	unsigned char idle_at_tick;
235 236 237
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
238 239 240 241 242 243 244
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
245
#endif
I
Ingo Molnar 已提交
246
	struct rt_rq  rt;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

256
	struct task_struct *curr, *idle;
257
	unsigned long next_balance;
L
Linus Torvalds 已提交
258
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
259 260 261 262 263 264 265 266 267

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
276
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
277

278
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
301
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
302 303
};

304
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
305
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
306

I
Ingo Molnar 已提交
307 308 309 310 311
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

312 313 314 315 316 317 318 319 320
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
367 368
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
369
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
370 371 372 373
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
374 375
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
376 377 378 379 380 381

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391 392 393
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
394
#ifndef prepare_arch_switch
395 396 397 398 399 400 401
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
402
static inline int task_running(struct rq *rq, struct task_struct *p)
403 404 405 406
{
	return rq->curr == p;
}

407
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
408 409 410
{
}

411
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
412
{
413 414 415 416
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
417 418 419 420 421 422 423
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

424 425 426 427
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
428
static inline int task_running(struct rq *rq, struct task_struct *p)
429 430 431 432 433 434 435 436
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

437
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

454
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
455 456 457 458 459 460 461 462 463 464 465 466
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
467
#endif
468 469
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
470

471 472 473 474
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
475
static inline struct rq *__task_rq_lock(struct task_struct *p)
476 477
	__acquires(rq->lock)
{
478
	struct rq *rq;
479 480 481 482 483 484 485 486 487 488 489

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
490 491 492 493 494
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
495
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
496 497
	__acquires(rq->lock)
{
498
	struct rq *rq;
L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506 507 508 509 510

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

511
static inline void __task_rq_unlock(struct rq *rq)
512 513 514 515 516
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

517
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
518 519 520 521 522 523
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
524
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
525
 */
526
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
527 528
	__acquires(rq->lock)
{
529
	struct rq *rq;
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
I
Ingo Molnar 已提交
721
#define load_weight(lp) \
722 723
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
I
Ingo Molnar 已提交
724
	load_weight(static_prio_timeslice(prio))
725
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
I
Ingo Molnar 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))

#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage.
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

static const u32 prio_to_wmult[40] = {
	48356,   60446,   75558,   94446,  118058,  147573,
	184467,  230589,  288233,  360285,  450347,
	562979,  703746,  879575, 1099582, 1374389,
	717986, 2147483, 2684354, 3355443, 4194304,
754
	5244160, 6557201, 8196502, 10250518, 12782640,
I
Ingo Molnar 已提交
755 756 757 758
	16025997, 19976592, 24970740, 31350126, 39045157,
	49367440, 61356675, 76695844, 95443717, 119304647,
	148102320, 186737708, 238609294, 286331153,
};
759

760
static inline void
I
Ingo Molnar 已提交
761
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
762
{
I
Ingo Molnar 已提交
763 764
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
765 766
}

767
static inline void
I
Ingo Molnar 已提交
768
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
769
{
I
Ingo Molnar 已提交
770 771
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
772 773
}

I
Ingo Molnar 已提交
774
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
775 776
{
	rq->nr_running++;
I
Ingo Molnar 已提交
777
	inc_load(rq, p, now);
778 779
}

I
Ingo Molnar 已提交
780
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
781 782
{
	rq->nr_running--;
I
Ingo Molnar 已提交
783
	dec_load(rq, p, now);
784 785
}

I
Ingo Molnar 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

816 817
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
818 819 820
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

821
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
822 823 824 825
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
826

I
Ingo Molnar 已提交
827 828 829 830 831 832 833 834
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
835

I
Ingo Molnar 已提交
836 837
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
838 839
}

I
Ingo Molnar 已提交
840 841
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
842
{
I
Ingo Molnar 已提交
843 844 845
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
846 847
}

I
Ingo Molnar 已提交
848 849
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
850
{
I
Ingo Molnar 已提交
851 852
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
853 854
}

855
/*
I
Ingo Molnar 已提交
856
 * __normal_prio - return the priority that is based on the static prio
857 858 859
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
860
	return p->static_prio;
861 862
}

863 864 865 866 867 868 869
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
870
static inline int normal_prio(struct task_struct *p)
871 872 873
{
	int prio;

874
	if (task_has_rt_policy(p))
875 876 877 878 879 880 881 882 883 884 885 886 887
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
888
static int effective_prio(struct task_struct *p)
889 890 891 892 893 894 895 896 897 898 899 900
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
901
/*
I
Ingo Molnar 已提交
902
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
903
 */
I
Ingo Molnar 已提交
904
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
905
{
I
Ingo Molnar 已提交
906
	u64 now = rq_clock(rq);
907

I
Ingo Molnar 已提交
908 909
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
910

I
Ingo Molnar 已提交
911 912
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
913 914 915
}

/*
I
Ingo Molnar 已提交
916
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
917
 */
I
Ingo Molnar 已提交
918
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
919
{
I
Ingo Molnar 已提交
920
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
921

I
Ingo Molnar 已提交
922 923
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
924

I
Ingo Molnar 已提交
925 926
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
927 928 929 930 931
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
932
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
933
{
I
Ingo Molnar 已提交
934 935 936 937 938 939 940
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
941 942 943 944 945 946
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
947
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
948 949 950 951
{
	return cpu_curr(task_cpu(p)) == p;
}

952 953 954
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
955 956 957 958 959 960 961 962 963
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
964 965
}

L
Linus Torvalds 已提交
966
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
967

I
Ingo Molnar 已提交
968
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
969
{
I
Ingo Molnar 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
989 990
}

991
struct migration_req {
L
Linus Torvalds 已提交
992 993
	struct list_head list;

994
	struct task_struct *task;
L
Linus Torvalds 已提交
995 996 997
	int dest_cpu;

	struct completion done;
998
};
L
Linus Torvalds 已提交
999 1000 1001 1002 1003

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1004
static int
1005
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1006
{
1007
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1013
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019 1020 1021
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1022

L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1035
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1036 1037
{
	unsigned long flags;
I
Ingo Molnar 已提交
1038
	int running, on_rq;
1039
	struct rq *rq;
L
Linus Torvalds 已提交
1040 1041

repeat:
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1069
	rq = task_rq_lock(p, &flags);
1070
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1071
	on_rq = p->se.on_rq;
1072 1073 1074 1075 1076 1077 1078 1079 1080
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1081 1082 1083
		cpu_relax();
		goto repeat;
	}
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1094
	if (unlikely(on_rq)) {
1095 1096 1097 1098 1099 1100 1101 1102 1103
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1119
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1131 1132
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1133 1134 1135 1136
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1137
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1138
{
1139
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1140
	unsigned long total = weighted_cpuload(cpu);
1141

1142
	if (type == 0)
I
Ingo Molnar 已提交
1143
		return total;
1144

I
Ingo Molnar 已提交
1145
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1146 1147 1148
}

/*
1149 1150
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1151
 */
N
Nick Piggin 已提交
1152
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1153
{
1154
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1155
	unsigned long total = weighted_cpuload(cpu);
1156

N
Nick Piggin 已提交
1157
	if (type == 0)
I
Ingo Molnar 已提交
1158
		return total;
1159

I
Ingo Molnar 已提交
1160
	return max(rq->cpu_load[type-1], total);
1161 1162 1163 1164 1165 1166 1167
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1168
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1169
	unsigned long total = weighted_cpuload(cpu);
1170 1171
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1172
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1173 1174
}

N
Nick Piggin 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1192 1193 1194 1195
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1212 1213
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1214 1215 1216 1217 1218 1219 1220 1221

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1222
nextgroup:
N
Nick Piggin 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1232
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1233
 */
I
Ingo Molnar 已提交
1234 1235
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1236
{
1237
	cpumask_t tmp;
N
Nick Piggin 已提交
1238 1239 1240 1241
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1242 1243 1244 1245
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1246
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1272

1273
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1274 1275 1276
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1277 1278
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1279 1280
		if (tmp->flags & flag)
			sd = tmp;
1281
	}
N
Nick Piggin 已提交
1282 1283 1284 1285

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1286 1287 1288 1289 1290 1291
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1292 1293 1294

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1295 1296 1297 1298
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1299

1300
		new_cpu = find_idlest_cpu(group, t, cpu);
1301 1302 1303 1304 1305
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1306

1307
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1334
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1350 1351 1352 1353
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1354
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1355 1356 1357 1358
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1359
		} else {
N
Nick Piggin 已提交
1360
			break;
I
Ingo Molnar 已提交
1361
		}
L
Linus Torvalds 已提交
1362 1363 1364 1365
	}
	return cpu;
}
#else
1366
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1386
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1387 1388 1389 1390
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1391
	struct rq *rq;
L
Linus Torvalds 已提交
1392
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1393
	struct sched_domain *sd, *this_sd = NULL;
1394
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401 1402
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1403
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1413 1414
	new_cpu = cpu;

L
Linus Torvalds 已提交
1415 1416 1417
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1418 1419 1420 1421 1422 1423 1424 1425
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1426 1427 1428
		}
	}

N
Nick Piggin 已提交
1429
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1430 1431 1432
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1433
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1434
	 */
N
Nick Piggin 已提交
1435 1436 1437
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1438

1439 1440
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1441 1442
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1443

N
Nick Piggin 已提交
1444 1445
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1446 1447
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1448 1449 1450
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1451

L
Linus Torvalds 已提交
1452
			/*
1453 1454 1455
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1456
			 */
1457
			if (sync)
I
Ingo Molnar 已提交
1458
				tl -= current->se.load.weight;
1459 1460

			if ((tl <= load &&
1461
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1462
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1496
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1497 1498 1499 1500 1501 1502 1503 1504
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1505
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512 1513
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1514 1515
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1526
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1527 1528 1529 1530 1531 1532
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1533
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539 1540
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1565

I
Ingo Molnar 已提交
1566 1567
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1568

L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1591 1592 1593 1594 1595 1596

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1597
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1598
	if (likely(sched_info_on()))
1599
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1600
#endif
1601
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1602 1603
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1604
#ifdef CONFIG_PREEMPT
1605
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1606
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1607
#endif
N
Nick Piggin 已提交
1608
	put_cpu();
L
Linus Torvalds 已提交
1609 1610
}

I
Ingo Molnar 已提交
1611 1612 1613 1614 1615 1616
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1624
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1625 1626
{
	unsigned long flags;
I
Ingo Molnar 已提交
1627 1628
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1629 1630

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1631
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1632
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1633 1634 1635

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1636 1637 1638
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1639 1640
	} else {
		/*
I
Ingo Molnar 已提交
1641 1642
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1643
		 */
I
Ingo Molnar 已提交
1644
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1645
	}
I
Ingo Molnar 已提交
1646 1647
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1662
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1663 1664 1665 1666 1667
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1668 1669
/**
 * finish_task_switch - clean up after a task-switch
1670
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1671 1672
 * @prev: the thread we just switched away from.
 *
1673 1674 1675 1676
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681 1682
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1683
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1684 1685 1686
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1687
	long prev_state;
L
Linus Torvalds 已提交
1688 1689 1690 1691 1692

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1693
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1694 1695
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1696
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1702
	prev_state = prev->state;
1703 1704
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1705 1706
	if (mm)
		mmdrop(mm);
1707
	if (unlikely(prev_state == TASK_DEAD)) {
1708 1709 1710
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1711
		 */
1712
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1713
		put_task_struct(prev);
1714
	}
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1721
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1722 1723
	__releases(rq->lock)
{
1724 1725
	struct rq *rq = this_rq();

1726 1727 1728 1729 1730
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1739
static inline void
1740
context_switch(struct rq *rq, struct task_struct *prev,
1741
	       struct task_struct *next)
L
Linus Torvalds 已提交
1742
{
I
Ingo Molnar 已提交
1743
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1744

I
Ingo Molnar 已提交
1745 1746 1747
	prepare_task_switch(rq, next);
	mm = next->mm;
	oldmm = prev->active_mm;
1748 1749 1750 1751 1752 1753 1754
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1755
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760 1761
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1762
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1763 1764 1765
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1766 1767 1768 1769 1770 1771 1772
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1773
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1774
#endif
L
Linus Torvalds 已提交
1775 1776 1777 1778

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1779 1780 1781 1782 1783 1784 1785
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1809
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1824 1825
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1826

1827
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1837
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1858
/*
I
Ingo Molnar 已提交
1859 1860
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1861
 */
I
Ingo Molnar 已提交
1862
static void update_cpu_load(struct rq *this_rq)
1863
{
I
Ingo Molnar 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1913 1914
}

I
Ingo Molnar 已提交
1915 1916
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1923
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1924 1925 1926
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1927
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1928 1929 1930 1931
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1932
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1948
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1962
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1963 1964 1965 1966
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1967 1968 1969 1970 1971
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
1972
	if (unlikely(!spin_trylock(&busiest->lock))) {
1973
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
1988
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
1989
{
1990
	struct migration_req req;
L
Linus Torvalds 已提交
1991
	unsigned long flags;
1992
	struct rq *rq;
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2003

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2009

L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2017 2018
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2019 2020 2021 2022
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2023
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2024
	put_cpu();
N
Nick Piggin 已提交
2025 2026
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2033 2034
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2035
{
I
Ingo Molnar 已提交
2036
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2037
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2038
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2039 2040 2041 2042
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2043
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2044 2045 2046 2047 2048
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2049
static
2050
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2051
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2052
		     int *all_pinned)
L
Linus Torvalds 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2062 2063 2064 2065
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2066 2067

	/*
I
Ingo Molnar 已提交
2068
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2069
	 */
I
Ingo Molnar 已提交
2070
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2076
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2077
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2078
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2079 2080 2081
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2082
{
I
Ingo Molnar 已提交
2083 2084 2085
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2086

2087
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2088 2089
		goto out;

2090 2091
	pinned = 1;

L
Linus Torvalds 已提交
2092
	/*
I
Ingo Molnar 已提交
2093
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2094
	 */
I
Ingo Molnar 已提交
2095 2096 2097
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2098
		goto out;
2099 2100 2101 2102 2103
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2104 2105 2106 2107
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2108
	if (skip_for_load ||
I
Ingo Molnar 已提交
2109
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2110

I
Ingo Molnar 已提交
2111 2112 2113
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2114 2115
	}

I
Ingo Molnar 已提交
2116
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2117
	pulled++;
I
Ingo Molnar 已提交
2118
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2119

2120 2121 2122 2123 2124
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2125 2126 2127 2128
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133 2134 2135 2136
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2137 2138 2139

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2140
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2141 2142 2143
	return pulled;
}

I
Ingo Molnar 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2173 2174
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2175 2176
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2177 2178 2179
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2180 2181
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2182 2183 2184
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2185
	unsigned long max_pull;
2186 2187
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2188
	int load_idx;
2189 2190 2191 2192 2193 2194
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2195 2196

	max_load = this_load = total_load = total_pwr = 0;
2197 2198
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2199
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2200
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2201
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2202 2203 2204
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2205 2206

	do {
2207
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2208 2209
		int local_group;
		int i;
2210
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2211
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2212 2213 2214

		local_group = cpu_isset(this_cpu, group->cpumask);

2215 2216 2217
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2218
		/* Tally up the load of all CPUs in the group */
2219
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2220 2221

		for_each_cpu_mask(i, group->cpumask) {
2222 2223 2224 2225 2226 2227
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2228

N
Nick Piggin 已提交
2229 2230 2231
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2232
			/* Bias balancing toward cpus of our domain */
2233 2234 2235 2236 2237 2238
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2239
				load = target_load(i, load_idx);
2240
			} else
N
Nick Piggin 已提交
2241
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2242 2243

			avg_load += load;
2244
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2245
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2246 2247
		}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2258
		total_load += avg_load;
2259
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2260 2261

		/* Adjust by relative CPU power of the group */
2262 2263
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2264

2265
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2266

L
Linus Torvalds 已提交
2267 2268 2269
		if (local_group) {
			this_load = avg_load;
			this = group;
2270 2271 2272
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2273
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2274 2275
			max_load = avg_load;
			busiest = group;
2276 2277
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2278
		}
2279 2280 2281 2282 2283 2284

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2285 2286 2287
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2288 2289 2290 2291 2292 2293 2294 2295 2296

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2297
		/*
2298 2299
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2300 2301
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2302
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2303
			goto group_next;
2304

I
Ingo Molnar 已提交
2305
		/*
2306
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2307 2308 2309 2310 2311
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2312 2313
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2314 2315
			group_min = group;
			min_nr_running = sum_nr_running;
2316 2317
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2318
		}
2319

I
Ingo Molnar 已提交
2320
		/*
2321
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2333
		}
2334 2335
group_next:
#endif
L
Linus Torvalds 已提交
2336 2337 2338
		group = group->next;
	} while (group != sd->groups);

2339
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345 2346 2347
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2348
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2372 2373

	/* Don't want to pull so many tasks that a group would go idle */
2374
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2375

L
Linus Torvalds 已提交
2376
	/* How much load to actually move to equalise the imbalance */
2377 2378
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2379 2380
			/ SCHED_LOAD_SCALE;

2381 2382 2383 2384 2385 2386
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2387
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2388
		unsigned long tmp, pwr_now, pwr_move;
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2400

I
Ingo Molnar 已提交
2401 2402
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2403
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2413 2414 2415 2416
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2417 2418 2419
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2420 2421
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2422
		if (max_load > tmp)
2423
			pwr_move += busiest->__cpu_power *
2424
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2425 2426

		/* Amount of load we'd add */
2427
		if (max_load * busiest->__cpu_power <
2428
				busiest_load_per_task * SCHED_LOAD_SCALE)
2429 2430
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2431
		else
2432 2433 2434 2435
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2442
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447
	}

	return busiest;

out_balanced:
2448
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2449
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2450
		goto ret;
L
Linus Torvalds 已提交
2451

2452 2453 2454 2455 2456
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2457
ret:
L
Linus Torvalds 已提交
2458 2459 2460 2461 2462 2463 2464
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2465
static struct rq *
I
Ingo Molnar 已提交
2466
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2467
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2468
{
2469
	struct rq *busiest = NULL, *rq;
2470
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2471 2472 2473
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2474
		unsigned long wl;
2475 2476 2477 2478

		if (!cpu_isset(i, *cpus))
			continue;

2479
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2480
		wl = weighted_cpuload(i);
2481

I
Ingo Molnar 已提交
2482
		if (rq->nr_running == 1 && wl > imbalance)
2483
			continue;
L
Linus Torvalds 已提交
2484

I
Ingo Molnar 已提交
2485 2486
		if (wl > max_load) {
			max_load = wl;
2487
			busiest = rq;
L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493
		}
	}

	return busiest;
}

2494 2495 2496 2497 2498 2499
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2500 2501 2502 2503 2504
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2505 2506 2507 2508
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2509
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2510
			struct sched_domain *sd, enum cpu_idle_type idle,
2511
			int *balance)
L
Linus Torvalds 已提交
2512
{
2513
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2514 2515
	struct sched_group *group;
	unsigned long imbalance;
2516
	struct rq *busiest;
2517
	cpumask_t cpus = CPU_MASK_ALL;
2518
	unsigned long flags;
N
Nick Piggin 已提交
2519

2520 2521 2522
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2523
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2524
	 * portraying it as CPU_NOT_IDLE.
2525
	 */
I
Ingo Molnar 已提交
2526
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2527
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2528
		sd_idle = 1;
L
Linus Torvalds 已提交
2529 2530 2531

	schedstat_inc(sd, lb_cnt[idle]);

2532 2533
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2534 2535
				   &cpus, balance);

2536
	if (*balance == 0)
2537 2538
		goto out_balanced;

L
Linus Torvalds 已提交
2539 2540 2541 2542 2543
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2544
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2545 2546 2547 2548 2549
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2550
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2562
		local_irq_save(flags);
N
Nick Piggin 已提交
2563
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2564
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2565 2566
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2567
		double_rq_unlock(this_rq, busiest);
2568
		local_irq_restore(flags);
2569

2570 2571 2572 2573 2574 2575
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2576
		/* All tasks on this runqueue were pinned by CPU affinity */
2577 2578 2579 2580
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2581
			goto out_balanced;
2582
		}
L
Linus Torvalds 已提交
2583
	}
2584

L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2591
			spin_lock_irqsave(&busiest->lock, flags);
2592 2593 2594 2595 2596

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2597
				spin_unlock_irqrestore(&busiest->lock, flags);
2598 2599 2600 2601
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2602 2603 2604
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2605
				active_balance = 1;
L
Linus Torvalds 已提交
2606
			}
2607
			spin_unlock_irqrestore(&busiest->lock, flags);
2608
			if (active_balance)
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2615
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2616
		}
2617
	} else
L
Linus Torvalds 已提交
2618 2619
		sd->nr_balance_failed = 0;

2620
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2621 2622
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2623 2624 2625 2626 2627 2628 2629 2630 2631
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2632 2633
	}

2634
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2635
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2636
		return -1;
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2642
	sd->nr_balance_failed = 0;
2643 2644

out_one_pinned:
L
Linus Torvalds 已提交
2645
	/* tune up the balancing interval */
2646 2647
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2648 2649
		sd->balance_interval *= 2;

2650
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2651
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2652
		return -1;
L
Linus Torvalds 已提交
2653 2654 2655 2656 2657 2658 2659
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2660
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2661 2662
 * this_rq is locked.
 */
2663
static int
2664
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2665 2666
{
	struct sched_group *group;
2667
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2668 2669
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2670
	int sd_idle = 0;
2671
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2672

2673 2674 2675 2676
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2677
	 * portraying it as CPU_NOT_IDLE.
2678 2679 2680
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2681
		sd_idle = 1;
L
Linus Torvalds 已提交
2682

I
Ingo Molnar 已提交
2683
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2684
redo:
I
Ingo Molnar 已提交
2685
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2686
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2687
	if (!group) {
I
Ingo Molnar 已提交
2688
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2689
		goto out_balanced;
L
Linus Torvalds 已提交
2690 2691
	}

I
Ingo Molnar 已提交
2692
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2693
				&cpus);
N
Nick Piggin 已提交
2694
	if (!busiest) {
I
Ingo Molnar 已提交
2695
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2696
		goto out_balanced;
L
Linus Torvalds 已提交
2697 2698
	}

N
Nick Piggin 已提交
2699 2700
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2701
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2702 2703 2704 2705 2706 2707

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2708
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2709
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2710
		spin_unlock(&busiest->lock);
2711 2712 2713 2714 2715 2716

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2717 2718
	}

N
Nick Piggin 已提交
2719
	if (!nr_moved) {
I
Ingo Molnar 已提交
2720
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2721 2722
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2723 2724
			return -1;
	} else
2725
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2726 2727

	return nr_moved;
2728 2729

out_balanced:
I
Ingo Molnar 已提交
2730
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2731
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2732
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2733
		return -1;
2734
	sd->nr_balance_failed = 0;
2735

2736
	return 0;
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741 2742
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2743
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2744 2745
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2746 2747
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2748 2749

	for_each_domain(this_cpu, sd) {
2750 2751 2752 2753 2754 2755
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2756
			/* If we've pulled tasks over stop searching: */
2757
			pulled_task = load_balance_newidle(this_cpu,
2758 2759 2760 2761 2762 2763 2764
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2765
	}
I
Ingo Molnar 已提交
2766
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2767 2768 2769 2770 2771
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2772
	}
L
Linus Torvalds 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2783
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2784
{
2785
	int target_cpu = busiest_rq->push_cpu;
2786 2787
	struct sched_domain *sd;
	struct rq *target_rq;
2788

2789
	/* Is there any task to move? */
2790 2791 2792 2793
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2794 2795

	/*
2796 2797 2798
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2799
	 */
2800
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2801

2802 2803 2804 2805
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2806
	for_each_domain(target_cpu, sd) {
2807
		if ((sd->flags & SD_LOAD_BALANCE) &&
2808
		    cpu_isset(busiest_cpu, sd->span))
2809
				break;
2810
	}
2811

2812 2813
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2814

2815
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2816
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2817 2818 2819 2820 2821
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2822
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832 2833
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2834
/*
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2845
 *
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2902 2903 2904 2905 2906
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2907
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2908
{
2909 2910
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2911 2912
	unsigned long interval;
	struct sched_domain *sd;
2913
	/* Earliest time when we have to do rebalance again */
2914
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2915

2916
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2917 2918 2919 2920
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2921
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
2928 2929 2930
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
2931

2932 2933 2934 2935 2936
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2937
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2938
			if (load_balance(cpu, rq, sd, idle, &balance)) {
2939 2940
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2941 2942 2943
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
2944
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
2945
			}
2946
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
2947
		}
2948 2949 2950
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
2951 2952
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
2953 2954 2955 2956 2957 2958 2959 2960

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
2961
	}
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
2972 2973 2974 2975
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
2976

I
Ingo Molnar 已提交
2977
	rebalance_domains(this_cpu, idle);
2978 2979 2980 2981 2982 2983 2984

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
2985 2986
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
2987 2988 2989 2990
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
2991
		cpu_clear(this_cpu, cpus);
2992 2993 2994 2995 2996 2997 2998 2999 3000
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3001
			rebalance_domains(balance_cpu, SCHED_IDLE);
3002 3003

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3004 3005
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3018
static inline void trigger_load_balance(struct rq *rq, int cpu)
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3070
}
I
Ingo Molnar 已提交
3071 3072 3073

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3074 3075 3076
/*
 * on UP we do not need to balance between CPUs:
 */
3077
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3078 3079
{
}
I
Ingo Molnar 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3094 3095 3096 3097 3098 3099 3100
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3101 3102
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3103
 */
3104
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3105 3106
{
	unsigned long flags;
3107 3108
	u64 ns, delta_exec;
	struct rq *rq;
3109

3110 3111 3112 3113 3114 3115 3116 3117
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3118

L
Linus Torvalds 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3153
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3183
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3206 3207 3208 3209 3210 3211 3212
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3213

3214
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3215 3216
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3217
#endif
L
Linus Torvalds 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3227 3228
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3229 3230 3231 3232
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3233 3234
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3235 3236 3237 3238 3239 3240 3241 3242
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3243 3244
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3245 3246 3247
	/*
	 * Is the spinlock portion underflowing?
	 */
3248 3249 3250 3251
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3252 3253 3254 3255 3256 3257 3258
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3259
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3260
 */
I
Ingo Molnar 已提交
3261
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3262
{
I
Ingo Molnar 已提交
3263 3264 3265 3266 3267 3268 3269
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3270

I
Ingo Molnar 已提交
3271 3272 3273 3274 3275
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3276 3277 3278 3279 3280
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3281 3282 3283
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3284 3285
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3297 3298

	/*
I
Ingo Molnar 已提交
3299 3300
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3301
	 */
I
Ingo Molnar 已提交
3302 3303 3304 3305
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3306 3307
	}

I
Ingo Molnar 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3320

I
Ingo Molnar 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3344 3345

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3346
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3347 3348 3349

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3350
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3351
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3352 3353
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3354
		}
I
Ingo Molnar 已提交
3355
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3356 3357
	}

I
Ingo Molnar 已提交
3358
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3359 3360
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3361 3362 3363
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3364 3365

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3366

L
Linus Torvalds 已提交
3367 3368 3369 3370 3371
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3372
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3373 3374 3375
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3376 3377 3378
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3379
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3380
	}
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385 3386 3387 3388
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3389
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3404
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3432
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3444
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3474 3475
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3476
{
3477
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3496 3497 3498
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3499
		if (curr->func(curr, mode, sync, key) &&
3500
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3510
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3511 3512
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3513
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3532
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3544 3545
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3589

L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3708 3709 3710 3711 3712
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3713
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3714
}
L
Linus Torvalds 已提交
3715

I
Ingo Molnar 已提交
3716 3717 3718 3719 3720 3721 3722
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3723

I
Ingo Molnar 已提交
3724
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3725
{
I
Ingo Molnar 已提交
3726 3727 3728 3729
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3730 3731 3732

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3733
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3734
	schedule();
I
Ingo Molnar 已提交
3735
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3736 3737 3738
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3739
long __sched
I
Ingo Molnar 已提交
3740
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3741
{
I
Ingo Molnar 已提交
3742 3743 3744 3745
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3746 3747 3748

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3749
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3750
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3751
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3757
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3758
{
I
Ingo Molnar 已提交
3759 3760 3761 3762
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3763 3764 3765

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3766
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3767
	schedule();
I
Ingo Molnar 已提交
3768
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3769 3770 3771
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3772
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3773
{
I
Ingo Molnar 已提交
3774 3775 3776 3777
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3778 3779 3780

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3781
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3782
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3783
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3784 3785 3786 3787 3788

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3801
void rt_mutex_setprio(struct task_struct *p, int prio)
3802 3803
{
	unsigned long flags;
I
Ingo Molnar 已提交
3804
	int oldprio, on_rq;
3805
	struct rq *rq;
I
Ingo Molnar 已提交
3806
	u64 now;
3807 3808 3809 3810

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3811
	now = rq_clock(rq);
3812

3813
	oldprio = p->prio;
I
Ingo Molnar 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3823 3824
	p->prio = prio;

I
Ingo Molnar 已提交
3825 3826
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3827 3828
		/*
		 * Reschedule if we are currently running on this runqueue and
3829 3830
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3831
		 */
3832 3833 3834
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3835 3836 3837
		} else {
			check_preempt_curr(rq, p);
		}
3838 3839 3840 3841 3842 3843
	}
	task_rq_unlock(rq, &flags);
}

#endif

3844
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3845
{
I
Ingo Molnar 已提交
3846
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3847
	unsigned long flags;
3848
	struct rq *rq;
I
Ingo Molnar 已提交
3849
	u64 now;
L
Linus Torvalds 已提交
3850 3851 3852 3853 3854 3855 3856 3857

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3858
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3859 3860 3861 3862
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3863
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3864
	 */
3865
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3866 3867 3868
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3869 3870 3871 3872
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3873
	}
L
Linus Torvalds 已提交
3874 3875

	p->static_prio = NICE_TO_PRIO(nice);
3876
	set_load_weight(p);
3877 3878 3879
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3880

I
Ingo Molnar 已提交
3881 3882 3883
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3884
		/*
3885 3886
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3887
		 */
3888
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3889 3890 3891 3892 3893 3894 3895
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3896 3897 3898 3899 3900
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3901
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3902
{
3903 3904
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3905

M
Matt Mackall 已提交
3906 3907 3908 3909
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3921
	long nice, retval;
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926 3927

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3928 3929
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3939 3940 3941
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3960
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965 3966 3967 3968
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3969
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3988
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3989 3990 3991 3992 3993 3994 3995 3996
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
3997
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4003 4004
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4005
{
I
Ingo Molnar 已提交
4006
	BUG_ON(p->se.on_rq);
4007

L
Linus Torvalds 已提交
4008
	p->policy = policy;
I
Ingo Molnar 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4021
	p->rt_priority = prio;
4022 4023 4024
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4025
	set_load_weight(p);
L
Linus Torvalds 已提交
4026 4027 4028
}

/**
4029
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4030 4031 4032
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4033
 *
4034
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4035
 */
I
Ingo Molnar 已提交
4036 4037
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4038
{
I
Ingo Molnar 已提交
4039
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4040
	unsigned long flags;
4041
	struct rq *rq;
L
Linus Torvalds 已提交
4042

4043 4044
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4050 4051
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4052
		return -EINVAL;
L
Linus Torvalds 已提交
4053 4054
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4055 4056
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4057 4058
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4059
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4060
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4061
		return -EINVAL;
4062
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4063 4064
		return -EINVAL;

4065 4066 4067 4068
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4069
		if (rt_policy(policy)) {
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4086 4087 4088 4089 4090 4091
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4092

4093 4094 4095 4096 4097
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4098 4099 4100 4101

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4102 4103 4104 4105 4106
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4107 4108 4109 4110
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4111
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4112 4113 4114
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4115 4116
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4117 4118
		goto recheck;
	}
I
Ingo Molnar 已提交
4119 4120 4121
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4122
	oldprio = p->prio;
I
Ingo Molnar 已提交
4123 4124 4125
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4126 4127
		/*
		 * Reschedule if we are currently running on this runqueue and
4128 4129
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4130
		 */
4131 4132 4133
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4134 4135 4136
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4137
	}
4138 4139 4140
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4141 4142
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4143 4144 4145 4146
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4147 4148
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4149 4150 4151
{
	struct sched_param lparam;
	struct task_struct *p;
4152
	int retval;
L
Linus Torvalds 已提交
4153 4154 4155 4156 4157

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4158 4159 4160

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4161
	p = find_process_by_pid(pid);
4162 4163 4164
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4165

L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4178 4179 4180 4181
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4201
	struct task_struct *p;
L
Linus Torvalds 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4229
	struct task_struct *p;
L
Linus Torvalds 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4264 4265
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4266

4267
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4273
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4290 4291 4292 4293
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4300
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4341
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4342 4343 4344
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4345
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4346 4347
EXPORT_SYMBOL(cpu_online_map);

4348
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4349
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4350 4351 4352 4353
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4354
	struct task_struct *p;
L
Linus Torvalds 已提交
4355 4356
	int retval;

4357
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4358 4359 4360 4361 4362 4363 4364
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4365 4366 4367 4368
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4369
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4370 4371 4372

out_unlock:
	read_unlock(&tasklist_lock);
4373
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4408 4409
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4410 4411 4412
 */
asmlinkage long sys_sched_yield(void)
{
4413
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4414 4415

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4416
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4417
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4418 4419
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4426
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433 4434
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4435
static void __cond_resched(void)
L
Linus Torvalds 已提交
4436
{
4437 4438 4439
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4440 4441 4442 4443 4444
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4454 4455
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4471
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4472
{
J
Jan Kara 已提交
4473 4474
	int ret = 0;

L
Linus Torvalds 已提交
4475 4476 4477
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4478
		ret = 1;
L
Linus Torvalds 已提交
4479 4480
		spin_lock(lock);
	}
4481
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4482
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4483 4484 4485
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4486
		ret = 1;
L
Linus Torvalds 已提交
4487 4488
		spin_lock(lock);
	}
J
Jan Kara 已提交
4489
	return ret;
L
Linus Torvalds 已提交
4490 4491 4492 4493 4494 4495 4496
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4497
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4498
		local_bh_enable();
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4510
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4529
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4530

4531
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4532 4533 4534
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4535
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4541
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4542 4543
	long ret;

4544
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4545 4546 4547
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4548
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4569
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4570
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4594
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4595
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4612
	struct task_struct *p;
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4629
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4630
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4640
static const char stat_nam[] = "RSDTtZX";
4641 4642

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4643 4644
{
	unsigned long free = 0;
4645
	unsigned state;
L
Linus Torvalds 已提交
4646 4647

	state = p->state ? __ffs(p->state) + 1 : 0;
4648 4649
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4663
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4664 4665
		while (!*n)
			n++;
4666
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4667 4668
	}
#endif
4669
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4679
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4680
{
4681
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4682 4683 4684

#if (BITS_PER_LONG == 32)
	printk("\n"
4685 4686
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4687 4688
#else
	printk("\n"
4689 4690
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4691 4692 4693 4694 4695 4696 4697 4698
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4699
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4700
			show_task(p);
L
Linus Torvalds 已提交
4701 4702
	} while_each_thread(g, p);

4703 4704
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4705 4706 4707
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4708
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4709 4710 4711 4712 4713
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4714 4715
}

I
Ingo Molnar 已提交
4716 4717
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4718
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4719 4720
}

4721 4722 4723 4724 4725 4726 4727 4728
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4729
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4730
{
4731
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4732 4733
	unsigned long flags;

I
Ingo Molnar 已提交
4734 4735 4736
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4737
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4738
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4739
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4740 4741 4742

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4743 4744 4745
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4746 4747 4748 4749
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4750
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4751
#else
A
Al Viro 已提交
4752
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4753
#endif
I
Ingo Molnar 已提交
4754 4755 4756 4757
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long gran_limit = 10000000;

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4791 4792 4793 4794
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4795
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4817
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4818
{
4819
	struct migration_req req;
L
Linus Torvalds 已提交
4820
	unsigned long flags;
4821
	struct rq *rq;
4822
	int ret = 0;
L
Linus Torvalds 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4845

L
Linus Torvalds 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4858 4859
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4860
 */
4861
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4862
{
4863
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4864
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4865 4866

	if (unlikely(cpu_is_offline(dest_cpu)))
4867
		return ret;
L
Linus Torvalds 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4880 4881 4882
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4883
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4884 4885 4886
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4887
	}
4888
	ret = 1;
L
Linus Torvalds 已提交
4889 4890
out:
	double_rq_unlock(rq_src, rq_dest);
4891
	return ret;
L
Linus Torvalds 已提交
4892 4893 4894 4895 4896 4897 4898
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4899
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4900 4901
{
	int cpu = (long)data;
4902
	struct rq *rq;
L
Linus Torvalds 已提交
4903 4904 4905 4906 4907 4908

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4909
		struct migration_req *req;
L
Linus Torvalds 已提交
4910 4911
		struct list_head *head;

4912
		try_to_freeze();
L
Linus Torvalds 已提交
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4934
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4935 4936
		list_del_init(head->next);

N
Nick Piggin 已提交
4937 4938 4939
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
4958 4959 4960 4961
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
4962
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
4963
{
4964
	unsigned long flags;
L
Linus Torvalds 已提交
4965
	cpumask_t mask;
4966 4967
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
4968

4969
restart:
L
Linus Torvalds 已提交
4970 4971
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
4972
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
4973 4974 4975 4976
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
4977
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
4978 4979 4980

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
4981 4982 4983
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
4984
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
4991
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
4992 4993
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
4994
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
4995
	}
4996
	if (!__migrate_task(p, dead_cpu, dest_cpu))
4997
		goto restart;
L
Linus Torvalds 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5007
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5008
{
5009
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5023
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5024 5025 5026

	write_lock_irq(&tasklist_lock);

5027 5028
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5029 5030
			continue;

5031 5032 5033
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5034 5035 5036 5037

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5038 5039
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5040
 * It does so by boosting its priority to highest possible and adding it to
5041
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5042 5043 5044
 */
void sched_idle_next(void)
{
5045
	int this_cpu = smp_processor_id();
5046
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5047 5048 5049 5050
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5051
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5052

5053 5054 5055
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5056 5057 5058
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5059
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5060 5061

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5062
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5063 5064 5065 5066

	spin_unlock_irqrestore(&rq->lock, flags);
}

5067 5068
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5082
/* called under rq->lock with disabled interrupts */
5083
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5084
{
5085
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5086 5087

	/* Must be exiting, otherwise would be on tasklist. */
5088
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5089 5090

	/* Cannot have done final schedule yet: would have vanished. */
5091
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5092

5093
	get_task_struct(p);
L
Linus Torvalds 已提交
5094 5095 5096 5097 5098

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5099
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5100
	 */
5101
	spin_unlock(&rq->lock);
5102
	move_task_off_dead_cpu(dead_cpu, p);
5103
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5104

5105
	put_task_struct(p);
L
Linus Torvalds 已提交
5106 5107 5108 5109 5110
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5111
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5112
	struct task_struct *next;
5113

I
Ingo Molnar 已提交
5114 5115 5116 5117 5118 5119 5120
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126 5127 5128
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5129 5130
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5131 5132
{
	struct task_struct *p;
5133
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5134
	unsigned long flags;
5135
	struct rq *rq;
L
Linus Torvalds 已提交
5136 5137

	switch (action) {
5138 5139 5140 5141
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5142
	case CPU_UP_PREPARE:
5143
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5144
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149 5150
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5151
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5152 5153 5154
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5155

L
Linus Torvalds 已提交
5156
	case CPU_ONLINE:
5157
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5158 5159 5160
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5161

L
Linus Torvalds 已提交
5162 5163
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5164
	case CPU_UP_CANCELED_FROZEN:
5165 5166
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5167
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5168 5169
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5170 5171 5172
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5173

L
Linus Torvalds 已提交
5174
	case CPU_DEAD:
5175
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5182
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5183
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5184 5185
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5192
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5193 5194 5195
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5196 5197
			struct migration_req *req;

L
Linus Torvalds 已提交
5198
			req = list_entry(rq->migration_queue.next,
5199
					 struct migration_req, list);
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204 5205
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5206 5207 5208
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5216
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5217 5218 5219 5220 5221 5222 5223
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5224
	int err;
5225 5226

	/* Start one for the boot CPU: */
5227 5228
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5229 5230
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5231

L
Linus Torvalds 已提交
5232 5233 5234 5235 5236
	return 0;
}
#endif

#ifdef CONFIG_SMP
5237 5238 5239 5240 5241

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5242
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5243 5244 5245 5246 5247
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5248 5249 5250 5251 5252
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5272 5273
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5274 5275 5276 5277 5278 5279
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5280 5281
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5282
		if (!cpu_isset(cpu, group->cpumask))
5283 5284
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5297
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5298
				printk("\n");
5299 5300
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5323 5324
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5325 5326 5327

		level++;
		sd = sd->parent;
5328 5329
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5330

5331 5332 5333
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5334 5335 5336 5337

	} while (sd);
}
#else
5338
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5339 5340
#endif

5341
static int sd_degenerate(struct sched_domain *sd)
5342 5343 5344 5345 5346 5347 5348 5349
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5350 5351 5352
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5366 5367
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5386 5387 5388
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5389 5390 5391 5392 5393 5394 5395
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5396 5397 5398 5399
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5400
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5401
{
5402
	struct rq *rq = cpu_rq(cpu);
5403 5404 5405 5406 5407 5408 5409
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5410
		if (sd_parent_degenerate(tmp, parent)) {
5411
			tmp->parent = parent->parent;
5412 5413 5414
			if (parent->parent)
				parent->parent->child = tmp;
		}
5415 5416
	}

5417
	if (sd && sd_degenerate(sd)) {
5418
		sd = sd->parent;
5419 5420 5421
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5422 5423 5424

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5425
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5426 5427 5428
}

/* cpus with isolated domains */
5429
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5447 5448 5449 5450
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5451 5452 5453 5454 5455
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5456
static void
5457 5458 5459
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5466 5467
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5474
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5475 5476

		for_each_cpu_mask(j, span) {
5477
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5492
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5493

5494
#ifdef CONFIG_NUMA
5495

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5548 5549
	cpumask_t span, nodemask;
	int i;
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5560

5561 5562 5563 5564 5565 5566 5567 5568
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5569
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5570

5571
/*
5572
 * SMT sched-domains:
5573
 */
L
Linus Torvalds 已提交
5574 5575
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5576
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5577

5578 5579
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5580
{
5581 5582
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5583 5584 5585 5586
	return cpu;
}
#endif

5587 5588 5589
/*
 * multi-core sched-domains:
 */
5590 5591
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5592
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5593 5594 5595
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5596 5597
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5598
{
5599
	int group;
5600 5601
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5602 5603 5604 5605
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5606 5607
}
#elif defined(CONFIG_SCHED_MC)
5608 5609
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5610
{
5611 5612
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5613 5614 5615 5616
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5617
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5618
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5619

5620 5621
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5622
{
5623
	int group;
5624
#ifdef CONFIG_SCHED_MC
5625
	cpumask_t mask = cpu_coregroup_map(cpu);
5626
	cpus_and(mask, mask, *cpu_map);
5627
	group = first_cpu(mask);
5628
#elif defined(CONFIG_SCHED_SMT)
5629 5630
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5631
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5632
#else
5633
	group = cpu;
L
Linus Torvalds 已提交
5634
#endif
5635 5636 5637
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5638 5639 5640 5641
}

#ifdef CONFIG_NUMA
/*
5642 5643 5644
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5645
 */
5646
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5647
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5648

5649
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5650
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5651

5652 5653
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5654
{
5655 5656 5657 5658 5659 5660 5661 5662 5663
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5664
}
5665

5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5686
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5687 5688 5689 5690 5691
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5692 5693
#endif

5694
#ifdef CONFIG_NUMA
5695 5696 5697
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5698
	int cpu, i;
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5729 5730 5731 5732 5733
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5734

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5761 5762
	sd->groups->__cpu_power = 0;

5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5773
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5774 5775 5776 5777 5778 5779 5780 5781
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5782
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5783 5784 5785 5786
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5787
/*
5788 5789
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5790
 */
5791
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5792 5793
{
	int i;
5794 5795
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5796
	int sd_allnodes = 0;
5797 5798 5799 5800

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5801
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5802
					   GFP_KERNEL);
5803 5804
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5805
		return -ENOMEM;
5806 5807 5808
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5809 5810

	/*
5811
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5812
	 */
5813
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5814 5815 5816
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5817
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5818 5819

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5820 5821
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5822 5823 5824
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5825
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5826
			p = sd;
5827
			sd_allnodes = 1;
5828 5829 5830
		} else
			p = NULL;

L
Linus Torvalds 已提交
5831 5832
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5833 5834
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5835 5836
		if (p)
			p->child = sd;
5837
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5838 5839 5840 5841 5842 5843 5844
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5845 5846
		if (p)
			p->child = sd;
5847
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5848

5849 5850 5851 5852 5853 5854 5855
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5856
		p->child = sd;
5857
		cpu_to_core_group(i, cpu_map, &sd->groups);
5858 5859
#endif

L
Linus Torvalds 已提交
5860 5861 5862 5863 5864
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5865
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5866
		sd->parent = p;
5867
		p->child = sd;
5868
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5869 5870 5871 5872 5873
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5874
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5875
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5876
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5877 5878 5879
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
5880 5881
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
5882 5883 5884
	}
#endif

5885 5886 5887 5888 5889 5890 5891
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
5892 5893
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
5894 5895 5896
	}
#endif

L
Linus Torvalds 已提交
5897 5898 5899 5900
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5901
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5902 5903 5904
		if (cpus_empty(nodemask))
			continue;

5905
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5906 5907 5908 5909
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5910
	if (sd_allnodes)
I
Ingo Molnar 已提交
5911 5912
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
5923 5924
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
5925
			continue;
5926
		}
5927 5928 5929 5930

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

5931
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
5932 5933 5934 5935 5936
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
5937 5938 5939
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
5940

5941 5942 5943
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
5944
		sg->__cpu_power = 0;
5945
		sg->cpumask = nodemask;
5946
		sg->next = sg;
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

5965 5966
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
5967 5968 5969
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
5970
				goto error;
5971
			}
5972
			sg->__cpu_power = 0;
5973
			sg->cpumask = tmp;
5974
			sg->next = prev->next;
5975 5976 5977 5978 5979
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
5980 5981 5982
#endif

	/* Calculate CPU power for physical packages and nodes */
5983
#ifdef CONFIG_SCHED_SMT
5984
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5985 5986
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

5987
		init_sched_groups_power(i, sd);
5988
	}
L
Linus Torvalds 已提交
5989
#endif
5990
#ifdef CONFIG_SCHED_MC
5991
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5992 5993
		struct sched_domain *sd = &per_cpu(core_domains, i);

5994
		init_sched_groups_power(i, sd);
5995 5996
	}
#endif
5997

5998
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5999 6000
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6001
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6002 6003
	}

6004
#ifdef CONFIG_NUMA
6005 6006
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6007

6008 6009
	if (sd_allnodes) {
		struct sched_group *sg;
6010

6011
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6012 6013
		init_numa_sched_groups_power(sg);
	}
6014 6015
#endif

L
Linus Torvalds 已提交
6016
	/* Attach the domains */
6017
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6018 6019 6020
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6021 6022
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6023 6024 6025 6026 6027
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6028 6029 6030

	return 0;

6031
#ifdef CONFIG_NUMA
6032 6033 6034
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6035
#endif
L
Linus Torvalds 已提交
6036
}
6037 6038 6039
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6040
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6041 6042
{
	cpumask_t cpu_default_map;
6043
	int err;
L
Linus Torvalds 已提交
6044

6045 6046 6047 6048 6049 6050 6051
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6052 6053 6054
	err = build_sched_domains(&cpu_default_map);

	return err;
6055 6056 6057
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6058
{
6059
	free_sched_groups(cpu_map);
6060
}
L
Linus Torvalds 已提交
6061

6062 6063 6064 6065
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6066
static void detach_destroy_domains(const cpumask_t *cpu_map)
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6084
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6085 6086
{
	cpumask_t change_map;
6087
	int err = 0;
6088 6089 6090 6091 6092 6093 6094 6095

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6096 6097 6098 6099 6100
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6101 6102
}

6103 6104 6105 6106 6107
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6108
	mutex_lock(&sched_hotcpu_mutex);
6109 6110
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6111
	mutex_unlock(&sched_hotcpu_mutex);
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6156 6157
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6170 6171
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6172 6173 6174 6175 6176 6177 6178
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6179 6180 6181
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6182
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6183 6184 6185 6186 6187 6188 6189
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6190
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6191
	case CPU_DOWN_PREPARE:
6192
	case CPU_DOWN_PREPARE_FROZEN:
6193
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6194 6195 6196
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6197
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6198
	case CPU_DOWN_FAILED:
6199
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6200
	case CPU_ONLINE:
6201
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6202
	case CPU_DEAD:
6203
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6213
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6214 6215 6216 6217 6218 6219

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6220 6221
	cpumask_t non_isolated_cpus;

6222
	mutex_lock(&sched_hotcpu_mutex);
6223
	arch_init_sched_domains(&cpu_online_map);
6224
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6225 6226
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6227
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6228 6229
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6230 6231 6232 6233

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6234
	sched_init_granularity();
L
Linus Torvalds 已提交
6235 6236 6237 6238
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6239
	sched_init_granularity();
L
Linus Torvalds 已提交
6240 6241 6242 6243 6244 6245 6246
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6247

L
Linus Torvalds 已提交
6248 6249 6250 6251 6252
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6253 6254 6255 6256 6257 6258 6259 6260 6261
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6262 6263
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6264
	u64 now = sched_clock();
6265
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6266 6267 6268 6269 6270 6271 6272 6273
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6274

6275
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6276
		struct rt_prio_array *array;
6277
		struct rq *rq;
L
Linus Torvalds 已提交
6278 6279 6280

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6281
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6282
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6283 6284 6285 6286 6287 6288 6289 6290
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6291

I
Ingo Molnar 已提交
6292 6293
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6294
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6295
		rq->sd = NULL;
L
Linus Torvalds 已提交
6296
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6297
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6298
		rq->push_cpu = 0;
6299
		rq->cpu = i;
L
Linus Torvalds 已提交
6300 6301 6302 6303 6304
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6305 6306 6307 6308
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6309
		}
6310
		highest_cpu = i;
I
Ingo Molnar 已提交
6311 6312
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6313 6314
	}

6315
	set_load_weight(&init_task);
6316

6317
#ifdef CONFIG_SMP
6318
	nr_cpu_ids = highest_cpu + 1;
6319 6320 6321
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6322 6323 6324 6325
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6339 6340 6341 6342
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6343 6344 6345 6346 6347
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6348
#ifdef in_atomic
L
Linus Torvalds 已提交
6349 6350 6351 6352 6353 6354 6355
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6356
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6357 6358 6359
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6360
		debug_show_held_locks(current);
6361 6362
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6373
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6374
	unsigned long flags;
6375
	struct rq *rq;
I
Ingo Molnar 已提交
6376
	int on_rq;
L
Linus Torvalds 已提交
6377 6378

	read_lock_irq(&tasklist_lock);
6379
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6398
			continue;
I
Ingo Molnar 已提交
6399
		}
L
Linus Torvalds 已提交
6400

6401 6402
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6403 6404 6405 6406 6407 6408 6409
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6410

I
Ingo Molnar 已提交
6411 6412 6413 6414 6415 6416
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6417 6418
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6419 6420 6421
#ifdef CONFIG_SMP
 out_unlock:
#endif
6422 6423
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6424 6425
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6426 6427 6428 6429
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6448
struct task_struct *curr_task(int cpu)
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6468
void set_curr_task(int cpu, struct task_struct *p)
6469 6470 6471 6472 6473
{
	cpu_curr(cpu) = p;
}

#endif