intel_pm.c 203.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void bxt_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

63 64
	/*
	 * FIXME:
65
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 67
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 70 71 72 73 74 75 76

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
77 78
}

79 80
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
81
	struct drm_i915_private *dev_priv = dev->dev_private;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
120
	struct drm_i915_private *dev_priv = dev->dev_private;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

146
	dev_priv->ips.r_t = dev_priv->mem_freq;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
178
		dev_priv->ips.c_m = 0;
179
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180
		dev_priv->ips.c_m = 1;
181
	} else {
182
		dev_priv->ips.c_m = 2;
183 184 185
	}
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

224
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

286 287 288
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

289
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290
{
291 292
	struct drm_device *dev = dev_priv->dev;
	u32 val;
293

294
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296
		POSTING_READ(FW_BLC_SELF_VLV);
297
		dev_priv->wm.vlv.cxsr = enable;
298 299
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300
		POSTING_READ(FW_BLC_SELF);
301 302 303 304
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
305
		POSTING_READ(DSPFW3);
306 307 308 309
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
310
		POSTING_READ(FW_BLC_SELF);
311 312 313 314
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
315
		POSTING_READ(INSTPM);
316 317 318
	} else {
		return;
	}
319

320 321
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
322 323
}

324

325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
339
static const int pessimal_latency_ns = 5000;
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

396
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

412
static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

429
static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
447 448 449 450 451
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 453
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 455 456 457 458
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 460
};
static const struct intel_watermark_params pineview_cursor_wm = {
461 462 463 464 465
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 467
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params g4x_wm_info = {
475 476 477 478 479
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
482 483 484 485 486
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params valleyview_wm_info = {
489 490 491 492 493
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 497 498 499 500
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params i965_cursor_wm_info = {
503 504 505 506 507
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params i945_wm_info = {
510 511 512 513 514
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params i915_wm_info = {
517 518 519 520 521
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
522
};
523
static const struct intel_watermark_params i830_a_wm_info = {
524 525 526 527 528
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
529
};
530 531 532 533 534 535 536
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
537
static const struct intel_watermark_params i845_wm_info = {
538 539 540 541 542
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
592 593 594 595 596 597 598 599 600 601 602

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

603 604 605 606 607 608 609
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

610
	for_each_crtc(dev, crtc) {
611
		if (intel_crtc_active(crtc)) {
612 613 614 615 616 617 618 619 620
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

621
static void pineview_update_wm(struct drm_crtc *unused_crtc)
622
{
623
	struct drm_device *dev = unused_crtc->dev;
624 625 626 627 628 629 630 631 632 633
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634
		intel_set_memory_cxsr(dev_priv, false);
635 636 637 638 639
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
640
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642
		int clock = adjusted_mode->crtc_clock;
643 644 645 646 647 648 649

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
650
		reg |= FW_WM(wm, SR);
651 652 653 654 655 656 657 658 659
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
660
		reg |= FW_WM(wm, CURSOR_SR);
661 662 663 664 665 666 667 668
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
669
		reg |= FW_WM(wm, HPLL_SR);
670 671 672 673 674 675 676 677
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
678
		reg |= FW_WM(wm, HPLL_CURSOR);
679 680 681
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

682
		intel_set_memory_cxsr(dev_priv, true);
683
	} else {
684
		intel_set_memory_cxsr(dev_priv, false);
685 686 687 688 689 690 691 692 693 694 695 696 697
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
698
	const struct drm_display_mode *adjusted_mode;
699 700 701 702 703
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
704
	if (!intel_crtc_active(crtc)) {
705 706 707 708 709
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

710
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711
	clock = adjusted_mode->crtc_clock;
712
	htotal = adjusted_mode->crtc_htotal;
713
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715 716 717 718 719 720 721 722 723 724 725 726

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
727
	line_time_us = max(htotal * 1000 / clock, 1);
728
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
784
	const struct drm_display_mode *adjusted_mode;
785 786 787 788 789 790 791 792 793 794 795 796
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
797
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798
	clock = adjusted_mode->crtc_clock;
799
	htotal = adjusted_mode->crtc_htotal;
800
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802

803
	line_time_us = max(htotal * 1000 / clock, 1);
804 805 806 807 808 809 810 811 812 813 814
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
815
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 817 818 819 820 821 822 823
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

824 825 826
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

827 828 829 830 831 832 833 834 835 836 837 838
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

839
	I915_WRITE(DSPFW1,
840 841 842 843
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844
	I915_WRITE(DSPFW2,
845 846 847
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848
	I915_WRITE(DSPFW3,
849
		   FW_WM(wm->sr.cursor, CURSOR_SR));
850 851 852

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
853 854
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855
		I915_WRITE(DSPFW8_CHV,
856 857
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858
		I915_WRITE(DSPFW9_CHV,
859 860
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861
		I915_WRITE(DSPHOWM,
862 863 864 865 866 867 868 869 870 871
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 873
	} else {
		I915_WRITE(DSPFW7,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876
		I915_WRITE(DSPHOWM,
877 878 879 880 881 882 883
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 885
	}

886 887 888 889 890 891
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

892
	POSTING_READ(DSPFW1);
893 894
}

895 896
#undef FW_WM_VLV

897 898 899 900 901 902
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

926 927
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

928 929 930
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931 932

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1074
static void vlv_compute_wm(struct intel_crtc *crtc)
1075 1076 1077 1078 1079 1080 1081 1082 1083
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1084
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086 1087 1088

	wm_state->num_active_planes = 0;

1089
	vlv_compute_fifo(crtc);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1146
					wm_state->wm[level].cursor;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1165
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 1167 1168 1169 1170 1171 1172
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1263 1264 1265 1266 1267 1268
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1269
	wm->level = to_i915(dev)->wm.max_level;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1288 1289 1290
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1317
	vlv_compute_wm(intel_crtc);
1318 1319
	vlv_merge_wm(dev, &wm);

1320 1321 1322
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1323
		return;
1324
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1334
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 1336
		intel_set_memory_cxsr(dev_priv, false);

1337 1338 1339
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1340 1341 1342 1343 1344 1345 1346 1347
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1348
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1360 1361
}

1362 1363
#define single_plane_enabled(mask) is_power_of_2(mask)

1364
static void g4x_update_wm(struct drm_crtc *crtc)
1365
{
1366
	struct drm_device *dev = crtc->dev;
1367 1368 1369 1370 1371
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1372
	bool cxsr_enabled;
1373

1374
	if (g4x_compute_wm0(dev, PIPE_A,
1375 1376
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1377
			    &planea_wm, &cursora_wm))
1378
		enabled |= 1 << PIPE_A;
1379

1380
	if (g4x_compute_wm0(dev, PIPE_B,
1381 1382
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1383
			    &planeb_wm, &cursorb_wm))
1384
		enabled |= 1 << PIPE_B;
1385 1386 1387 1388 1389 1390

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1391
			     &plane_sr, &cursor_sr)) {
1392
		cxsr_enabled = true;
1393
	} else {
1394
		cxsr_enabled = false;
1395
		intel_set_memory_cxsr(dev_priv, false);
1396 1397
		plane_sr = cursor_sr = 0;
	}
1398

1399 1400
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 1402 1403 1404 1405
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1406 1407 1408 1409
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1410
	I915_WRITE(DSPFW2,
1411
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412
		   FW_WM(cursora_wm, CURSORA));
1413 1414
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1415
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416
		   FW_WM(cursor_sr, CURSOR_SR));
1417 1418 1419

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1420 1421
}

1422
static void i965_update_wm(struct drm_crtc *unused_crtc)
1423
{
1424
	struct drm_device *dev = unused_crtc->dev;
1425 1426 1427 1428
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1429
	bool cxsr_enabled;
1430 1431 1432 1433 1434 1435

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1436
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437
		int clock = adjusted_mode->crtc_clock;
1438
		int htotal = adjusted_mode->crtc_htotal;
1439
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 1442 1443
		unsigned long line_time_us;
		int entries;

1444
		line_time_us = max(htotal * 1000 / clock, 1);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458
			pixel_size * crtc->cursor->state->crtc_w;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1470
		cxsr_enabled = true;
1471
	} else {
1472
		cxsr_enabled = false;
1473
		/* Turn off self refresh if both pipes are enabled */
1474
		intel_set_memory_cxsr(dev_priv, false);
1475 1476 1477 1478 1479 1480
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1481 1482 1483 1484 1485 1486
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1487
	/* update cursor SR watermark */
1488
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489 1490 1491

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1492 1493
}

1494 1495
#undef FW_WM

1496
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497
{
1498
	struct drm_device *dev = unused_crtc->dev;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1513
		wm_info = &i830_a_wm_info;
1514 1515 1516

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1517
	if (intel_crtc_active(crtc)) {
1518
		const struct drm_display_mode *adjusted_mode;
1519
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 1521 1522
		if (IS_GEN2(dev))
			cpp = 4;

1523
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525
					       wm_info, fifo_size, cpp,
1526
					       pessimal_latency_ns);
1527
		enabled = crtc;
1528
	} else {
1529
		planea_wm = fifo_size - wm_info->guard_size;
1530 1531 1532 1533 1534 1535
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1536 1537 1538

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1539
	if (intel_crtc_active(crtc)) {
1540
		const struct drm_display_mode *adjusted_mode;
1541
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 1543 1544
		if (IS_GEN2(dev))
			cpp = 4;

1545
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547
					       wm_info, fifo_size, cpp,
1548
					       pessimal_latency_ns);
1549 1550 1551 1552
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1553
	} else {
1554
		planeb_wm = fifo_size - wm_info->guard_size;
1555 1556 1557
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1558 1559 1560

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1561
	if (IS_I915GM(dev) && enabled) {
1562
		struct drm_i915_gem_object *obj;
1563

1564
		obj = intel_fb_obj(enabled->primary->state->fb);
1565 1566

		/* self-refresh seems busted with untiled */
1567
		if (obj->tiling_mode == I915_TILING_NONE)
1568 1569 1570
			enabled = NULL;
	}

1571 1572 1573 1574 1575 1576
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1577
	intel_set_memory_cxsr(dev_priv, false);
1578 1579 1580 1581 1582

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1583
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584
		int clock = adjusted_mode->crtc_clock;
1585
		int htotal = adjusted_mode->crtc_htotal;
1586
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 1589 1590
		unsigned long line_time_us;
		int entries;

1591
		line_time_us = max(htotal * 1000 / clock, 1);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1622 1623
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1624 1625
}

1626
static void i845_update_wm(struct drm_crtc *unused_crtc)
1627
{
1628
	struct drm_device *dev = unused_crtc->dev;
1629 1630
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1631
	const struct drm_display_mode *adjusted_mode;
1632 1633 1634 1635 1636 1637 1638
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1639
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641
				       &i845_wm_info,
1642
				       dev_priv->display.get_fifo_size(dev, 0),
1643
				       4, pessimal_latency_ns);
1644 1645 1646 1647 1648 1649 1650 1651
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1652
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653
{
1654
	uint32_t pixel_rate;
1655

1656
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657 1658 1659 1660

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1661
	if (pipe_config->pch_pfit.enabled) {
1662
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 1664 1665 1666
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1682
/* latency must be in 0.1us units. */
1683
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684 1685 1686 1687
			       uint32_t latency)
{
	uint64_t ret;

1688 1689 1690
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1691 1692 1693 1694 1695 1696
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1697
/* latency must be in 0.1us units. */
1698
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699 1700 1701 1702 1703
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1704 1705 1706
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1707 1708 1709 1710 1711 1712
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1713
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714 1715 1716 1717 1718
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1719
struct ilk_wm_maximums {
1720 1721 1722 1723 1724 1725
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1726 1727 1728 1729
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1730
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1731
				   const struct intel_plane_state *pstate,
1732 1733
				   uint32_t mem_value,
				   bool is_lp)
1734
{
1735
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1736 1737
	uint32_t method1, method2;

1738
	if (!cstate->base.active || !pstate->visible)
1739 1740
		return 0;

1741
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1742 1743 1744 1745

	if (!is_lp)
		return method1;

1746 1747
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1748 1749
				 drm_rect_width(&pstate->dst),
				 bpp,
1750 1751 1752
				 mem_value);

	return min(method1, method2);
1753 1754
}

1755 1756 1757 1758
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1759
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1760
				   const struct intel_plane_state *pstate,
1761 1762
				   uint32_t mem_value)
{
1763
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1764 1765
	uint32_t method1, method2;

1766
	if (!cstate->base.active || !pstate->visible)
1767 1768
		return 0;

1769 1770 1771
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1772 1773
				 drm_rect_width(&pstate->dst),
				 bpp,
1774 1775 1776 1777
				 mem_value);
	return min(method1, method2);
}

1778 1779 1780 1781
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1782
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1783
				   const struct intel_plane_state *pstate,
1784 1785
				   uint32_t mem_value)
{
1786 1787
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1788
	if (!cstate->base.active || !pstate->visible)
1789 1790
		return 0;

1791 1792
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1793 1794
			      drm_rect_width(&pstate->dst),
			      bpp,
1795 1796 1797
			      mem_value);
}

1798
/* Only for WM_LP. */
1799
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1800
				   const struct intel_plane_state *pstate,
1801
				   uint32_t pri_val)
1802
{
1803 1804
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1805
	if (!cstate->base.active || !pstate->visible)
1806 1807
		return 0;

1808
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1809 1810
}

1811 1812
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1813 1814 1815
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1816 1817 1818 1819 1820
		return 768;
	else
		return 512;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1855 1856 1857
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1858
				     const struct intel_wm_config *config,
1859 1860 1861 1862 1863 1864
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1865
	if (is_sprite && !config->sprites_enabled)
1866 1867 1868
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1869
	if (level == 0 || config->num_pipes_active > 1) {
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1881
	if (config->sprites_enabled) {
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1893
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1894 1895 1896 1897
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1898 1899
				      int level,
				      const struct intel_wm_config *config)
1900 1901
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1902
	if (level > 0 && config->num_pipes_active > 1)
1903 1904 1905
		return 64;

	/* otherwise just report max that registers can hold */
1906
	return ilk_cursor_wm_reg_max(dev, level);
1907 1908
}

1909
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1910 1911 1912
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1913
				    struct ilk_wm_maximums *max)
1914
{
1915 1916 1917
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1918
	max->fbc = ilk_fbc_wm_reg_max(dev);
1919 1920
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1931
static bool ilk_validate_wm_level(int level,
1932
				  const struct ilk_wm_maximums *max,
1933
				  struct intel_wm_level *result)
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1972
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1973
				 const struct intel_crtc *intel_crtc,
1974
				 int level,
1975
				 struct intel_crtc_state *cstate,
1976 1977 1978
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1979
				 struct intel_wm_level *result)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1992 1993 1994 1995 1996
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
1997 1998 1999
	result->enable = true;
}

2000 2001
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2002 2003
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2004
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2006
	u32 linetime, ips_linetime;
2007

2008
	if (!intel_crtc->active)
2009
		return 0;
2010

2011 2012 2013
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2014 2015 2016
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2017
					 dev_priv->cdclk_freq);
2018

2019 2020
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2021 2022
}

2023
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2024 2025 2026
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2027 2028
	if (IS_GEN9(dev)) {
		uint32_t val;
2029
		int ret, i;
2030
		int level, max_level = ilk_wm_max_level(dev);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2073
		/*
2074 2075
		 * WaWmMemoryReadLatency:skl
		 *
2076 2077 2078 2079 2080 2081 2082 2083
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2084 2085 2086 2087 2088
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2089 2090 2091 2092 2093
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2094 2095 2096
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2097

2098 2099
				break;
			}
2100
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2101 2102 2103 2104 2105
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2106 2107 2108 2109
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2110 2111 2112 2113 2114 2115 2116
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2117 2118 2119 2120 2121 2122 2123
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2124 2125 2126
	}
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2145
int ilk_wm_max_level(const struct drm_device *dev)
2146 2147
{
	/* how many WM levels are we expecting */
2148
	if (INTEL_INFO(dev)->gen >= 9)
2149 2150
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2151
		return 4;
2152
	else if (INTEL_INFO(dev)->gen >= 6)
2153
		return 3;
2154
	else
2155 2156
		return 2;
}
2157

2158 2159
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2160
				   const uint16_t wm[8])
2161 2162
{
	int level, max_level = ilk_wm_max_level(dev);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2173 2174 2175 2176 2177 2178 2179
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2180 2181 2182 2183 2184 2185 2186 2187
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2225
static void ilk_setup_wm_latency(struct drm_device *dev)
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2238 2239 2240 2241

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2242 2243 2244

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2255
/* Compute new watermarks for the pipe */
2256 2257
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2258
{
2259 2260
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2261
	const struct drm_i915_private *dev_priv = dev->dev_private;
2262
	struct intel_crtc_state *cstate = NULL;
2263
	struct intel_plane *intel_plane;
2264 2265
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2266
	struct intel_plane_state *sprstate = NULL;
2267
	struct intel_plane_state *curstate = NULL;
2268 2269 2270 2271 2272
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2273
	struct ilk_wm_maximums max;
2274

2275 2276 2277 2278 2279 2280
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;

2281
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2293 2294 2295 2296 2297 2298 2299
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2300
	pipe_wm->pipe_enabled = cstate->base.active;
2301
	pipe_wm->sprites_enabled = config.sprites_enabled;
2302
	pipe_wm->sprites_scaled = config.sprites_scaled;
2303

2304
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2305
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2306 2307 2308
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2309
	if (config.sprites_scaled)
2310 2311
		max_level = 0;

2312 2313
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2314

2315
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2316 2317
		pipe_wm->linetime = hsw_compute_linetime_wm(dev,
							    &intel_crtc->base);
2318

2319 2320 2321
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2322
	/* At least LP0 must be valid */
2323
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2324
		return -EINVAL;
2325 2326 2327 2328 2329 2330

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2331 2332
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
				     pristate, sprstate, curstate, &wm);
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2345
	return 0;
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2357 2358
	ret_wm->enable = true;

2359
	for_each_intel_crtc(dev, intel_crtc) {
2360 2361 2362
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2363 2364 2365 2366
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2367

2368 2369 2370 2371 2372
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2373
		if (!wm->enable)
2374
			ret_wm->enable = false;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2387
			 const struct intel_wm_config *config,
2388
			 const struct ilk_wm_maximums *max,
2389 2390
			 struct intel_pipe_wm *merged)
{
2391
	struct drm_i915_private *dev_priv = dev->dev_private;
2392
	int level, max_level = ilk_wm_max_level(dev);
2393
	int last_enabled_level = max_level;
2394

2395 2396 2397 2398 2399
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2400 2401
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2402 2403 2404 2405 2406 2407 2408

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2409 2410 2411 2412 2413
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2414 2415 2416 2417 2418 2419

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2420 2421
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2422 2423 2424
			wm->fbc_val = 0;
		}
	}
2425 2426 2427 2428 2429 2430 2431

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2432
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2433
	    intel_fbc_is_active(dev_priv)) {
2434 2435 2436 2437 2438 2439
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2440 2441
}

2442 2443 2444 2445 2446 2447
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2448 2449 2450 2451 2452
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2453
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2454 2455 2456 2457 2458
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2459
static void ilk_compute_wm_results(struct drm_device *dev,
2460
				   const struct intel_pipe_wm *merged,
2461
				   enum intel_ddb_partitioning partitioning,
2462
				   struct ilk_wm_values *results)
2463
{
2464 2465
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2466

2467
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2468
	results->partitioning = partitioning;
2469

2470
	/* LP1+ register values */
2471
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2472
		const struct intel_wm_level *r;
2473

2474
		level = ilk_wm_lp_to_level(wm_lp, merged);
2475

2476
		r = &merged->wm[level];
2477

2478 2479 2480 2481 2482
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2483
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2484 2485 2486
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2487 2488 2489
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2490 2491 2492 2493 2494 2495 2496
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2497 2498 2499 2500
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2501 2502 2503 2504 2505
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2506
	}
2507

2508
	/* LP0 register values */
2509
	for_each_intel_crtc(dev, intel_crtc) {
2510 2511
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
2512
		enum pipe pipe = intel_crtc->pipe;
2513
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2514 2515 2516 2517

		if (WARN_ON(!r->enable))
			continue;

2518
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2519

2520 2521 2522 2523
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2524 2525 2526
	}
}

2527 2528
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2529
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2530 2531
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2532
{
2533 2534
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2535

2536 2537 2538 2539 2540
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2541 2542
	}

2543 2544
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2545 2546 2547
			return r2;
		else
			return r1;
2548
	} else if (level1 > level2) {
2549 2550 2551 2552 2553 2554
		return r1;
	} else {
		return r2;
	}
}

2555 2556 2557 2558 2559 2560 2561 2562
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2563
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2564 2565
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2566 2567 2568 2569 2570
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2571
	for_each_pipe(dev_priv, pipe) {
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2615 2616
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2617
{
2618
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2619
	bool changed = false;
2620

2621 2622 2623
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2624
		changed = true;
2625 2626 2627 2628
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2629
		changed = true;
2630 2631 2632 2633
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2634
		changed = true;
2635
	}
2636

2637 2638 2639 2640
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2641

2642 2643 2644 2645 2646 2647 2648
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2649 2650
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2651 2652
{
	struct drm_device *dev = dev_priv->dev;
2653
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2654 2655 2656
	unsigned int dirty;
	uint32_t val;

2657
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2658 2659 2660 2661 2662
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2663
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2664
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2665
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2666
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2667
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2668 2669
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2670
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2671
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2672
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2673
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2674
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2675 2676
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2677
	if (dirty & WM_DIRTY_DDB) {
2678
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2693 2694
	}

2695
	if (dirty & WM_DIRTY_FBC) {
2696 2697 2698 2699 2700 2701 2702 2703
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2704 2705 2706 2707 2708
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2709 2710 2711 2712 2713
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2714

2715
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2716
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2717
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2718
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2719
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2720
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2721 2722

	dev_priv->wm.hw = *results;
2723 2724
}

2725 2726 2727 2728 2729 2730 2731
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2732 2733 2734 2735 2736 2737
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2738
#define BXT_DDB_SIZE		512
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2762 2763
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2764
				   const struct intel_crtc_state *cstate,
2765 2766 2767
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2768
	struct drm_crtc *for_crtc = cstate->base.crtc;
2769 2770 2771 2772
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2773
	if (!cstate->base.active) {
2774 2775 2776 2777 2778
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2779 2780 2781 2782
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2783 2784 2785 2786 2787

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2788
		if (!to_intel_crtc(crtc)->active)
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2799
	alloc->end = alloc->start + pipe_size;
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2810 2811 2812 2813
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2814 2815
	if (entry->end)
		entry->end += 1;
2816 2817
}

2818 2819
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2820 2821 2822 2823 2824
{
	enum pipe pipe;
	int plane;
	u32 val;

2825 2826
	memset(ddb, 0, sizeof(*ddb));

2827
	for_each_pipe(dev_priv, pipe) {
2828 2829 2830
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
			continue;

2831
		for_each_plane(dev_priv, pipe, plane) {
2832 2833 2834 2835 2836 2837
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2838 2839
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2840 2841 2842
	}
}

2843
static unsigned int
2844 2845 2846
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2847
{
2848 2849
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2850 2851

	/* for planar format */
2852
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2853
		if (y)  /* y-plane data rate */
2854 2855 2856
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2857
		else    /* uv-plane data rate */
2858 2859 2860
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2861 2862 2863
	}

	/* for packed formats */
2864 2865 2866
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2867 2868 2869 2870 2871 2872 2873 2874
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2875
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2876
{
2877 2878 2879
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2880 2881
	unsigned int total_data_rate = 0;

2882 2883
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2884

2885
		if (pstate->fb == NULL)
2886 2887
			continue;

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2901 2902 2903 2904 2905 2906
	}

	return total_data_rate;
}

static void
2907
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2908 2909
		      struct skl_ddb_allocation *ddb /* out */)
{
2910
	struct drm_crtc *crtc = cstate->base.crtc;
2911
	struct drm_device *dev = crtc->dev;
2912 2913
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
2914
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915
	struct intel_plane *intel_plane;
2916
	enum pipe pipe = intel_crtc->pipe;
2917
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2918
	uint16_t alloc_size, start, cursor_blocks;
2919
	uint16_t minimum[I915_MAX_PLANES];
2920
	uint16_t y_minimum[I915_MAX_PLANES];
2921 2922
	unsigned int total_data_rate;

2923
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2924
	alloc_size = skl_ddb_entry_size(alloc);
2925 2926
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2927 2928
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2929 2930 2931 2932
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2933 2934
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2935 2936

	alloc_size -= cursor_blocks;
2937
	alloc->end -= cursor_blocks;
2938

2939
	/* 1. Allocate the mininum required blocks for each active plane */
2940 2941 2942 2943
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
2944

2945 2946 2947
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2948 2949
			continue;

2950 2951 2952 2953
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
2954 2955
	}

2956
	/*
2957 2958
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2959 2960 2961
	 *
	 * FIXME: we may not allocate every single block here.
	 */
2962
	total_data_rate = skl_get_total_relative_data_rate(cstate);
2963

2964
	start = alloc->start;
2965 2966 2967
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
2968 2969
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
2970
		int id = skl_wm_plane_id(intel_plane);
2971

2972 2973 2974
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2975 2976
			continue;

2977
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2978 2979

		/*
2980
		 * allocation for (packed formats) or (uv-plane part of planar format):
2981 2982 2983
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2984
		plane_blocks = minimum[id];
2985 2986
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2987

2988 2989
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
2990 2991

		start += plane_blocks;
2992 2993 2994 2995

		/*
		 * allocation for y_plane part of planar format:
		 */
2996 2997 2998 2999 3000
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3001 3002 3003
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3004 3005
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3006 3007 3008 3009

			start += y_plane_blocks;
		}

3010 3011 3012 3013
	}

}

3014
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3015 3016
{
	/* TODO: Take into account the scalers once we support them */
3017
	return config->base.adjusted_mode.crtc_clock;
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3034
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3035 3036 3037 3038 3039 3040 3041
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3042
			       uint64_t tiling, uint32_t latency)
3043
{
3044 3045 3046
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3047 3048 3049 3050 3051

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3062 3063
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3064
				plane_blocks_per_line;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3076 3077 3078 3079 3080
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3081 3082 3083 3084 3085
		return true;

	return false;
}

3086
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3087 3088
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3089
				 uint16_t ddb_allocation,
3090
				 int level,
3091 3092
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3093
{
3094 3095
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3096 3097 3098 3099 3100
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3101
	uint8_t bytes_per_pixel;
3102

3103
	if (latency == 0 || !cstate->base.active || !fb)
3104 3105
		return false;

3106 3107
	bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3108
				 bytes_per_pixel,
3109
				 latency);
3110 3111 3112
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3113
				 bytes_per_pixel,
3114
				 fb->modifier[0],
3115
				 latency);
3116

3117
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3118
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3119

3120 3121
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3122 3123
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3124 3125 3126 3127 3128 3129
		if (intel_rotation_90_or_270(plane->state->rotation)) {
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

			switch (bpp) {
3130 3131 3132 3133 3134 3135 3136 3137
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3138
			}
3139 3140
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3141 3142 3143 3144 3145 3146 3147
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3148

3149 3150
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3151

3152
	if (level >= 1 && level <= 7) {
3153 3154
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3155 3156 3157 3158
			res_lines += 4;
		else
			res_blocks++;
	}
3159

3160
	if (res_blocks >= ddb_allocation || res_lines > 31)
3161 3162 3163 3164
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3165 3166 3167 3168 3169 3170

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3171
				 struct intel_crtc_state *cstate,
3172 3173 3174
				 int level,
				 struct skl_wm_level *result)
{
3175 3176 3177
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3178
	uint16_t ddb_blocks;
3179 3180 3181 3182
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3183 3184 3185

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3186
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3187 3188
						cstate,
						intel_plane,
3189
						ddb_blocks,
3190
						level,
3191 3192 3193 3194 3195
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3196
static uint32_t
3197
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3198
{
3199
	if (!cstate->base.active)
3200 3201
		return 0;

3202
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3203
		return 0;
3204

3205 3206
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3207 3208
}

3209
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3210
				      struct skl_wm_level *trans_wm /* out */)
3211
{
3212
	struct drm_crtc *crtc = cstate->base.crtc;
3213
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214
	struct intel_plane *intel_plane;
3215

3216
	if (!cstate->base.active)
3217
		return;
3218 3219

	/* Until we know more, just disable transition WMs */
3220 3221 3222
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3223
		trans_wm->plane_en[i] = false;
3224
	}
3225 3226
}

3227
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3228 3229 3230
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3231
	struct drm_device *dev = cstate->base.crtc->dev;
3232 3233 3234 3235
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3236 3237
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3238
	}
3239
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3240

3241
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3242 3243 3244 3245 3246 3247 3248 3249 3250
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3251 3252
	uint32_t temp;
	int i;
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3269 3270
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3271

3272
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3273 3274
			temp |= PLANE_WM_EN;

3275
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3276 3277 3278

	}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3291 3292 3293
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3294 3295
		temp |= PLANE_WM_EN;

3296
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3297

3298 3299 3300
	r->wm_linetime[pipe] = p_wm->linetime;
}

3301 3302
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3303 3304 3305 3306 3307 3308 3309 3310
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3311 3312 3313 3314 3315 3316
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3317
	for_each_intel_crtc(dev, crtc) {
3318 3319 3320
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3321 3322
		if (!new->dirty[pipe])
			continue;
3323

3324
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3325

3326 3327 3328 3329 3330
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3331
				   new->plane[pipe][PLANE_CURSOR][level]);
3332
		}
3333 3334 3335
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3336 3337
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3338

3339
		for (i = 0; i < intel_num_planes(crtc); i++) {
3340 3341 3342
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3343 3344 3345 3346
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3347 3348

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3349
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3350 3351 3352
	}
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3377 3378
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3379 3380 3381
{
	int plane;

3382 3383
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3384
	for_each_plane(dev_priv, pipe, plane) {
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3411
	bool reallocated[I915_MAX_PIPES] = {};
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3434
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3459
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3460
			intel_wait_for_vblank(dev, pipe);
3461
			reallocated[pipe] = true;
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3484
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3485 3486 3487
	}
}

3488 3489 3490 3491 3492
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3494

3495
	skl_allocate_pipe_ddb(cstate, ddb);
3496
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3497

3498
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3499 3500
		return false;

3501
	intel_crtc->wm.active.skl = *pipe_wm;
3502

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3526
	for_each_intel_crtc(dev, intel_crtc) {
3527 3528 3529 3530 3531 3532 3533 3534 3535
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3536
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3537 3538 3539 3540 3541 3542 3543 3544 3545
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3546
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3547 3548 3549 3550
		r->dirty[intel_crtc->pipe] = true;
	}
}

3551 3552 3553 3554 3555 3556 3557
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3558
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3559 3560 3561 3562 3563 3564 3565

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3566 3567
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3568 3569 3570

}

3571 3572 3573 3574 3575 3576
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3577 3578
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3579

3580 3581 3582 3583 3584

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3585

3586
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3587 3588
		return;

3589
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3590 3591
	results->dirty[intel_crtc->pipe] = true;

3592
	skl_update_other_pipe_wm(dev, crtc, results);
3593
	skl_write_wm_values(dev_priv, results);
3594
	skl_flush_wm_values(dev_priv, results);
3595 3596 3597

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3598 3599
}

3600
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3601
{
3602 3603
	struct drm_device *dev = dev_priv->dev;
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3604
	struct ilk_wm_maximums max;
3605
	struct intel_wm_config *config = &dev_priv->wm.config;
3606
	struct ilk_wm_values results = {};
3607
	enum intel_ddb_partitioning partitioning;
3608

3609 3610
	ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3611 3612

	/* 5/6 split only in single pipe config on IVB+ */
3613
	if (INTEL_INFO(dev)->gen >= 7 &&
3614 3615 3616
	    config->num_pipes_active == 1 && config->sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3617

3618
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3619
	} else {
3620
		best_lp_wm = &lp_wm_1_2;
3621 3622
	}

3623
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3624
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3625

3626
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3627

3628
	ilk_write_wm_values(dev_priv, &results);
3629 3630
}

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
static void ilk_update_wm(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);

	WARN_ON(cstate->base.active != intel_crtc->active);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (cstate->disable_lp_wm) {
		ilk_disable_lp_wm(crtc->dev);
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
	}

3651
	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3652 3653 3654 3655

	ilk_program_watermarks(dev_priv);
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3674 3675
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3676
					val & PLANE_WM_BLOCKS_MASK;
3677
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3690 3691
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3692
					val & PLANE_WM_BLOCKS_MASK;
3693
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3706 3707
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3720
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3721 3722 3723 3724
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3725
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3726

3727
	if (!intel_crtc->active)
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3740
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3741 3742 3743 3744 3745 3746 3747 3748
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3749
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3750
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3751 3752

	intel_crtc->wm.active.skl = *active;
3753 3754 3755 3756
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3757 3758
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3759 3760
	struct drm_crtc *crtc;

3761
	skl_ddb_get_hw_state(dev_priv, ddb);
3762 3763 3764 3765
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3766 3767 3768 3769
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3770
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3771
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772 3773
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3774
	enum pipe pipe = intel_crtc->pipe;
3775
	static const i915_reg_t wm0_pipe_reg[] = {
3776 3777 3778 3779 3780 3781
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3782
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3783
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3784

3785
	active->pipe_enabled = intel_crtc->active;
3786 3787

	if (active->pipe_enabled) {
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3812 3813

	intel_crtc->wm.active.ilk = *active;
3814 3815
}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

3933 3934 3935 3936 3937 3938 3939 3940 3941
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
3942
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

3969 3970 3971
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3972
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3973 3974
	struct drm_crtc *crtc;

3975
	for_each_crtc(dev, crtc)
3976 3977 3978 3979 3980 3981 3982
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3983 3984 3985 3986
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3987

3988
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3989 3990 3991 3992 3993
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3994 3995 3996 3997 3998

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4031
void intel_update_watermarks(struct drm_crtc *crtc)
4032
{
4033
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4034 4035

	if (dev_priv->display.update_wm)
4036
		dev_priv->display.update_wm(crtc);
4037 4038
}

4039 4040 4041 4042 4043 4044 4045 4046 4047
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4048 4049 4050 4051 4052
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4053 4054
	assert_spin_locked(&mchdev_lock);

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4072
static void ironlake_enable_drps(struct drm_device *dev)
4073 4074 4075 4076 4077
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4078 4079
	spin_lock_irq(&mchdev_lock);

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4100
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4101 4102
		PXVFREQ_PX_SHIFT;

4103 4104
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4105

4106 4107 4108
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4125
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4126
		DRM_ERROR("stuck trying to change perf mode\n");
4127
	mdelay(1);
4128 4129 4130

	ironlake_set_drps(dev, fstart);

4131 4132
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4133
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4134
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4135
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4136 4137

	spin_unlock_irq(&mchdev_lock);
4138 4139
}

4140
static void ironlake_disable_drps(struct drm_device *dev)
4141 4142
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4143 4144 4145 4146 4147
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4148 4149 4150 4151 4152 4153 4154 4155 4156

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4157
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4158
	mdelay(1);
4159 4160
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4161
	mdelay(1);
4162

4163
	spin_unlock_irq(&mchdev_lock);
4164 4165
}

4166 4167 4168 4169 4170
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4171
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4172
{
4173
	u32 limits;
4174

4175 4176 4177 4178 4179 4180
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4181 4182 4183 4184 4185 4186 4187 4188 4189
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4190 4191 4192 4193

	return limits;
}

4194 4195 4196
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4197 4198
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4199 4200 4201 4202

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4203
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4204 4205 4206 4207
			new_power = BETWEEN;
		break;

	case BETWEEN:
4208
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4209
			new_power = LOW_POWER;
4210
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4211 4212 4213 4214
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4215
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4216 4217 4218 4219
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4220
	if (val <= dev_priv->rps.min_freq_softlimit)
4221
		new_power = LOW_POWER;
4222
	if (val >= dev_priv->rps.max_freq_softlimit)
4223 4224 4225 4226 4227 4228 4229 4230
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4231 4232
		ei_up = 16000;
		threshold_up = 95;
4233 4234

		/* Downclock if less than 85% busy over 32ms */
4235 4236
		ei_down = 32000;
		threshold_down = 85;
4237 4238 4239 4240
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4241 4242
		ei_up = 13000;
		threshold_up = 90;
4243 4244

		/* Downclock if less than 75% busy over 32ms */
4245 4246
		ei_down = 32000;
		threshold_down = 75;
4247 4248 4249 4250
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4251 4252
		ei_up = 10000;
		threshold_up = 85;
4253 4254

		/* Downclock if less than 60% busy over 32ms */
4255 4256
		ei_down = 32000;
		threshold_down = 60;
4257 4258 4259
		break;
	}

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4278
	dev_priv->rps.power = new_power;
4279 4280
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4281 4282 4283
	dev_priv->rps.last_adj = 0;
}

4284 4285 4286 4287 4288
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4289
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4290
	if (val < dev_priv->rps.max_freq_softlimit)
4291
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4292

4293 4294
	mask &= dev_priv->pm_rps_events;

4295
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4296 4297
}

4298 4299 4300
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4301
static void gen6_set_rps(struct drm_device *dev, u8 val)
4302 4303
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4304

4305
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4306
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4307 4308
		return;

4309
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4310 4311
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4312

C
Chris Wilson 已提交
4313 4314 4315 4316 4317
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4318

4319 4320 4321 4322
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4323 4324 4325 4326 4327 4328 4329
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4330
	}
4331 4332 4333 4334

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4335
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4336
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4337

4338 4339
	POSTING_READ(GEN6_RPNSWREQ);

4340
	dev_priv->rps.cur_freq = val;
4341
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4342 4343
}

4344 4345 4346 4347 4348
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4349 4350
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4351 4352 4353 4354 4355

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4356 4357
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4358
	if (val != dev_priv->rps.cur_freq) {
4359
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4360 4361 4362
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4363 4364 4365 4366 4367

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4368
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4369 4370
 *
 * * If Gfx is Idle, then
4371 4372 4373
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4374 4375 4376
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4377
	u32 val = dev_priv->rps.idle_freq;
4378

4379
	if (dev_priv->rps.cur_freq <= val)
4380 4381
		return;

4382 4383 4384 4385 4386
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4387 4388
}

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4401 4402
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4403 4404
	struct drm_device *dev = dev_priv->dev;

4405
	mutex_lock(&dev_priv->rps.hw_lock);
4406
	if (dev_priv->rps.enabled) {
4407
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4408
			vlv_set_rps_idle(dev_priv);
4409
		else
4410
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4411
		dev_priv->rps.last_adj = 0;
4412
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4413
	}
4414
	mutex_unlock(&dev_priv->rps.hw_lock);
4415

4416
	spin_lock(&dev_priv->rps.client_lock);
4417 4418
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4419
	spin_unlock(&dev_priv->rps.client_lock);
4420 4421
}

4422
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4423 4424
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4425
{
4426 4427 4428 4429 4430 4431 4432
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4433

4434 4435 4436
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4437
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4438 4439
		rps = NULL;

4440 4441 4442 4443 4444 4445 4446 4447
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4448

4449 4450 4451
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4452 4453
		} else
			dev_priv->rps.boosts++;
4454
	}
4455
	spin_unlock(&dev_priv->rps.client_lock);
4456 4457
}

4458
void intel_set_rps(struct drm_device *dev, u8 val)
4459
{
4460
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4461 4462 4463
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4464 4465
}

Z
Zhe Wang 已提交
4466 4467 4468 4469 4470
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4471
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4472 4473
}

4474
static void gen6_disable_rps(struct drm_device *dev)
4475 4476 4477 4478
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4479 4480 4481
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4482 4483 4484 4485 4486 4487 4488
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4489 4490 4491 4492
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4493 4494
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4495
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4496

4497
	I915_WRITE(GEN6_RC_CONTROL, 0);
4498

4499
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4500 4501
}

B
Ben Widawsky 已提交
4502 4503
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4504
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4505 4506 4507 4508 4509
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4510 4511 4512 4513 4514 4515 4516 4517 4518
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4519 4520
}

I
Imre Deak 已提交
4521
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4522
{
4523 4524
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4525 4526
		return 0;

4527
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4528 4529 4530
	if (enable_rc6 >= 0) {
		int mask;

4531
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4532 4533 4534 4535 4536 4537
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4538 4539
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4540 4541 4542

		return enable_rc6 & mask;
	}
4543

4544
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4545
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4546 4547

	return INTEL_RC6_ENABLE;
4548 4549
}

I
Imre Deak 已提交
4550 4551 4552 4553 4554
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4555
static void gen6_init_rps_frequencies(struct drm_device *dev)
4556
{
4557 4558 4559 4560 4561
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4562 4563
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4564
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4577 4578 4579
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4580
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4581 4582
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4583 4584 4585 4586 4587
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4588 4589 4590 4591
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4592 4593
	}

4594
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4595 4596 4597 4598 4599 4600 4601 4602 4603
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4604 4605
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4606 4607 4608 4609
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4610 4611 4612
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4613 4614
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4615 4616 4617 4618
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4619 4620
}

J
Jesse Barnes 已提交
4621
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4622
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4623 4624 4625 4626 4627
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4628 4629
	gen6_init_rps_frequencies(dev);

4630
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4631
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4632 4633 4634 4635
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4636 4637 4638 4639 4640 4641 4642 4643
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4644 4645
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4646 4647 4648 4649 4650
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4651 4652 4653 4654 4655

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4667
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4668 4669 4670 4671 4672

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4673 4674

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4675
	if (IS_SKYLAKE(dev))
4676 4677 4678
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4679 4680 4681 4682
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4683 4684 4685 4686

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4687 4688
	I915_WRITE(GEN6_RC_SLEEP, 0);

4689 4690 4691 4692
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4693 4694 4695 4696 4697
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
4698
	/* WaRsUseTimeoutMode */
4699
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4700
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4701
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4702 4703 4704
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4705 4706
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4707 4708 4709
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4710
	}
Z
Zhe Wang 已提交
4711

4712 4713
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4714
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4715
	 */
4716 4717
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) ||
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4718
	     IS_SKL_REVID(dev, 0, SKL_REVID_F0)))
4719 4720 4721 4722
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4723

4724
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4725 4726 4727

}

4728 4729 4730
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4731
	struct intel_engine_cs *ring;
4732
	uint32_t rc6_mask = 0;
4733 4734 4735 4736 4737 4738 4739
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4740
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4741 4742 4743 4744

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4745 4746
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4747 4748 4749 4750 4751 4752 4753 4754

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4755 4756 4757 4758
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4759 4760 4761 4762

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4763
	intel_print_rc6_info(dev, rc6_mask);
4764 4765 4766 4767 4768 4769 4770 4771
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4772 4773

	/* 4 Program defaults and thresholds for RPS*/
4774 4775 4776 4777
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4792 4793

	/* 5: Enable RPS */
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4804
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4805
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4806

4807
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4808 4809
}

4810
static void gen6_enable_rps(struct drm_device *dev)
4811
{
4812
	struct drm_i915_private *dev_priv = dev->dev_private;
4813
	struct intel_engine_cs *ring;
4814
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4815 4816
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4817
	int i, ret;
4818

4819
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4820

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4835
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4836

4837 4838
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4839

4840 4841 4842 4843 4844 4845 4846 4847 4848
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4849 4850
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4851 4852 4853

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4854
	if (IS_IVYBRIDGE(dev))
4855 4856 4857
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4858
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4859 4860
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4861
	/* Check if we are enabling RC6 */
4862 4863 4864 4865
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4866 4867 4868 4869
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4870

4871 4872 4873
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4874

B
Ben Widawsky 已提交
4875
	intel_print_rc6_info(dev, rc6_mask);
4876 4877 4878 4879 4880 4881

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4882 4883
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4884 4885
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4886
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4887
	if (ret)
B
Ben Widawsky 已提交
4888
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4889 4890 4891 4892

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4893
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4894
				 (pcu_mbox & 0xff) * 50);
4895
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4896 4897
	}

4898
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4899
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4900

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4915
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4916 4917
}

4918
static void __gen6_update_ring_freq(struct drm_device *dev)
4919
{
4920
	struct drm_i915_private *dev_priv = dev->dev_private;
4921
	int min_freq = 15;
4922 4923
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4924
	unsigned int max_gpu_freq, min_gpu_freq;
4925
	int scaling_factor = 180;
4926
	struct cpufreq_policy *policy;
4927

4928
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4929

4930 4931 4932 4933 4934 4935 4936 4937 4938
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4939
		max_ia_freq = tsc_khz;
4940
	}
4941 4942 4943 4944

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4945
	min_ring_freq = I915_READ(DCLK) & 0xf;
4946 4947
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4948

4949
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4950 4951 4952 4953 4954 4955 4956 4957
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

4958 4959 4960 4961 4962
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4963 4964
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
4965 4966
		unsigned int ia_freq = 0, ring_freq = 0;

4967
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4968 4969 4970 4971 4972 4973
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
4974 4975 4976
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4977
			ring_freq = mult_frac(gpu_freq, 5, 4);
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4994

B
Ben Widawsky 已提交
4995 4996
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4997 4998 4999
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5000 5001 5002
	}
}

5003 5004 5005 5006
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5007
	if (!HAS_CORE_RING_FREQ(dev))
5008 5009 5010 5011 5012 5013 5014
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5015
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5016
{
5017
	struct drm_device *dev = dev_priv->dev;
5018 5019
	u32 val, rp0;

5020
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5021

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5037
	}
5038 5039 5040

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5054 5055 5056 5057
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5058 5059 5060
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5061 5062 5063
	return rp1;
}

5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5075
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5076 5077 5078
{
	u32 val, rp0;

5079
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5092
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5093
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5094
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5095 5096 5097 5098 5099
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5100
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5101
{
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5113 5114
}

5115 5116 5117 5118 5119 5120 5121 5122 5123
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5145
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5146 5147 5148 5149 5150 5151
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5152 5153

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5154 5155
}

5156 5157 5158 5159 5160 5161 5162 5163
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5164 5165
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5166 5167 5168 5169 5170 5171 5172 5173
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5174
								      I915_GTT_OFFSET_NONE,
5175 5176 5177 5178
								      pctx_size);
		goto out;
	}

5179 5180
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5199
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5200 5201 5202
	dev_priv->vlv_pctx = pctx;
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5214 5215 5216
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5217
	u32 val;
5218 5219 5220 5221 5222

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5236
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5237

5238 5239 5240
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5241
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5242 5243 5244 5245
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5246
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5247 5248
			 dev_priv->rps.efficient_freq);

5249 5250
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5251
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5252 5253
			 dev_priv->rps.rp1_freq);

5254 5255
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5256
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5257 5258
			 dev_priv->rps.min_freq);

5259 5260
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5271 5272
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5273
	struct drm_i915_private *dev_priv = dev->dev_private;
5274
	u32 val;
5275

5276
	cherryview_setup_pctx(dev);
5277 5278 5279

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5280
	mutex_lock(&dev_priv->sb_lock);
5281
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5282
	mutex_unlock(&dev_priv->sb_lock);
5283

5284 5285 5286 5287
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5288
	default:
5289 5290 5291
		dev_priv->mem_freq = 1600;
		break;
	}
5292
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5293

5294 5295 5296
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5297
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5298 5299 5300 5301
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5302
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5303 5304
			 dev_priv->rps.efficient_freq);

5305 5306
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5307
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5308 5309
			 dev_priv->rps.rp1_freq);

5310 5311
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5312
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5313
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5314 5315
			 dev_priv->rps.min_freq);

5316 5317 5318 5319 5320 5321
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5322 5323
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5324 5325 5326 5327 5328 5329 5330 5331
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5332 5333
}

5334 5335 5336 5337 5338
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5339 5340 5341 5342
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5343
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5359
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5360

5361 5362 5363
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5364 5365 5366 5367 5368 5369 5370 5371 5372
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5373 5374
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5388
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5389 5390 5391

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5392
	/* 4 Program defaults and thresholds for RPS*/
5393
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5404
		   GEN6_RP_MEDIA_IS_GFX |
5405 5406 5407 5408
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5409 5410 5411 5412 5413 5414
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5415 5416
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5417 5418 5419
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5420
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5421 5422 5423 5424
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5425
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5426 5427 5428
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5429
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5430 5431 5432 5433
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5434
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5435 5436
}

5437 5438 5439
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5440
	struct intel_engine_cs *ring;
5441
	u32 gtfifodbg, val, rc6_mode = 0;
5442 5443 5444 5445
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5446 5447
	valleyview_check_pctx(dev_priv);

5448
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5449 5450
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5451 5452 5453
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5454
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5455
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5456

5457 5458 5459
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5460
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5483
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5484 5485

	/* allows RC6 residency counter to work */
5486
	I915_WRITE(VLV_COUNTER_CONTROL,
5487 5488
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5489 5490
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5491

5492
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5493
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5494 5495 5496

	intel_print_rc6_info(dev, rc6_mode);

5497
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5498

D
Deepak S 已提交
5499 5500 5501 5502 5503 5504
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5505
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5506

5507 5508 5509
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5510
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5511 5512
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5513
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5514
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5515
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5516
			 dev_priv->rps.cur_freq);
5517

5518
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5519
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5520
			 dev_priv->rps.efficient_freq);
5521

5522
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5523

5524
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5525 5526
}

5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5556
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5557 5558 5559 5560 5561 5562
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5563 5564
	assert_spin_locked(&mchdev_lock);

5565
	diff1 = now - dev_priv->ips.last_time1;
5566 5567 5568 5569 5570 5571 5572

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5573
		return dev_priv->ips.chipset_power;
5574 5575 5576 5577 5578 5579 5580 5581

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5582 5583
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5584 5585
		diff += total_count;
	} else {
5586
		diff = total_count - dev_priv->ips.last_count1;
5587 5588 5589
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5590 5591
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5602 5603
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5604

5605
	dev_priv->ips.chipset_power = ret;
5606 5607 5608 5609

	return ret;
}

5610 5611
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5612
	struct drm_device *dev = dev_priv->dev;
5613 5614
	unsigned long val;

5615
	if (INTEL_INFO(dev)->gen != 5)
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5654
{
5655
	struct drm_device *dev = dev_priv->dev;
5656 5657 5658
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5659
	if (INTEL_INFO(dev)->is_mobile)
5660 5661 5662
		return vm > 0 ? vm : 0;

	return vd;
5663 5664
}

5665
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5666
{
5667
	u64 now, diff, diffms;
5668 5669
	u32 count;

5670
	assert_spin_locked(&mchdev_lock);
5671

5672 5673 5674
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5675 5676 5677 5678 5679 5680 5681

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5682 5683
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5684 5685
		diff += count;
	} else {
5686
		diff = count - dev_priv->ips.last_count2;
5687 5688
	}

5689 5690
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5691 5692 5693 5694

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5695
	dev_priv->ips.gfx_power = diff;
5696 5697
}

5698 5699
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5700 5701 5702
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5703 5704
		return;

5705
	spin_lock_irq(&mchdev_lock);
5706 5707 5708

	__i915_update_gfx_val(dev_priv);

5709
	spin_unlock_irq(&mchdev_lock);
5710 5711
}

5712
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5713 5714 5715 5716
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5717 5718
	assert_spin_locked(&mchdev_lock);

5719
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5739
	corr2 = (corr * dev_priv->ips.corr);
5740 5741 5742 5743

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5744
	__i915_update_gfx_val(dev_priv);
5745

5746
	return dev_priv->ips.gfx_power + state2;
5747 5748
}

5749 5750
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5751
	struct drm_device *dev = dev_priv->dev;
5752 5753
	unsigned long val;

5754
	if (INTEL_INFO(dev)->gen != 5)
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5777
	spin_lock_irq(&mchdev_lock);
5778 5779 5780 5781
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5782 5783
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5784 5785 5786 5787

	ret = chipset_val + graphics_val;

out_unlock:
5788
	spin_unlock_irq(&mchdev_lock);
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5804
	spin_lock_irq(&mchdev_lock);
5805 5806 5807 5808 5809 5810
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5811 5812
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5813 5814

out_unlock:
5815
	spin_unlock_irq(&mchdev_lock);
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5832
	spin_lock_irq(&mchdev_lock);
5833 5834 5835 5836 5837 5838
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5839 5840
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5841 5842

out_unlock:
5843
	spin_unlock_irq(&mchdev_lock);
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5857
	struct intel_engine_cs *ring;
5858
	bool ret = false;
5859
	int i;
5860

5861
	spin_lock_irq(&mchdev_lock);
5862 5863 5864 5865
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5866 5867
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5868 5869

out_unlock:
5870
	spin_unlock_irq(&mchdev_lock);
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5887
	spin_lock_irq(&mchdev_lock);
5888 5889 5890 5891 5892 5893
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5894
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5895

5896
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5897 5898 5899
		ret = false;

out_unlock:
5900
	spin_unlock_irq(&mchdev_lock);
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5928 5929
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5930
	spin_lock_irq(&mchdev_lock);
5931
	i915_mch_dev = dev_priv;
5932
	spin_unlock_irq(&mchdev_lock);
5933 5934 5935 5936 5937 5938

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5939
	spin_lock_irq(&mchdev_lock);
5940
	i915_mch_dev = NULL;
5941
	spin_unlock_irq(&mchdev_lock);
5942
}
5943

5944
static void intel_init_emon(struct drm_device *dev)
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
5962
		I915_WRITE(PEW(i), 0);
5963
	for (i = 0; i < 3; i++)
5964
		I915_WRITE(DEW(i), 0);
5965 5966 5967

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
5968
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5989
		I915_WRITE(PXW(i), val);
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6005
		I915_WRITE(PXWL(i), 0);
6006 6007 6008 6009 6010 6011

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6012
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6013 6014
}

6015 6016
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6017 6018
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6019 6020 6021
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6022
		valleyview_init_gt_powersave(dev);
6023 6024 6025 6026
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6027 6028 6029
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6030
		valleyview_cleanup_gt_powersave(dev);
6031 6032
}

6033 6034 6035 6036 6037 6038
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6039
	gen6_disable_rps_interrupts(dev);
6040 6041
}

6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6054 6055 6056
	if (INTEL_INFO(dev)->gen < 6)
		return;

6057
	gen6_suspend_rps(dev);
6058 6059 6060

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6061 6062
}

6063 6064
void intel_disable_gt_powersave(struct drm_device *dev)
{
6065 6066
	struct drm_i915_private *dev_priv = dev->dev_private;

6067
	if (IS_IRONLAKE_M(dev)) {
6068
		ironlake_disable_drps(dev);
6069
	} else if (INTEL_INFO(dev)->gen >= 6) {
6070
		intel_suspend_gt_powersave(dev);
6071

6072
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6073 6074 6075
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6076 6077
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6078 6079 6080
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6081

6082
		dev_priv->rps.enabled = false;
6083
		mutex_unlock(&dev_priv->rps.hw_lock);
6084
	}
6085 6086
}

6087 6088 6089 6090 6091 6092 6093
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6094
	mutex_lock(&dev_priv->rps.hw_lock);
6095

6096
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6097

6098 6099 6100
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6101
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6102
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6103
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6104
		gen9_enable_rps(dev);
6105
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6106
			__gen6_update_ring_freq(dev);
6107 6108
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6109
		__gen6_update_ring_freq(dev);
6110 6111
	} else {
		gen6_enable_rps(dev);
6112
		__gen6_update_ring_freq(dev);
6113
	}
6114 6115 6116 6117 6118 6119 6120

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6121
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6122

6123
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6124

6125
	mutex_unlock(&dev_priv->rps.hw_lock);
6126 6127

	intel_runtime_pm_put(dev_priv);
6128 6129
}

6130 6131
void intel_enable_gt_powersave(struct drm_device *dev)
{
6132 6133
	struct drm_i915_private *dev_priv = dev->dev_private;

6134 6135 6136 6137
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6138
	if (IS_IRONLAKE_M(dev)) {
6139
		mutex_lock(&dev->struct_mutex);
6140 6141
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6142
		mutex_unlock(&dev->struct_mutex);
6143
	} else if (INTEL_INFO(dev)->gen >= 6) {
6144 6145 6146 6147
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6148 6149 6150 6151 6152 6153 6154
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6155
		 */
6156 6157 6158
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6159 6160 6161
	}
}

6162 6163 6164 6165
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6166 6167 6168 6169
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6170 6171 6172
	dev_priv->rps.enabled = false;
}

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6185 6186 6187
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6188
	enum pipe pipe;
6189

6190
	for_each_pipe(dev_priv, pipe) {
6191 6192 6193
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6194 6195 6196

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6197 6198 6199
	}
}

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6214
static void ironlake_init_clock_gating(struct drm_device *dev)
6215 6216
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6217
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6218

6219 6220 6221 6222
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6223 6224 6225
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6243
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6244 6245 6246
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6247 6248

	ilk_init_lp_watermarks(dev);
6249 6250 6251 6252 6253 6254 6255 6256 6257

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6258
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6259 6260 6261 6262 6263 6264 6265 6266
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6267 6268
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6269 6270 6271 6272 6273 6274
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6275

6276
	/* WaDisableRenderCachePipelinedFlush:ilk */
6277 6278
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6279

6280 6281 6282
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6283
	g4x_disable_trickle_feed(dev);
6284

6285 6286 6287 6288 6289 6290 6291
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6292
	uint32_t val;
6293 6294 6295 6296 6297 6298

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6299 6300 6301
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6302 6303
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6304 6305 6306
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6307
	for_each_pipe(dev_priv, pipe) {
6308 6309 6310
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6311
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6312
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6313 6314 6315
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6316 6317
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6318
	/* WADP0ClockGatingDisable */
6319
	for_each_pipe(dev_priv, pipe) {
6320 6321 6322
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6323 6324
}

6325 6326 6327 6328 6329 6330
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6331 6332 6333
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6334 6335
}

6336
static void gen6_init_clock_gating(struct drm_device *dev)
6337 6338
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6339
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6340

6341
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6342 6343 6344 6345 6346

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6347
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6348 6349 6350
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6351 6352 6353
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6354 6355 6356
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6357 6358 6359 6360
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6361 6362
	 */
	I915_WRITE(GEN6_GT_MODE,
6363
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6364

6365
	ilk_init_lp_watermarks(dev);
6366 6367

	I915_WRITE(CACHE_MODE_0,
6368
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6384
	 *
6385 6386
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6387 6388 6389 6390 6391
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6392
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6393 6394
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6395

6396 6397 6398 6399 6400 6401 6402 6403
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6404 6405 6406 6407 6408 6409 6410 6411
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6412 6413
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6414 6415 6416 6417 6418 6419 6420
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6421 6422 6423 6424
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6425

6426
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6427

6428
	cpt_init_clock_gating(dev);
6429 6430

	gen6_check_mch_setup(dev);
6431 6432 6433 6434 6435 6436
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6437
	/*
6438
	 * WaVSThreadDispatchOverride:ivb,vlv
6439 6440 6441 6442
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6443 6444 6445 6446 6447 6448 6449 6450
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6451 6452 6453 6454 6455 6456 6457 6458
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6459
	if (HAS_PCH_LPT_LP(dev))
6460 6461 6462
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6463 6464

	/* WADPOClockGatingDisable:hsw */
6465 6466
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6467
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6468 6469
}

6470 6471 6472 6473
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6474
	if (HAS_PCH_LPT_LP(dev)) {
6475 6476 6477 6478 6479 6480 6481
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6482
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6483 6484
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6485
	enum pipe pipe;
6486
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6487

6488
	ilk_init_lp_watermarks(dev);
6489

6490
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6491
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6492

6493
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6494 6495 6496
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6497
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6498
	for_each_pipe(dev_priv, pipe) {
6499
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6500
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6501
			   BDW_DPRS_MASK_VBLANK_SRD);
6502
	}
6503

6504 6505 6506 6507 6508
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6509

6510 6511
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6512 6513 6514 6515

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6516

6517 6518 6519 6520 6521 6522 6523 6524 6525
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6526 6527 6528 6529 6530 6531 6532
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6533
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6534 6535
}

6536 6537 6538 6539
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6540
	ilk_init_lp_watermarks(dev);
6541

6542 6543 6544 6545 6546
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6547
	/* This is required by WaCatErrorRejectionIssue:hsw */
6548 6549 6550 6551
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6552 6553 6554
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6555

6556 6557 6558
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6559 6560 6561 6562
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6563
	/* WaDisable4x2SubspanOptimization:hsw */
6564 6565
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6566

6567 6568 6569
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6570 6571 6572 6573
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6574 6575
	 */
	I915_WRITE(GEN7_GT_MODE,
6576
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6577

6578 6579 6580 6581
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6582
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6583 6584
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6585 6586 6587
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6588

6589
	lpt_init_clock_gating(dev);
6590 6591
}

6592
static void ivybridge_init_clock_gating(struct drm_device *dev)
6593 6594
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6595
	uint32_t snpcr;
6596

6597
	ilk_init_lp_watermarks(dev);
6598

6599
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6600

6601
	/* WaDisableEarlyCull:ivb */
6602 6603 6604
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6605
	/* WaDisableBackToBackFlipFix:ivb */
6606 6607 6608 6609
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6610
	/* WaDisablePSDDualDispatchEnable:ivb */
6611 6612 6613 6614
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6615 6616 6617
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6618
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6619 6620 6621
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6622
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6623 6624 6625
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6626 6627 6628 6629
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6630 6631 6632 6633
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6634 6635
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6636
	}
6637

6638
	/* WaForceL3Serialization:ivb */
6639 6640 6641
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6642
	/*
6643
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6644
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6645 6646
	 */
	I915_WRITE(GEN6_UCGCTL2,
6647
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6648

6649
	/* This is required by WaCatErrorRejectionIssue:ivb */
6650 6651 6652 6653
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6654
	g4x_disable_trickle_feed(dev);
6655 6656

	gen7_setup_fixed_func_scheduler(dev_priv);
6657

6658 6659 6660 6661 6662
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6663

6664
	/* WaDisable4x2SubspanOptimization:ivb */
6665 6666
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6667

6668 6669 6670
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6671 6672 6673 6674
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6675 6676
	 */
	I915_WRITE(GEN7_GT_MODE,
6677
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6678

6679 6680 6681 6682
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6683

6684 6685
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6686 6687

	gen6_check_mch_setup(dev);
6688 6689
}

6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6701
static void valleyview_init_clock_gating(struct drm_device *dev)
6702 6703 6704
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6705
	vlv_init_display_clock_gating(dev_priv);
6706

6707
	/* WaDisableEarlyCull:vlv */
6708 6709 6710
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6711
	/* WaDisableBackToBackFlipFix:vlv */
6712 6713 6714 6715
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6716
	/* WaPsdDispatchEnable:vlv */
6717
	/* WaDisablePSDDualDispatchEnable:vlv */
6718
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6719 6720
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6721

6722 6723 6724
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6725
	/* WaForceL3Serialization:vlv */
6726 6727 6728
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6729
	/* WaDisableDopClockGating:vlv */
6730 6731 6732
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6733
	/* This is required by WaCatErrorRejectionIssue:vlv */
6734 6735 6736 6737
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6738 6739
	gen7_setup_fixed_func_scheduler(dev_priv);

6740
	/*
6741
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6742
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6743 6744
	 */
	I915_WRITE(GEN6_UCGCTL2,
6745
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6746

6747 6748 6749 6750 6751
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6752

6753 6754 6755 6756
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6757 6758
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6759

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6771 6772 6773 6774 6775 6776
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6777
	/*
6778
	 * WaDisableVLVClockGating_VBIIssue:vlv
6779 6780 6781
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6782
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6783 6784
}

6785 6786 6787 6788
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6789
	vlv_init_display_clock_gating(dev_priv);
6790

6791 6792 6793 6794 6795
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6796 6797 6798 6799

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6800 6801 6802 6803

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6804 6805 6806 6807

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6808 6809 6810 6811 6812 6813

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6814 6815
}

6816
static void g4x_init_clock_gating(struct drm_device *dev)
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6832 6833 6834 6835

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6836

6837 6838 6839
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6840
	g4x_disable_trickle_feed(dev);
6841 6842
}

6843
static void crestline_init_clock_gating(struct drm_device *dev)
6844 6845 6846 6847 6848 6849 6850 6851
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6852 6853
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6854 6855 6856

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6857 6858
}

6859
static void broadwater_init_clock_gating(struct drm_device *dev)
6860 6861 6862 6863 6864 6865 6866 6867 6868
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6869 6870
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6871 6872 6873

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6874 6875
}

6876
static void gen3_init_clock_gating(struct drm_device *dev)
6877 6878 6879 6880 6881 6882 6883
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6884 6885 6886

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6887 6888 6889

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6890 6891

	/* interrupts should cause a wake up from C3 */
6892
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6893 6894 6895

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6896 6897 6898

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6899 6900
}

6901
static void i85x_init_clock_gating(struct drm_device *dev)
6902 6903 6904 6905
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6906 6907 6908 6909

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6910 6911 6912

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6913 6914
}

6915
static void i830_init_clock_gating(struct drm_device *dev)
6916 6917 6918 6919
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6920 6921 6922 6923

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6924 6925 6926 6927 6928 6929
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6930 6931
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6932 6933
}

6934 6935 6936 6937 6938 6939
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6940 6941 6942 6943 6944
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6945
	intel_fbc_init(dev_priv);
6946

6947 6948 6949 6950 6951 6952
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6953
	/* For FIFO watermark updates */
6954
	if (INTEL_INFO(dev)->gen >= 9) {
6955 6956
		skl_setup_wm_latency(dev);

6957 6958 6959
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
6960
		dev_priv->display.update_wm = skl_update_wm;
6961
	} else if (HAS_PCH_SPLIT(dev)) {
6962
		ilk_setup_wm_latency(dev);
6963

6964 6965 6966 6967 6968
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
6969
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6970 6971 6972 6973 6974 6975
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6976
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6977
		else if (IS_GEN6(dev))
6978
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6979
		else if (IS_IVYBRIDGE(dev))
6980
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6981
		else if (IS_HASWELL(dev))
6982
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6983
		else if (INTEL_INFO(dev)->gen == 8)
6984
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6985
	} else if (IS_CHERRYVIEW(dev)) {
6986 6987 6988
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
6989 6990
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6991
	} else if (IS_VALLEYVIEW(dev)) {
6992 6993 6994
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7008
			intel_set_memory_cxsr(dev_priv, false);
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7026 7027 7028
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7029
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7030 7031
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7032
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7033 7034 7035 7036 7037 7038 7039 7040
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7041 7042 7043
	}
}

7044
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7045
{
7046
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7047 7048 7049 7050 7051 7052 7053

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7054
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7069
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7070
{
7071
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7091

7092
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7093
{
7094 7095 7096 7097 7098 7099 7100 7101
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7102 7103
	case 400:
		return 20;
7104 7105 7106
	default:
		return -1;
	}
7107
}
7108

7109 7110
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7111
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7112 7113 7114 7115 7116 7117

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7118 7119
}

7120
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7121
{
7122
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7123

7124 7125 7126
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7127

7128
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7129 7130
}

7131
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7132
{
7133
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7134

7135 7136 7137
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7138

7139
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7140 7141
}

7142
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7143
{
7144
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7145

7146 7147 7148
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7149

7150
	/* CHV needs even values */
7151
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7152 7153
}

7154
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7155
{
7156
	if (IS_GEN9(dev_priv->dev))
7157 7158
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7159
	else if (IS_CHERRYVIEW(dev_priv->dev))
7160
		return chv_gpu_freq(dev_priv, val);
7161
	else if (IS_VALLEYVIEW(dev_priv->dev))
7162 7163 7164
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7165 7166
}

7167 7168
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7169
	if (IS_GEN9(dev_priv->dev))
7170 7171
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7172
	else if (IS_CHERRYVIEW(dev_priv->dev))
7173
		return chv_freq_opcode(dev_priv, val);
7174
	else if (IS_VALLEYVIEW(dev_priv->dev))
7175 7176
		return byt_freq_opcode(dev_priv, val);
	else
7177
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7178
}
7179

7180 7181
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7182
	struct drm_i915_gem_request *req;
7183 7184 7185 7186 7187
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7188
	struct drm_i915_gem_request *req = boost->req;
7189

7190 7191 7192
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7193

7194
	i915_gem_request_unreference__unlocked(req);
7195 7196 7197 7198
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7199
				       struct drm_i915_gem_request *req)
7200 7201 7202
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7203
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7204 7205
		return;

7206 7207 7208
	if (i915_gem_request_completed(req, true))
		return;

7209 7210 7211 7212
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7213 7214
	i915_gem_request_reference(req);
	boost->req = req;
7215 7216 7217 7218 7219

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7220
void intel_pm_setup(struct drm_device *dev)
7221 7222 7223
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7224
	mutex_init(&dev_priv->rps.hw_lock);
7225
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7226

7227 7228
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7229
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7230 7231
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7232

7233
	dev_priv->pm.suspended = false;
7234
}