intel_pm.c 204.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 63 64 65

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);
66
}
67

68
static void skl_init_clock_gating(struct drm_device *dev)
69
{
70
	struct drm_i915_private *dev_priv = dev->dev_private;
71

72 73
	gen9_init_clock_gating(dev);

74
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
75 76 77 78
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

79 80
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
81
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
82
	}
83

84 85 86
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
87 88 89 90
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
91 92 93 94 95 96

	/* WaEnableGapsTsvCreditFix:skl */
	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}
97 98
}

99 100
static void bxt_init_clock_gating(struct drm_device *dev)
{
101 102
	struct drm_i915_private *dev_priv = dev->dev_private;

103
	gen9_init_clock_gating(dev);
104

105 106 107 108
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

109 110
	/*
	 * FIXME:
111
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
112 113
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115

116 117 118
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
	if (INTEL_REVID(dev) == BXT_REVID_A0)
119
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
120 121 122 123 124 125

	/* WaSetClckGatingDisableMedia:bxt */
	if (INTEL_REVID(dev) == BXT_REVID_A0) {
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}
126 127
}

128 129
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
130
	struct drm_i915_private *dev_priv = dev->dev_private;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
169
	struct drm_i915_private *dev_priv = dev->dev_private;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

195
	dev_priv->ips.r_t = dev_priv->mem_freq;
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
227
		dev_priv->ips.c_m = 0;
228
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
229
		dev_priv->ips.c_m = 1;
230
	} else {
231
		dev_priv->ips.c_m = 2;
232 233 234
	}
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

273
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

335 336 337
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

338
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
339
{
340 341
	struct drm_device *dev = dev_priv->dev;
	u32 val;
342

343 344
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
		dev_priv->wm.vlv.cxsr = enable;
347 348
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350 351 352 353
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
354
		POSTING_READ(DSPFW3);
355 356 357 358
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
359
		POSTING_READ(FW_BLC_SELF);
360 361 362 363
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
364
		POSTING_READ(INSTPM);
365 366 367
	} else {
		return;
	}
368

369 370
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
371 372
}

373

374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
388
static const int pessimal_latency_ns = 5000;
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

445
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

461
static int i830_get_fifo_size(struct drm_device *dev, int plane)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i845_get_fifo_size(struct drm_device *dev, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
496 497 498 499 500
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
503 504 505 506 507
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params pineview_cursor_wm = {
510 511 512 513 514
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
517 518 519 520 521
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
522 523
};
static const struct intel_watermark_params g4x_wm_info = {
524 525 526 527 528
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
529 530
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
531 532 533 534 535
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
536 537
};
static const struct intel_watermark_params valleyview_wm_info = {
538 539 540 541 542
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
543 544
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
545 546 547 548 549
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
550 551
};
static const struct intel_watermark_params i965_cursor_wm_info = {
552 553 554 555 556
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
557 558
};
static const struct intel_watermark_params i945_wm_info = {
559 560 561 562 563
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
564 565
};
static const struct intel_watermark_params i915_wm_info = {
566 567 568 569 570
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
571
};
572
static const struct intel_watermark_params i830_a_wm_info = {
573 574 575 576 577
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
578
};
579 580 581 582 583 584 585
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
586
static const struct intel_watermark_params i845_wm_info = {
587 588 589 590 591
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
641 642 643 644 645 646 647 648 649 650 651

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

652 653 654 655 656 657 658
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

659
	for_each_crtc(dev, crtc) {
660
		if (intel_crtc_active(crtc)) {
661 662 663 664 665 666 667 668 669
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

670
static void pineview_update_wm(struct drm_crtc *unused_crtc)
671
{
672
	struct drm_device *dev = unused_crtc->dev;
673 674 675 676 677 678 679 680 681 682
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
683
		intel_set_memory_cxsr(dev_priv, false);
684 685 686 687 688
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
689
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
690
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
691
		int clock = adjusted_mode->crtc_clock;
692 693 694 695 696 697 698

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
699
		reg |= FW_WM(wm, SR);
700 701 702 703 704 705 706 707 708
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
709
		reg |= FW_WM(wm, CURSOR_SR);
710 711 712 713 714 715 716 717
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
718
		reg |= FW_WM(wm, HPLL_SR);
719 720 721 722 723 724 725 726
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
727
		reg |= FW_WM(wm, HPLL_CURSOR);
728 729 730
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

731
		intel_set_memory_cxsr(dev_priv, true);
732
	} else {
733
		intel_set_memory_cxsr(dev_priv, false);
734 735 736 737 738 739 740 741 742 743 744 745 746
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
747
	const struct drm_display_mode *adjusted_mode;
748 749 750 751 752
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
753
	if (!intel_crtc_active(crtc)) {
754 755 756 757 758
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

759
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
760
	clock = adjusted_mode->crtc_clock;
761
	htotal = adjusted_mode->crtc_htotal;
762
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
763
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
764 765 766 767 768 769 770 771 772 773 774 775

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
776
	line_time_us = max(htotal * 1000 / clock, 1);
777
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
778
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
833
	const struct drm_display_mode *adjusted_mode;
834 835 836 837 838 839 840 841 842 843 844 845
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
846
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
847
	clock = adjusted_mode->crtc_clock;
848
	htotal = adjusted_mode->crtc_htotal;
849
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
850
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
851

852
	line_time_us = max(htotal * 1000 / clock, 1);
853 854 855 856 857 858 859 860 861 862 863
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
864
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
865 866 867 868 869 870 871 872
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

873 874 875
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

876 877 878 879 880 881 882 883 884 885 886 887
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

888
	I915_WRITE(DSPFW1,
889 890 891 892
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
893
	I915_WRITE(DSPFW2,
894 895 896
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
897
	I915_WRITE(DSPFW3,
898
		   FW_WM(wm->sr.cursor, CURSOR_SR));
899 900 901

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
902 903
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
904
		I915_WRITE(DSPFW8_CHV,
905 906
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
907
		I915_WRITE(DSPFW9_CHV,
908 909
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
910
		I915_WRITE(DSPHOWM,
911 912 913 914 915 916 917 918 919 920
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
921 922
	} else {
		I915_WRITE(DSPFW7,
923 924
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
925
		I915_WRITE(DSPHOWM,
926 927 928 929 930 931 932
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
933 934
	}

935 936 937 938 939 940
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

941
	POSTING_READ(DSPFW1);
942 943
}

944 945
#undef FW_WM_VLV

946 947 948 949 950 951
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

975 976
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

977 978 979
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
980 981

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1123
static void vlv_compute_wm(struct intel_crtc *crtc)
1124 1125 1126 1127 1128 1129 1130 1131 1132
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1133
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1134
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1135 1136 1137

	wm_state->num_active_planes = 0;

1138
	vlv_compute_fifo(crtc);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
					wm_state->sr[level].cursor;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1214
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1215 1216 1217 1218 1219 1220 1221
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1312 1313 1314 1315 1316 1317
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1318
	wm->level = to_i915(dev)->wm.max_level;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1337 1338 1339
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1366
	vlv_compute_wm(intel_crtc);
1367 1368
	vlv_merge_wm(dev, &wm);

1369 1370 1371
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1372
		return;
1373
	}
1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1383
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1384 1385
		intel_set_memory_cxsr(dev_priv, false);

1386 1387 1388
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1389 1390 1391 1392 1393 1394 1395 1396
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1397
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1409 1410
}

1411 1412
#define single_plane_enabled(mask) is_power_of_2(mask)

1413
static void g4x_update_wm(struct drm_crtc *crtc)
1414
{
1415
	struct drm_device *dev = crtc->dev;
1416 1417 1418 1419 1420
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1421
	bool cxsr_enabled;
1422

1423
	if (g4x_compute_wm0(dev, PIPE_A,
1424 1425
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1426
			    &planea_wm, &cursora_wm))
1427
		enabled |= 1 << PIPE_A;
1428

1429
	if (g4x_compute_wm0(dev, PIPE_B,
1430 1431
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1432
			    &planeb_wm, &cursorb_wm))
1433
		enabled |= 1 << PIPE_B;
1434 1435 1436 1437 1438 1439

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1440
			     &plane_sr, &cursor_sr)) {
1441
		cxsr_enabled = true;
1442
	} else {
1443
		cxsr_enabled = false;
1444
		intel_set_memory_cxsr(dev_priv, false);
1445 1446
		plane_sr = cursor_sr = 0;
	}
1447

1448 1449
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1450 1451 1452 1453 1454
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1455 1456 1457 1458
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1459
	I915_WRITE(DSPFW2,
1460
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1461
		   FW_WM(cursora_wm, CURSORA));
1462 1463
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1464
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1465
		   FW_WM(cursor_sr, CURSOR_SR));
1466 1467 1468

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1469 1470
}

1471
static void i965_update_wm(struct drm_crtc *unused_crtc)
1472
{
1473
	struct drm_device *dev = unused_crtc->dev;
1474 1475 1476 1477
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1478
	bool cxsr_enabled;
1479 1480 1481 1482 1483 1484

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1485
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1486
		int clock = adjusted_mode->crtc_clock;
1487
		int htotal = adjusted_mode->crtc_htotal;
1488
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1489
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1490 1491 1492
		unsigned long line_time_us;
		int entries;

1493
		line_time_us = max(htotal * 1000 / clock, 1);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1507
			pixel_size * crtc->cursor->state->crtc_w;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1519
		cxsr_enabled = true;
1520
	} else {
1521
		cxsr_enabled = false;
1522
		/* Turn off self refresh if both pipes are enabled */
1523
		intel_set_memory_cxsr(dev_priv, false);
1524 1525 1526 1527 1528 1529
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1530 1531 1532 1533 1534 1535
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1536
	/* update cursor SR watermark */
1537
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1538 1539 1540

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1541 1542
}

1543 1544
#undef FW_WM

1545
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1546
{
1547
	struct drm_device *dev = unused_crtc->dev;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1562
		wm_info = &i830_a_wm_info;
1563 1564 1565

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1566
	if (intel_crtc_active(crtc)) {
1567
		const struct drm_display_mode *adjusted_mode;
1568
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1569 1570 1571
		if (IS_GEN2(dev))
			cpp = 4;

1572
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1573
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574
					       wm_info, fifo_size, cpp,
1575
					       pessimal_latency_ns);
1576
		enabled = crtc;
1577
	} else {
1578
		planea_wm = fifo_size - wm_info->guard_size;
1579 1580 1581 1582 1583 1584
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1585 1586 1587

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1588
	if (intel_crtc_active(crtc)) {
1589
		const struct drm_display_mode *adjusted_mode;
1590
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1591 1592 1593
		if (IS_GEN2(dev))
			cpp = 4;

1594
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1595
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1596
					       wm_info, fifo_size, cpp,
1597
					       pessimal_latency_ns);
1598 1599 1600 1601
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1602
	} else {
1603
		planeb_wm = fifo_size - wm_info->guard_size;
1604 1605 1606
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1607 1608 1609

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1610
	if (IS_I915GM(dev) && enabled) {
1611
		struct drm_i915_gem_object *obj;
1612

1613
		obj = intel_fb_obj(enabled->primary->state->fb);
1614 1615

		/* self-refresh seems busted with untiled */
1616
		if (obj->tiling_mode == I915_TILING_NONE)
1617 1618 1619
			enabled = NULL;
	}

1620 1621 1622 1623 1624 1625
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1626
	intel_set_memory_cxsr(dev_priv, false);
1627 1628 1629 1630 1631

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1632
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1633
		int clock = adjusted_mode->crtc_clock;
1634
		int htotal = adjusted_mode->crtc_htotal;
1635
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1636
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1637 1638 1639
		unsigned long line_time_us;
		int entries;

1640
		line_time_us = max(htotal * 1000 / clock, 1);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1671 1672
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1673 1674
}

1675
static void i845_update_wm(struct drm_crtc *unused_crtc)
1676
{
1677
	struct drm_device *dev = unused_crtc->dev;
1678 1679
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1680
	const struct drm_display_mode *adjusted_mode;
1681 1682 1683 1684 1685 1686 1687
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1688
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1689
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1690
				       &i845_wm_info,
1691
				       dev_priv->display.get_fifo_size(dev, 0),
1692
				       4, pessimal_latency_ns);
1693 1694 1695 1696 1697 1698 1699 1700
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1701
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1702
{
1703
	uint32_t pixel_rate;
1704

1705
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1706 1707 1708 1709

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1710
	if (pipe_config->pch_pfit.enabled) {
1711
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1712 1713 1714 1715
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1731
/* latency must be in 0.1us units. */
1732
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1733 1734 1735 1736
			       uint32_t latency)
{
	uint64_t ret;

1737 1738 1739
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1740 1741 1742 1743 1744 1745
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1746
/* latency must be in 0.1us units. */
1747
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1748 1749 1750 1751 1752
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1753 1754 1755
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1756 1757 1758 1759 1760 1761
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1762
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1763 1764 1765 1766 1767
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1768
struct ilk_wm_maximums {
1769 1770 1771 1772 1773 1774
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1775 1776 1777 1778 1779 1780 1781
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1782 1783 1784 1785
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1786
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1787
				   const struct intel_plane_state *pstate,
1788 1789
				   uint32_t mem_value,
				   bool is_lp)
1790
{
1791
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1792 1793
	uint32_t method1, method2;

1794
	if (!cstate->base.active || !pstate->visible)
1795 1796
		return 0;

1797
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1798 1799 1800 1801

	if (!is_lp)
		return method1;

1802 1803
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1804 1805
				 drm_rect_width(&pstate->dst),
				 bpp,
1806 1807 1808
				 mem_value);

	return min(method1, method2);
1809 1810
}

1811 1812 1813 1814
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1815
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1816
				   const struct intel_plane_state *pstate,
1817 1818
				   uint32_t mem_value)
{
1819
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1820 1821
	uint32_t method1, method2;

1822
	if (!cstate->base.active || !pstate->visible)
1823 1824
		return 0;

1825 1826 1827
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1828 1829
				 drm_rect_width(&pstate->dst),
				 bpp,
1830 1831 1832 1833
				 mem_value);
	return min(method1, method2);
}

1834 1835 1836 1837
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1838
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1839
				   const struct intel_plane_state *pstate,
1840 1841
				   uint32_t mem_value)
{
1842 1843
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1844
	if (!cstate->base.active || !pstate->visible)
1845 1846
		return 0;

1847 1848
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1849 1850
			      drm_rect_width(&pstate->dst),
			      bpp,
1851 1852 1853
			      mem_value);
}

1854
/* Only for WM_LP. */
1855
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1856
				   const struct intel_plane_state *pstate,
1857
				   uint32_t pri_val)
1858
{
1859 1860
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1861
	if (!cstate->base.active || !pstate->visible)
1862 1863
		return 0;

1864
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1865 1866
}

1867 1868
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1869 1870 1871
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1872 1873 1874 1875 1876
		return 768;
	else
		return 512;
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1911 1912 1913
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1914
				     const struct intel_wm_config *config,
1915 1916 1917 1918 1919 1920
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1921
	if (is_sprite && !config->sprites_enabled)
1922 1923 1924
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1925
	if (level == 0 || config->num_pipes_active > 1) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1937
	if (config->sprites_enabled) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1949
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1950 1951 1952 1953
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1954 1955
				      int level,
				      const struct intel_wm_config *config)
1956 1957
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1958
	if (level > 0 && config->num_pipes_active > 1)
1959 1960 1961
		return 64;

	/* otherwise just report max that registers can hold */
1962
	return ilk_cursor_wm_reg_max(dev, level);
1963 1964
}

1965
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1966 1967 1968
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1969
				    struct ilk_wm_maximums *max)
1970
{
1971 1972 1973
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1974
	max->fbc = ilk_fbc_wm_reg_max(dev);
1975 1976
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1987
static bool ilk_validate_wm_level(int level,
1988
				  const struct ilk_wm_maximums *max,
1989
				  struct intel_wm_level *result)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2028
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2029
				 const struct intel_crtc *intel_crtc,
2030
				 int level,
2031
				 struct intel_crtc_state *cstate,
2032
				 struct intel_wm_level *result)
2033
{
2034
	struct intel_plane *intel_plane;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
		struct intel_plane_state *pstate =
			to_intel_plane_state(intel_plane->base.state);

		switch (intel_plane->base.type) {
		case DRM_PLANE_TYPE_PRIMARY:
			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
							     pri_latency,
							     level);
			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
							     result->pri_val);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
							     spr_latency);
			break;
		case DRM_PLANE_TYPE_CURSOR:
			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
							     cur_latency);
			break;
		}
	}

2069 2070 2071
	result->enable = true;
}

2072 2073
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2074 2075
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2076
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2078
	u32 linetime, ips_linetime;
2079

2080
	if (!intel_crtc->active)
2081
		return 0;
2082

2083 2084 2085
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2086 2087 2088
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2089
					 dev_priv->cdclk_freq);
2090

2091 2092
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2093 2094
}

2095
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2096 2097 2098
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2099 2100
	if (IS_GEN9(dev)) {
		uint32_t val;
2101
		int ret, i;
2102
		int level, max_level = ilk_wm_max_level(dev);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2145
		/*
2146 2147
		 * WaWmMemoryReadLatency:skl
		 *
2148 2149 2150 2151 2152 2153 2154 2155
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2156 2157 2158 2159 2160
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2161 2162 2163 2164 2165
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2166 2167 2168
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2169

2170 2171
				break;
			}
2172
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2173 2174 2175 2176 2177
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2178 2179 2180 2181
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2182 2183 2184 2185 2186 2187 2188
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2189 2190 2191 2192 2193 2194 2195
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2196 2197 2198
	}
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2217
int ilk_wm_max_level(const struct drm_device *dev)
2218 2219
{
	/* how many WM levels are we expecting */
2220
	if (INTEL_INFO(dev)->gen >= 9)
2221 2222
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2223
		return 4;
2224
	else if (INTEL_INFO(dev)->gen >= 6)
2225
		return 3;
2226
	else
2227 2228
		return 2;
}
2229

2230 2231
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2232
				   const uint16_t wm[8])
2233 2234
{
	int level, max_level = ilk_wm_max_level(dev);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2245 2246 2247 2248 2249 2250 2251
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2252 2253 2254 2255 2256 2257 2258 2259
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2297
static void ilk_setup_wm_latency(struct drm_device *dev)
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2310 2311 2312 2313

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2314 2315 2316

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2317 2318
}

2319 2320 2321 2322 2323 2324 2325 2326
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, intel_crtc) {
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

2345
/* Compute new watermarks for the pipe */
2346 2347
static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
				  struct intel_pipe_wm *pipe_wm)
2348
{
2349 2350
	struct drm_crtc *crtc = cstate->base.crtc;
	struct drm_device *dev = crtc->dev;
2351
	const struct drm_i915_private *dev_priv = dev->dev_private;
2352
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2353 2354
	struct intel_plane *intel_plane;
	struct intel_plane_state *sprstate = NULL;
2355 2356 2357 2358 2359
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2360
	struct ilk_wm_maximums max;
2361

2362
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2363 2364 2365 2366
		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
			sprstate = to_intel_plane_state(intel_plane->base.state);
			break;
		}
2367 2368 2369 2370 2371 2372 2373
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2374
	pipe_wm->pipe_enabled = cstate->base.active;
2375
	pipe_wm->sprites_enabled = sprstate->visible;
2376
	pipe_wm->sprites_scaled = config.sprites_scaled;
2377

2378
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2379
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2380 2381 2382
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2383
	if (config.sprites_scaled)
2384 2385
		max_level = 0;

2386
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2387

2388
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2389
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2390

2391 2392 2393
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2394
	/* At least LP0 must be valid */
2395
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2396
		return false;
2397 2398 2399 2400 2401 2402

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2403
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2416
	return true;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2428 2429
	ret_wm->enable = true;

2430
	for_each_intel_crtc(dev, intel_crtc) {
2431
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2432 2433 2434 2435
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2436

2437 2438 2439 2440 2441
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2442
		if (!wm->enable)
2443
			ret_wm->enable = false;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2456
			 const struct intel_wm_config *config,
2457
			 const struct ilk_wm_maximums *max,
2458 2459
			 struct intel_pipe_wm *merged)
{
2460
	struct drm_i915_private *dev_priv = dev->dev_private;
2461
	int level, max_level = ilk_wm_max_level(dev);
2462
	int last_enabled_level = max_level;
2463

2464 2465 2466 2467 2468
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2469 2470
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2471 2472 2473 2474 2475 2476 2477

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2478 2479 2480 2481 2482
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2483 2484 2485 2486 2487 2488

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2489 2490
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2491 2492 2493
			wm->fbc_val = 0;
		}
	}
2494 2495 2496 2497 2498 2499 2500

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2501 2502
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2503 2504 2505 2506 2507 2508
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2509 2510
}

2511 2512 2513 2514 2515 2516
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2517 2518 2519 2520 2521
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2522
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2523 2524 2525 2526 2527
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2528
static void ilk_compute_wm_results(struct drm_device *dev,
2529
				   const struct intel_pipe_wm *merged,
2530
				   enum intel_ddb_partitioning partitioning,
2531
				   struct ilk_wm_values *results)
2532
{
2533 2534
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2535

2536
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2537
	results->partitioning = partitioning;
2538

2539
	/* LP1+ register values */
2540
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2541
		const struct intel_wm_level *r;
2542

2543
		level = ilk_wm_lp_to_level(wm_lp, merged);
2544

2545
		r = &merged->wm[level];
2546

2547 2548 2549 2550 2551
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2552
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2553 2554 2555
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2556 2557 2558
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2559 2560 2561 2562 2563 2564 2565
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2566 2567 2568 2569
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2570 2571 2572 2573 2574
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2575
	}
2576

2577
	/* LP0 register values */
2578
	for_each_intel_crtc(dev, intel_crtc) {
2579
		enum pipe pipe = intel_crtc->pipe;
2580 2581
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];
2582 2583 2584 2585

		if (WARN_ON(!r->enable))
			continue;

2586
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2587

2588 2589 2590 2591
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2592 2593 2594
	}
}

2595 2596
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2597
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2598 2599
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2600
{
2601 2602
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2603

2604 2605 2606 2607 2608
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2609 2610
	}

2611 2612
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2613 2614 2615
			return r2;
		else
			return r1;
2616
	} else if (level1 > level2) {
2617 2618 2619 2620 2621 2622
		return r1;
	} else {
		return r2;
	}
}

2623 2624 2625 2626 2627 2628 2629 2630
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2631
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2632 2633
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2634 2635 2636 2637 2638
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2639
	for_each_pipe(dev_priv, pipe) {
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2683 2684
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2685
{
2686
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2687
	bool changed = false;
2688

2689 2690 2691
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2692
		changed = true;
2693 2694 2695 2696
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2697
		changed = true;
2698 2699 2700 2701
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2702
		changed = true;
2703
	}
2704

2705 2706 2707 2708
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2709

2710 2711 2712 2713 2714 2715 2716
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2717 2718
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2719 2720
{
	struct drm_device *dev = dev_priv->dev;
2721
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2722 2723 2724
	unsigned int dirty;
	uint32_t val;

2725
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2726 2727 2728 2729 2730
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2731
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2732
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2733
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2734
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2735
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2736 2737
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2738
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2739
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2740
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2741
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2742
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2743 2744
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2745
	if (dirty & WM_DIRTY_DDB) {
2746
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2761 2762
	}

2763
	if (dirty & WM_DIRTY_FBC) {
2764 2765 2766 2767 2768 2769 2770 2771
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2772 2773 2774 2775 2776
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2777 2778 2779 2780 2781
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2782

2783
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2784
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2785
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2786
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2787
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2788
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2789 2790

	dev_priv->wm.hw = *results;
2791 2792
}

2793 2794 2795 2796 2797 2798 2799
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2800 2801 2802 2803 2804 2805
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2806
#define BXT_DDB_SIZE		512
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2830 2831
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2832
				   const struct intel_crtc_state *cstate,
2833 2834 2835
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2836
	struct drm_crtc *for_crtc = cstate->base.crtc;
2837 2838 2839 2840
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2841
	if (!cstate->base.active) {
2842 2843 2844 2845 2846
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2847 2848 2849 2850
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2851 2852 2853 2854 2855

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2856
		if (!to_intel_crtc(crtc)->active)
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2867
	alloc->end = alloc->start + pipe_size;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2878 2879 2880 2881
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2882 2883
	if (entry->end)
		entry->end += 1;
2884 2885
}

2886 2887
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2888 2889 2890 2891 2892 2893
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2894
		for_each_plane(dev_priv, pipe, plane) {
2895 2896 2897 2898 2899 2900
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2901 2902
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2903 2904 2905
	}
}

2906
static unsigned int
2907 2908 2909
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2910
{
2911 2912
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2913 2914

	/* for planar format */
2915
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2916
		if (y)  /* y-plane data rate */
2917 2918 2919
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2920
		else    /* uv-plane data rate */
2921 2922 2923
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2924 2925 2926
	}

	/* for packed formats */
2927 2928 2929
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2930 2931 2932 2933 2934 2935 2936 2937
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2938
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2939
{
2940 2941 2942
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2943 2944
	unsigned int total_data_rate = 0;

2945 2946
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2947

2948
		if (pstate->fb == NULL)
2949 2950
			continue;

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2961 2962 2963 2964 2965 2966
	}

	return total_data_rate;
}

static void
2967
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2968
		      const struct intel_wm_config *config,
2969 2970
		      struct skl_ddb_allocation *ddb /* out */)
{
2971
	struct drm_crtc *crtc = cstate->base.crtc;
2972 2973
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2974
	struct intel_plane *intel_plane;
2975
	enum pipe pipe = intel_crtc->pipe;
2976
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2977
	uint16_t alloc_size, start, cursor_blocks;
2978
	uint16_t minimum[I915_MAX_PLANES];
2979
	uint16_t y_minimum[I915_MAX_PLANES];
2980 2981
	unsigned int total_data_rate;

2982
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2983
	alloc_size = skl_ddb_entry_size(alloc);
2984 2985
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2986 2987
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2988 2989 2990 2991
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2992 2993
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2994 2995

	alloc_size -= cursor_blocks;
2996
	alloc->end -= cursor_blocks;
2997

2998
	/* 1. Allocate the mininum required blocks for each active plane */
2999 3000 3001 3002
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->fb;
		int id = skl_wm_plane_id(intel_plane);
3003

3004 3005 3006
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3007 3008
			continue;

3009 3010 3011 3012
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
3013 3014
	}

3015
	/*
3016 3017
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3018 3019 3020
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3021
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3022

3023
	start = alloc->start;
3024 3025 3026
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
3027 3028
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3029
		int id = skl_wm_plane_id(intel_plane);
3030

3031 3032 3033
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3034 3035
			continue;

3036
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3037 3038

		/*
3039
		 * allocation for (packed formats) or (uv-plane part of planar format):
3040 3041 3042
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3043
		plane_blocks = minimum[id];
3044 3045
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3046

3047 3048
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3049 3050

		start += plane_blocks;
3051 3052 3053 3054

		/*
		 * allocation for y_plane part of planar format:
		 */
3055 3056 3057 3058 3059
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3060 3061 3062
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3063 3064
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3065 3066 3067 3068

			start += y_plane_blocks;
		}

3069 3070 3071 3072
	}

}

3073
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3074 3075
{
	/* TODO: Take into account the scalers once we support them */
3076
	return config->base.adjusted_mode.crtc_clock;
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3093
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3094 3095 3096 3097 3098 3099 3100
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3101
			       uint64_t tiling, uint32_t latency)
3102
{
3103 3104 3105
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3106 3107 3108 3109 3110

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3121 3122
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3123
				plane_blocks_per_line;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

3140 3141
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3142 3143 3144 3145 3146
		return true;

	return false;
}

3147 3148 3149 3150 3151 3152 3153 3154 3155
static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += to_intel_crtc(crtc)->active;
}

3156
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3157 3158
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3159
				 uint16_t ddb_allocation,
3160
				 int level,
3161 3162
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3163
{
3164 3165
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3166 3167 3168 3169 3170
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3171
	uint8_t bytes_per_pixel;
3172

3173
	if (latency == 0 || !cstate->base.active || !fb)
3174 3175
		return false;

3176 3177 3178 3179
	bytes_per_pixel = (fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(DRM_FORMAT_NV12, 0) :
		drm_format_plane_cpp(DRM_FORMAT_NV12, 1);
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3180
				 bytes_per_pixel,
3181
				 latency);
3182 3183 3184
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3185
				 bytes_per_pixel,
3186
				 fb->modifier[0],
3187
				 latency);
3188

3189
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3190
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3191

3192 3193
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3194 3195
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3196 3197 3198 3199 3200 3201
		if (intel_rotation_90_or_270(plane->state->rotation)) {
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

			switch (bpp) {
3202 3203 3204 3205 3206 3207 3208 3209
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3210
			}
3211 3212
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3213 3214 3215 3216 3217 3218 3219
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3220

3221 3222
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3223

3224
	if (level >= 1 && level <= 7) {
3225 3226
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3227 3228 3229 3230
			res_lines += 4;
		else
			res_blocks++;
	}
3231

3232
	if (res_blocks >= ddb_allocation || res_lines > 31)
3233 3234 3235 3236
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3237 3238 3239 3240 3241 3242

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3243
				 struct intel_crtc_state *cstate,
3244 3245 3246
				 int level,
				 struct skl_wm_level *result)
{
3247 3248 3249
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3250
	uint16_t ddb_blocks;
3251 3252 3253 3254
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3255 3256 3257

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3258
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3259 3260
						cstate,
						intel_plane,
3261
						ddb_blocks,
3262
						level,
3263 3264 3265 3266 3267
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3268
static uint32_t
3269
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3270
{
3271
	if (!cstate->base.active)
3272 3273
		return 0;

3274
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3275
		return 0;
3276

3277 3278
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3279 3280
}

3281
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3282
				      struct skl_wm_level *trans_wm /* out */)
3283
{
3284
	struct drm_crtc *crtc = cstate->base.crtc;
3285
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3286
	struct intel_plane *intel_plane;
3287

3288
	if (!cstate->base.active)
3289
		return;
3290 3291

	/* Until we know more, just disable transition WMs */
3292 3293 3294
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3295
		trans_wm->plane_en[i] = false;
3296
	}
3297 3298
}

3299
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3300 3301 3302
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3303
	struct drm_device *dev = cstate->base.crtc->dev;
3304 3305 3306 3307
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3308 3309
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3310
	}
3311
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3312

3313
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3314 3315 3316 3317 3318 3319 3320 3321 3322
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3323 3324
	uint32_t temp;
	int i;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3341 3342
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3343

3344
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3345 3346
			temp |= PLANE_WM_EN;

3347
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3348 3349 3350

	}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3363 3364 3365
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3366 3367
		temp |= PLANE_WM_EN;

3368
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3369

3370 3371 3372
	r->wm_linetime[pipe] = p_wm->linetime;
}

3373 3374 3375 3376 3377 3378 3379 3380 3381
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3392 3393
		if (!new->dirty[pipe])
			continue;
3394

3395
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3396

3397 3398 3399 3400 3401
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3402
				   new->plane[pipe][PLANE_CURSOR][level]);
3403
		}
3404 3405 3406
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3407 3408
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3409

3410
		for (i = 0; i < intel_num_planes(crtc); i++) {
3411 3412 3413
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3414 3415 3416 3417
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3418 3419

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3420
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3421 3422 3423
	}
}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3448 3449
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3450 3451 3452
{
	int plane;

3453 3454
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3455
	for_each_plane(dev_priv, pipe, plane) {
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3482
	bool reallocated[I915_MAX_PIPES] = {};
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3505
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3530
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3531
			intel_wait_for_vblank(dev, pipe);
3532
			reallocated[pipe] = true;
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3555
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3556 3557 3558
	}
}

3559
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3560
			       struct intel_wm_config *config,
3561 3562 3563 3564
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3566

3567
	skl_allocate_pipe_ddb(cstate, config, ddb);
3568
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3569

3570
	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3571 3572
		return false;

3573
	intel_crtc->wm.skl_active = *pipe_wm;
3574

3575 3576 3577 3578 3579
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
3580
				     struct intel_wm_config *config,
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3610
		wm_changed = skl_update_pipe_wm(&intel_crtc->base, config,
3611 3612 3613 3614 3615 3616 3617 3618 3619
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3620
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3621 3622 3623 3624
		r->dirty[intel_crtc->pipe] = true;
	}
}

3625 3626 3627 3628 3629 3630 3631
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3632
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3633 3634 3635 3636 3637 3638 3639

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3640 3641
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3642 3643 3644

}

3645 3646 3647 3648 3649 3650
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3651 3652
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};
3653

3654 3655 3656 3657 3658

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3659

3660 3661 3662
	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &config, &results->ddb, &pipe_wm))
3663 3664
		return;

3665
	skl_compute_wm_results(dev, &pipe_wm, results, intel_crtc);
3666 3667
	results->dirty[intel_crtc->pipe] = true;

3668
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3669
	skl_write_wm_values(dev_priv, results);
3670
	skl_flush_wm_values(dev_priv, results);
3671 3672 3673

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3674 3675
}

3676
static void ilk_update_wm(struct drm_crtc *crtc)
3677
{
3678 3679 3680 3681
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3682 3683
	struct ilk_wm_maximums max;
	struct ilk_wm_values results = {};
3684
	enum intel_ddb_partitioning partitioning;
3685 3686 3687
	struct intel_pipe_wm pipe_wm = {};
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
	struct intel_wm_config config = {};
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	WARN_ON(cstate->base.active != intel_crtc->active);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (cstate->disable_lp_wm) {
		ilk_disable_lp_wm(dev);
		intel_wait_for_vblank(dev, intel_crtc->pipe);
	}

	intel_compute_pipe_wm(cstate, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;

	intel_crtc->wm.active = pipe_wm;

	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3714 3715

	/* 5/6 split only in single pipe config on IVB+ */
3716
	if (INTEL_INFO(dev)->gen >= 7 &&
3717 3718 3719
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3720

3721
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3722
	} else {
3723
		best_lp_wm = &lp_wm_1_2;
3724 3725
	}

3726
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3727
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3728

3729
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3730

3731
	ilk_write_wm_values(dev_priv, &results);
3732 3733
}

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3752 3753
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3754
					val & PLANE_WM_BLOCKS_MASK;
3755
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3768 3769
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3770
					val & PLANE_WM_BLOCKS_MASK;
3771
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3784
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3797
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3798 3799 3800 3801
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3802
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3803

3804
	if (!intel_crtc->active)
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3817
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3818 3819 3820 3821 3822 3823 3824 3825
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3826
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3827 3828 3829 3830 3831
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3832 3833
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3834 3835
	struct drm_crtc *crtc;

3836
	skl_ddb_get_hw_state(dev_priv, ddb);
3837 3838 3839 3840
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3841 3842 3843 3844
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3845
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3846
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3848 3849 3850 3851 3852 3853 3854 3855
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3856
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3857
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3858

3859
	active->pipe_enabled = intel_crtc->active;
3860 3861

	if (active->pipe_enabled) {
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4005 4006 4007 4008 4009 4010 4011 4012 4013
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4014
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4041 4042 4043
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4044
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4045 4046
	struct drm_crtc *crtc;

4047
	for_each_crtc(dev, crtc)
4048 4049 4050 4051 4052 4053 4054
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4055 4056 4057 4058
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4059

4060
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4061 4062 4063 4064 4065
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4066 4067 4068 4069 4070

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4103
void intel_update_watermarks(struct drm_crtc *crtc)
4104
{
4105
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4106 4107

	if (dev_priv->display.update_wm)
4108
		dev_priv->display.update_wm(crtc);
4109 4110
}

4111 4112 4113 4114 4115 4116 4117 4118 4119
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4120 4121 4122 4123 4124
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4125 4126
	assert_spin_locked(&mchdev_lock);

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4144
static void ironlake_enable_drps(struct drm_device *dev)
4145 4146 4147 4148 4149
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4150 4151
	spin_lock_irq(&mchdev_lock);

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4172
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4173 4174
		PXVFREQ_PX_SHIFT;

4175 4176
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4177

4178 4179 4180
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4197
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4198
		DRM_ERROR("stuck trying to change perf mode\n");
4199
	mdelay(1);
4200 4201 4202

	ironlake_set_drps(dev, fstart);

4203 4204
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4205
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4206
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4207
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4208 4209

	spin_unlock_irq(&mchdev_lock);
4210 4211
}

4212
static void ironlake_disable_drps(struct drm_device *dev)
4213 4214
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4215 4216 4217 4218 4219
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4220 4221 4222 4223 4224 4225 4226 4227 4228

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4229
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4230
	mdelay(1);
4231 4232
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4233
	mdelay(1);
4234

4235
	spin_unlock_irq(&mchdev_lock);
4236 4237
}

4238 4239 4240 4241 4242
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4243
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4244
{
4245
	u32 limits;
4246

4247 4248 4249 4250 4251 4252
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4253 4254 4255 4256 4257 4258 4259 4260 4261
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4262 4263 4264 4265

	return limits;
}

4266 4267 4268
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4269 4270
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4271 4272 4273 4274

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4275
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4276 4277 4278 4279
			new_power = BETWEEN;
		break;

	case BETWEEN:
4280
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4281
			new_power = LOW_POWER;
4282
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4283 4284 4285 4286
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4287
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4288 4289 4290 4291
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4292
	if (val <= dev_priv->rps.min_freq_softlimit)
4293
		new_power = LOW_POWER;
4294
	if (val >= dev_priv->rps.max_freq_softlimit)
4295 4296 4297 4298 4299 4300 4301 4302
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4303 4304
		ei_up = 16000;
		threshold_up = 95;
4305 4306

		/* Downclock if less than 85% busy over 32ms */
4307 4308
		ei_down = 32000;
		threshold_down = 85;
4309 4310 4311 4312
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4313 4314
		ei_up = 13000;
		threshold_up = 90;
4315 4316

		/* Downclock if less than 75% busy over 32ms */
4317 4318
		ei_down = 32000;
		threshold_down = 75;
4319 4320 4321 4322
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4323 4324
		ei_up = 10000;
		threshold_up = 85;
4325 4326

		/* Downclock if less than 60% busy over 32ms */
4327 4328
		ei_down = 32000;
		threshold_down = 60;
4329 4330 4331
		break;
	}

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4350
	dev_priv->rps.power = new_power;
4351 4352
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4353 4354 4355
	dev_priv->rps.last_adj = 0;
}

4356 4357 4358 4359 4360
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4361
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4362
	if (val < dev_priv->rps.max_freq_softlimit)
4363
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4364

4365 4366
	mask &= dev_priv->pm_rps_events;

4367
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4368 4369
}

4370 4371 4372
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4373
static void gen6_set_rps(struct drm_device *dev, u8 val)
4374 4375
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4376

4377 4378 4379 4380
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
		return;

4381
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4382 4383
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4384

C
Chris Wilson 已提交
4385 4386 4387 4388 4389
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4390

4391 4392 4393 4394
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4395 4396 4397 4398 4399 4400 4401
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4402
	}
4403 4404 4405 4406

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4407
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4408
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4409

4410 4411
	POSTING_READ(GEN6_RPNSWREQ);

4412
	dev_priv->rps.cur_freq = val;
4413
	trace_intel_gpu_freq_change(val * 50);
4414 4415
}

4416 4417 4418 4419 4420
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4421 4422
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4423 4424 4425 4426 4427

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4428 4429
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4430
	if (val != dev_priv->rps.cur_freq) {
4431
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4432 4433 4434
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4435 4436 4437 4438 4439

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4440
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4441 4442
 *
 * * If Gfx is Idle, then
4443 4444 4445
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4446 4447 4448
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4449
	u32 val = dev_priv->rps.idle_freq;
4450

4451
	if (dev_priv->rps.cur_freq <= val)
4452 4453
		return;

4454 4455 4456 4457 4458
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4459 4460
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4473 4474
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4475 4476
	struct drm_device *dev = dev_priv->dev;

4477
	mutex_lock(&dev_priv->rps.hw_lock);
4478
	if (dev_priv->rps.enabled) {
4479
		if (IS_VALLEYVIEW(dev))
4480
			vlv_set_rps_idle(dev_priv);
4481
		else
4482
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4483
		dev_priv->rps.last_adj = 0;
4484
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4485
	}
4486
	mutex_unlock(&dev_priv->rps.hw_lock);
4487

4488
	spin_lock(&dev_priv->rps.client_lock);
4489 4490
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4491
	spin_unlock(&dev_priv->rps.client_lock);
4492 4493
}

4494
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4495 4496
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4497
{
4498 4499 4500 4501 4502 4503 4504
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4505

4506 4507 4508
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4509
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4510 4511
		rps = NULL;

4512 4513 4514 4515 4516 4517 4518 4519
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4520

4521 4522 4523
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4524 4525
		} else
			dev_priv->rps.boosts++;
4526
	}
4527
	spin_unlock(&dev_priv->rps.client_lock);
4528 4529
}

4530
void intel_set_rps(struct drm_device *dev, u8 val)
4531
{
4532 4533 4534 4535
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4536 4537
}

Z
Zhe Wang 已提交
4538 4539 4540 4541 4542
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4543
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4544 4545
}

4546
static void gen6_disable_rps(struct drm_device *dev)
4547 4548 4549 4550
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4551 4552 4553
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4554 4555 4556 4557 4558 4559 4560
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4561 4562 4563 4564
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4565 4566
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4567
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4568

4569
	I915_WRITE(GEN6_RC_CONTROL, 0);
4570

4571
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4572 4573
}

B
Ben Widawsky 已提交
4574 4575
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4576 4577 4578 4579 4580 4581
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4582 4583 4584 4585 4586 4587 4588 4589 4590
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4591 4592
}

I
Imre Deak 已提交
4593
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4594
{
4595 4596
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4597 4598
		return 0;

4599
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4600 4601 4602
	if (enable_rc6 >= 0) {
		int mask;

4603
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4604 4605 4606 4607 4608 4609
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4610 4611
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4612 4613 4614

		return enable_rc6 & mask;
	}
4615

4616
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4617
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4618 4619

	return INTEL_RC6_ENABLE;
4620 4621
}

I
Imre Deak 已提交
4622 4623 4624 4625 4626
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4627
static void gen6_init_rps_frequencies(struct drm_device *dev)
4628
{
4629 4630 4631 4632 4633
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4634 4635
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4636
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4649 4650 4651
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4652
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4653
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4654 4655 4656 4657 4658
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4659 4660 4661 4662
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4663 4664
	}

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4675 4676
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4677 4678 4679 4680
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4681 4682 4683
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4684 4685
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4686 4687 4688 4689
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4690 4691
}

J
Jesse Barnes 已提交
4692
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4693
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4694 4695 4696 4697 4698
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4699 4700
	gen6_init_rps_frequencies(dev);

4701 4702 4703 4704 4705 4706
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4707 4708 4709 4710 4711 4712 4713 4714
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4715 4716
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4717 4718 4719 4720 4721
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4722 4723 4724 4725 4726

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4738
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4739 4740 4741 4742 4743

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4744 4745 4746 4747 4748 4749 4750

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
	if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
				 (INTEL_REVID(dev) <= SKL_REVID_E0)))
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4751 4752 4753 4754
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4755 4756 4757 4758

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4759 4760
	I915_WRITE(GEN6_RC_SLEEP, 0);

4761 4762 4763 4764
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4765 4766 4767 4768 4769
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
4770
	/* WaRsUseTimeoutMode */
S
Sagar Arun Kamble 已提交
4771
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4772 4773
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4774 4775 4776
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4777 4778
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4779 4780 4781
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4782
	}
Z
Zhe Wang 已提交
4783

4784 4785
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4786
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4787
	 */
4788 4789 4790 4791 4792 4793
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4794

4795
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4796 4797 4798

}

4799 4800 4801
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4802
	struct intel_engine_cs *ring;
4803
	uint32_t rc6_mask = 0;
4804 4805 4806 4807 4808 4809 4810
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4811
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4812 4813 4814 4815

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4816 4817
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4818 4819 4820 4821 4822 4823 4824 4825

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4826 4827 4828 4829
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4830 4831 4832 4833

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4834
	intel_print_rc6_info(dev, rc6_mask);
4835 4836 4837 4838 4839 4840 4841 4842
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4843 4844

	/* 4 Program defaults and thresholds for RPS*/
4845 4846 4847 4848
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4863 4864

	/* 5: Enable RPS */
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4875
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4876
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4877

4878
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4879 4880
}

4881
static void gen6_enable_rps(struct drm_device *dev)
4882
{
4883
	struct drm_i915_private *dev_priv = dev->dev_private;
4884
	struct intel_engine_cs *ring;
4885
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4886 4887
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4888
	int i, ret;
4889

4890
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4891

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4906
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4907

4908 4909
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4910

4911 4912 4913 4914 4915 4916 4917 4918 4919
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4920 4921
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4922 4923 4924

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4925
	if (IS_IVYBRIDGE(dev))
4926 4927 4928
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4929
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4930 4931
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4932
	/* Check if we are enabling RC6 */
4933 4934 4935 4936
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4937 4938 4939 4940
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4941

4942 4943 4944
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4945

B
Ben Widawsky 已提交
4946
	intel_print_rc6_info(dev, rc6_mask);
4947 4948 4949 4950 4951 4952

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4953 4954
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4955 4956
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4957
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4958
	if (ret)
B
Ben Widawsky 已提交
4959
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4960 4961 4962 4963

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4964
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4965
				 (pcu_mbox & 0xff) * 50);
4966
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4967 4968
	}

4969
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4970
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4971

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4986
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4987 4988
}

4989
static void __gen6_update_ring_freq(struct drm_device *dev)
4990
{
4991
	struct drm_i915_private *dev_priv = dev->dev_private;
4992
	int min_freq = 15;
4993 4994
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4995
	unsigned int max_gpu_freq, min_gpu_freq;
4996
	int scaling_factor = 180;
4997
	struct cpufreq_policy *policy;
4998

4999
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5010
		max_ia_freq = tsc_khz;
5011
	}
5012 5013 5014 5015

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5016
	min_ring_freq = I915_READ(DCLK) & 0xf;
5017 5018
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5019

5020 5021 5022 5023 5024 5025 5026 5027 5028
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5029 5030 5031 5032 5033
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5034 5035
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5036 5037
		unsigned int ia_freq = 0, ring_freq = 0;

5038 5039 5040 5041 5042 5043 5044
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5045 5046 5047
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5048
			ring_freq = mult_frac(gpu_freq, 5, 4);
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5065

B
Ben Widawsky 已提交
5066 5067
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5068 5069 5070
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5071 5072 5073
	}
}

5074 5075 5076 5077
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5078
	if (!HAS_CORE_RING_FREQ(dev))
5079 5080 5081 5082 5083 5084 5085
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5086
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5087
{
5088
	struct drm_device *dev = dev_priv->dev;
5089 5090
	u32 val, rp0;

5091
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5092

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5108
	}
5109 5110 5111

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5125 5126 5127 5128
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5129 5130 5131
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5132 5133 5134
	return rp1;
}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5146
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5147 5148 5149
{
	u32 val, rp0;

5150
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5163
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5164
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5165
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5166 5167 5168 5169 5170
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5171
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5172
{
5173
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5174 5175
}

5176 5177 5178 5179 5180 5181 5182 5183 5184
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5206
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5207 5208 5209 5210 5211 5212
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5213 5214

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5215 5216
}

5217 5218 5219 5220 5221 5222 5223 5224
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5225 5226
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5227 5228 5229 5230 5231 5232 5233 5234
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5235
								      I915_GTT_OFFSET_NONE,
5236 5237 5238 5239
								      pctx_size);
		goto out;
	}

5240 5241
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5260
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5261 5262 5263
	dev_priv->vlv_pctx = pctx;
}

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5275 5276 5277
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5278
	u32 val;
5279 5280 5281 5282 5283

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5297
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5298

5299 5300 5301
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5302
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5303 5304 5305 5306
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5307
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5308 5309
			 dev_priv->rps.efficient_freq);

5310 5311
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5312
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5313 5314
			 dev_priv->rps.rp1_freq);

5315 5316
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5317
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5318 5319
			 dev_priv->rps.min_freq);

5320 5321
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5332 5333
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5334
	struct drm_i915_private *dev_priv = dev->dev_private;
5335
	u32 val;
5336

5337
	cherryview_setup_pctx(dev);
5338 5339 5340

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5341
	mutex_lock(&dev_priv->sb_lock);
5342
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5343
	mutex_unlock(&dev_priv->sb_lock);
5344

5345 5346 5347 5348
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5349
	default:
5350 5351 5352
		dev_priv->mem_freq = 1600;
		break;
	}
5353
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5354

5355 5356 5357
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5358
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5359 5360 5361 5362
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5363
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5364 5365
			 dev_priv->rps.efficient_freq);

5366 5367
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5368
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5369 5370
			 dev_priv->rps.rp1_freq);

5371 5372
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5373
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5374
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5375 5376
			 dev_priv->rps.min_freq);

5377 5378 5379 5380 5381 5382
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5383 5384
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5385 5386 5387 5388 5389 5390 5391 5392
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5393 5394
}

5395 5396 5397 5398 5399
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5400 5401 5402 5403
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5404
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5420
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5421

5422 5423 5424
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5425 5426 5427 5428 5429 5430 5431 5432 5433
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5434 5435
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5449
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5450 5451 5452

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5453
	/* 4 Program defaults and thresholds for RPS*/
5454
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5465
		   GEN6_RP_MEDIA_IS_GFX |
5466 5467 5468 5469
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5470 5471 5472 5473 5474 5475
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5476 5477
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5478 5479 5480
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5481
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5482 5483 5484 5485
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5486
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5487 5488 5489
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5490
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5491 5492 5493 5494
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5495
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5496 5497
}

5498 5499 5500
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5501
	struct intel_engine_cs *ring;
5502
	u32 gtfifodbg, val, rc6_mode = 0;
5503 5504 5505 5506
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5507 5508
	valleyview_check_pctx(dev_priv);

5509
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5510 5511
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5512 5513 5514
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5515
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5516
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5517

5518 5519 5520
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5521
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5544
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5545 5546

	/* allows RC6 residency counter to work */
5547
	I915_WRITE(VLV_COUNTER_CONTROL,
5548 5549
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5550 5551
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5552

5553
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5554
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5555 5556 5557

	intel_print_rc6_info(dev, rc6_mode);

5558
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5559

D
Deepak S 已提交
5560 5561 5562 5563 5564 5565
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5566
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5567

5568 5569 5570
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5571
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5572 5573
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5574
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5575
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5576
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5577
			 dev_priv->rps.cur_freq);
5578

5579
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5580
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5581
			 dev_priv->rps.efficient_freq);
5582

5583
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5584

5585
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5586 5587
}

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5617
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5618 5619 5620 5621 5622 5623
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5624 5625
	assert_spin_locked(&mchdev_lock);

5626
	diff1 = now - dev_priv->ips.last_time1;
5627 5628 5629 5630 5631 5632 5633

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5634
		return dev_priv->ips.chipset_power;
5635 5636 5637 5638 5639 5640 5641 5642

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5643 5644
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5645 5646
		diff += total_count;
	} else {
5647
		diff = total_count - dev_priv->ips.last_count1;
5648 5649 5650
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5651 5652
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5663 5664
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5665

5666
	dev_priv->ips.chipset_power = ret;
5667 5668 5669 5670

	return ret;
}

5671 5672
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5673
	struct drm_device *dev = dev_priv->dev;
5674 5675
	unsigned long val;

5676
	if (INTEL_INFO(dev)->gen != 5)
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5715
{
5716
	struct drm_device *dev = dev_priv->dev;
5717 5718 5719
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5720
	if (INTEL_INFO(dev)->is_mobile)
5721 5722 5723
		return vm > 0 ? vm : 0;

	return vd;
5724 5725
}

5726
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5727
{
5728
	u64 now, diff, diffms;
5729 5730
	u32 count;

5731
	assert_spin_locked(&mchdev_lock);
5732

5733 5734 5735
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5736 5737 5738 5739 5740 5741 5742

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5743 5744
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5745 5746
		diff += count;
	} else {
5747
		diff = count - dev_priv->ips.last_count2;
5748 5749
	}

5750 5751
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5752 5753 5754 5755

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5756
	dev_priv->ips.gfx_power = diff;
5757 5758
}

5759 5760
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5761 5762 5763
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5764 5765
		return;

5766
	spin_lock_irq(&mchdev_lock);
5767 5768 5769

	__i915_update_gfx_val(dev_priv);

5770
	spin_unlock_irq(&mchdev_lock);
5771 5772
}

5773
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5774 5775 5776 5777
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5778 5779
	assert_spin_locked(&mchdev_lock);

5780
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5800
	corr2 = (corr * dev_priv->ips.corr);
5801 5802 5803 5804

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5805
	__i915_update_gfx_val(dev_priv);
5806

5807
	return dev_priv->ips.gfx_power + state2;
5808 5809
}

5810 5811
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5812
	struct drm_device *dev = dev_priv->dev;
5813 5814
	unsigned long val;

5815
	if (INTEL_INFO(dev)->gen != 5)
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5838
	spin_lock_irq(&mchdev_lock);
5839 5840 5841 5842
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5843 5844
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5845 5846 5847 5848

	ret = chipset_val + graphics_val;

out_unlock:
5849
	spin_unlock_irq(&mchdev_lock);
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5865
	spin_lock_irq(&mchdev_lock);
5866 5867 5868 5869 5870 5871
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5872 5873
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5874 5875

out_unlock:
5876
	spin_unlock_irq(&mchdev_lock);
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5893
	spin_lock_irq(&mchdev_lock);
5894 5895 5896 5897 5898 5899
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5900 5901
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5902 5903

out_unlock:
5904
	spin_unlock_irq(&mchdev_lock);
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5918
	struct intel_engine_cs *ring;
5919
	bool ret = false;
5920
	int i;
5921

5922
	spin_lock_irq(&mchdev_lock);
5923 5924 5925 5926
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5927 5928
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5929 5930

out_unlock:
5931
	spin_unlock_irq(&mchdev_lock);
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5948
	spin_lock_irq(&mchdev_lock);
5949 5950 5951 5952 5953 5954
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5955
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5956

5957
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5958 5959 5960
		ret = false;

out_unlock:
5961
	spin_unlock_irq(&mchdev_lock);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5989 5990
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5991
	spin_lock_irq(&mchdev_lock);
5992
	i915_mch_dev = dev_priv;
5993
	spin_unlock_irq(&mchdev_lock);
5994 5995 5996 5997 5998 5999

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6000
	spin_lock_irq(&mchdev_lock);
6001
	i915_mch_dev = NULL;
6002
	spin_unlock_irq(&mchdev_lock);
6003
}
6004

6005
static void intel_init_emon(struct drm_device *dev)
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6023
		I915_WRITE(PEW(i), 0);
6024
	for (i = 0; i < 3; i++)
6025
		I915_WRITE(DEW(i), 0);
6026 6027 6028

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6029
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6050
		I915_WRITE(PXW(i), val);
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6066
		I915_WRITE(PXWL(i), 0);
6067 6068 6069 6070 6071 6072

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6073
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6074 6075
}

6076 6077
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6078 6079
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6080 6081 6082
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6083
		valleyview_init_gt_powersave(dev);
6084 6085 6086 6087
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6088 6089 6090
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6091
		valleyview_cleanup_gt_powersave(dev);
6092 6093
}

6094 6095 6096 6097 6098 6099
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6100
	gen6_disable_rps_interrupts(dev);
6101 6102
}

6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6115 6116 6117
	if (INTEL_INFO(dev)->gen < 6)
		return;

6118
	gen6_suspend_rps(dev);
6119 6120 6121

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6122 6123
}

6124 6125
void intel_disable_gt_powersave(struct drm_device *dev)
{
6126 6127
	struct drm_i915_private *dev_priv = dev->dev_private;

6128
	if (IS_IRONLAKE_M(dev)) {
6129
		ironlake_disable_drps(dev);
6130
	} else if (INTEL_INFO(dev)->gen >= 6) {
6131
		intel_suspend_gt_powersave(dev);
6132

6133
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6134 6135 6136
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6137 6138
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6139 6140 6141
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6142

6143
		dev_priv->rps.enabled = false;
6144
		mutex_unlock(&dev_priv->rps.hw_lock);
6145
	}
6146 6147
}

6148 6149 6150 6151 6152 6153 6154
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6155
	mutex_lock(&dev_priv->rps.hw_lock);
6156

6157
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6158

6159 6160 6161
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6162
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6163
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6164
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6165
		gen9_enable_rps(dev);
6166 6167
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6168 6169
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6170
		__gen6_update_ring_freq(dev);
6171 6172
	} else {
		gen6_enable_rps(dev);
6173
		__gen6_update_ring_freq(dev);
6174
	}
6175 6176 6177 6178 6179 6180 6181

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6182
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6183

6184
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6185

6186
	mutex_unlock(&dev_priv->rps.hw_lock);
6187 6188

	intel_runtime_pm_put(dev_priv);
6189 6190
}

6191 6192
void intel_enable_gt_powersave(struct drm_device *dev)
{
6193 6194
	struct drm_i915_private *dev_priv = dev->dev_private;

6195 6196 6197 6198
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6199
	if (IS_IRONLAKE_M(dev)) {
6200
		mutex_lock(&dev->struct_mutex);
6201 6202
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6203
		mutex_unlock(&dev->struct_mutex);
6204
	} else if (INTEL_INFO(dev)->gen >= 6) {
6205 6206 6207 6208
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6209 6210 6211 6212 6213 6214 6215
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6216
		 */
6217 6218 6219
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6220 6221 6222
	}
}

6223 6224 6225 6226
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6227 6228 6229 6230
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6231 6232 6233
	dev_priv->rps.enabled = false;
}

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6246 6247 6248
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6249
	enum pipe pipe;
6250

6251
	for_each_pipe(dev_priv, pipe) {
6252 6253 6254
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6255 6256 6257

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6258 6259 6260
	}
}

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6275
static void ironlake_init_clock_gating(struct drm_device *dev)
6276 6277
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6278
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6279

6280 6281 6282 6283
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6284 6285 6286
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6304
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6305 6306 6307
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6308 6309

	ilk_init_lp_watermarks(dev);
6310 6311 6312 6313 6314 6315 6316 6317 6318

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6319
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6320 6321 6322 6323 6324 6325 6326 6327
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6328 6329
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6330 6331 6332 6333 6334 6335
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6336

6337
	/* WaDisableRenderCachePipelinedFlush:ilk */
6338 6339
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6340

6341 6342 6343
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6344
	g4x_disable_trickle_feed(dev);
6345

6346 6347 6348 6349 6350 6351 6352
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6353
	uint32_t val;
6354 6355 6356 6357 6358 6359

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6360 6361 6362
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6363 6364
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6365 6366 6367
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6368
	for_each_pipe(dev_priv, pipe) {
6369 6370 6371
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6372
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6373
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6374 6375 6376
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6377 6378
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6379
	/* WADP0ClockGatingDisable */
6380
	for_each_pipe(dev_priv, pipe) {
6381 6382 6383
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6384 6385
}

6386 6387 6388 6389 6390 6391
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6392 6393 6394
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6395 6396
}

6397
static void gen6_init_clock_gating(struct drm_device *dev)
6398 6399
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6400
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6401

6402
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6403 6404 6405 6406 6407

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6408
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6409 6410 6411
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6412 6413 6414
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6415 6416 6417
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6418 6419 6420 6421
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6422 6423
	 */
	I915_WRITE(GEN6_GT_MODE,
6424
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6425

6426
	ilk_init_lp_watermarks(dev);
6427 6428

	I915_WRITE(CACHE_MODE_0,
6429
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6445
	 *
6446 6447
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6448 6449 6450 6451 6452
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6453
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6454 6455
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6456

6457 6458 6459 6460 6461 6462 6463 6464
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6465 6466 6467 6468 6469 6470 6471 6472
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6473 6474
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6475 6476 6477 6478 6479 6480 6481
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6482 6483 6484 6485
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6486

6487
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6488

6489
	cpt_init_clock_gating(dev);
6490 6491

	gen6_check_mch_setup(dev);
6492 6493 6494 6495 6496 6497
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6498
	/*
6499
	 * WaVSThreadDispatchOverride:ivb,vlv
6500 6501 6502 6503
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6504 6505 6506 6507 6508 6509 6510 6511
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6512 6513 6514 6515 6516 6517 6518 6519
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6520
	if (HAS_PCH_LPT_LP(dev))
6521 6522 6523
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6524 6525

	/* WADPOClockGatingDisable:hsw */
6526 6527
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6528
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6529 6530
}

6531 6532 6533 6534
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6535
	if (HAS_PCH_LPT_LP(dev)) {
6536 6537 6538 6539 6540 6541 6542
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6543
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6544 6545
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6546
	enum pipe pipe;
6547
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6548

6549
	ilk_init_lp_watermarks(dev);
6550

6551
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6552
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6553

6554
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6555 6556 6557
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6558
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6559
	for_each_pipe(dev_priv, pipe) {
6560
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6561
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6562
			   BDW_DPRS_MASK_VBLANK_SRD);
6563
	}
6564

6565 6566 6567 6568 6569
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6570

6571 6572
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6573 6574 6575 6576

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6577

6578 6579 6580 6581 6582 6583 6584 6585 6586
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6587 6588 6589 6590 6591 6592 6593
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6594
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6595 6596
}

6597 6598 6599 6600
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6601
	ilk_init_lp_watermarks(dev);
6602

6603 6604 6605 6606 6607
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6608
	/* This is required by WaCatErrorRejectionIssue:hsw */
6609 6610 6611 6612
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6613 6614 6615
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6616

6617 6618 6619
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6620 6621 6622 6623
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6624
	/* WaDisable4x2SubspanOptimization:hsw */
6625 6626
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6627

6628 6629 6630
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6631 6632 6633 6634
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6635 6636
	 */
	I915_WRITE(GEN7_GT_MODE,
6637
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6638

6639 6640 6641 6642
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6643
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6644 6645
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6646 6647 6648
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6649

6650
	lpt_init_clock_gating(dev);
6651 6652
}

6653
static void ivybridge_init_clock_gating(struct drm_device *dev)
6654 6655
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6656
	uint32_t snpcr;
6657

6658
	ilk_init_lp_watermarks(dev);
6659

6660
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6661

6662
	/* WaDisableEarlyCull:ivb */
6663 6664 6665
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6666
	/* WaDisableBackToBackFlipFix:ivb */
6667 6668 6669 6670
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6671
	/* WaDisablePSDDualDispatchEnable:ivb */
6672 6673 6674 6675
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6676 6677 6678
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6679
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6680 6681 6682
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6683
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6684 6685 6686
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6687 6688 6689 6690
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6691 6692 6693 6694
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6695 6696
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6697
	}
6698

6699
	/* WaForceL3Serialization:ivb */
6700 6701 6702
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6703
	/*
6704
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6705
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6706 6707
	 */
	I915_WRITE(GEN6_UCGCTL2,
6708
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6709

6710
	/* This is required by WaCatErrorRejectionIssue:ivb */
6711 6712 6713 6714
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6715
	g4x_disable_trickle_feed(dev);
6716 6717

	gen7_setup_fixed_func_scheduler(dev_priv);
6718

6719 6720 6721 6722 6723
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6724

6725
	/* WaDisable4x2SubspanOptimization:ivb */
6726 6727
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6728

6729 6730 6731
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6732 6733 6734 6735
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6736 6737
	 */
	I915_WRITE(GEN7_GT_MODE,
6738
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6739

6740 6741 6742 6743
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6744

6745 6746
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6747 6748

	gen6_check_mch_setup(dev);
6749 6750
}

6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6762
static void valleyview_init_clock_gating(struct drm_device *dev)
6763 6764 6765
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6766
	vlv_init_display_clock_gating(dev_priv);
6767

6768
	/* WaDisableEarlyCull:vlv */
6769 6770 6771
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6772
	/* WaDisableBackToBackFlipFix:vlv */
6773 6774 6775 6776
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6777
	/* WaPsdDispatchEnable:vlv */
6778
	/* WaDisablePSDDualDispatchEnable:vlv */
6779
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6780 6781
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6782

6783 6784 6785
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6786
	/* WaForceL3Serialization:vlv */
6787 6788 6789
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6790
	/* WaDisableDopClockGating:vlv */
6791 6792 6793
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6794
	/* This is required by WaCatErrorRejectionIssue:vlv */
6795 6796 6797 6798
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6799 6800
	gen7_setup_fixed_func_scheduler(dev_priv);

6801
	/*
6802
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6803
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6804 6805
	 */
	I915_WRITE(GEN6_UCGCTL2,
6806
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6807

6808 6809 6810 6811 6812
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6813

6814 6815 6816 6817
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6818 6819
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6820

6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6832 6833 6834 6835 6836 6837
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6838
	/*
6839
	 * WaDisableVLVClockGating_VBIIssue:vlv
6840 6841 6842
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6843
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6844 6845
}

6846 6847 6848 6849
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6850
	vlv_init_display_clock_gating(dev_priv);
6851

6852 6853 6854 6855 6856
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6857 6858 6859 6860

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6861 6862 6863 6864

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6865 6866 6867 6868

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6869 6870 6871 6872 6873 6874

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6875 6876
}

6877
static void g4x_init_clock_gating(struct drm_device *dev)
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6893 6894 6895 6896

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6897

6898 6899 6900
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6901
	g4x_disable_trickle_feed(dev);
6902 6903
}

6904
static void crestline_init_clock_gating(struct drm_device *dev)
6905 6906 6907 6908 6909 6910 6911 6912
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6913 6914
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6915 6916 6917

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6918 6919
}

6920
static void broadwater_init_clock_gating(struct drm_device *dev)
6921 6922 6923 6924 6925 6926 6927 6928 6929
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6930 6931
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6932 6933 6934

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6935 6936
}

6937
static void gen3_init_clock_gating(struct drm_device *dev)
6938 6939 6940 6941 6942 6943 6944
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6945 6946 6947

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6948 6949 6950

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6951 6952

	/* interrupts should cause a wake up from C3 */
6953
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6954 6955 6956

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6957 6958 6959

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6960 6961
}

6962
static void i85x_init_clock_gating(struct drm_device *dev)
6963 6964 6965 6966
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6967 6968 6969 6970

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6971 6972 6973

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6974 6975
}

6976
static void i830_init_clock_gating(struct drm_device *dev)
6977 6978 6979 6980
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6981 6982 6983 6984

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6985 6986 6987 6988 6989 6990
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6991 6992
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6993 6994
}

6995 6996 6997 6998 6999 7000
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7001 7002 7003 7004 7005
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7006
	intel_fbc_init(dev_priv);
7007

7008 7009 7010 7011 7012 7013
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7014
	/* For FIFO watermark updates */
7015
	if (INTEL_INFO(dev)->gen >= 9) {
7016 7017
		skl_setup_wm_latency(dev);

7018 7019 7020 7021 7022 7023
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
		else if (IS_SKYLAKE(dev))
			dev_priv->display.init_clock_gating =
				skl_init_clock_gating;
7024
		dev_priv->display.update_wm = skl_update_wm;
7025
	} else if (HAS_PCH_SPLIT(dev)) {
7026
		ilk_setup_wm_latency(dev);
7027

7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7039
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7040
		else if (IS_GEN6(dev))
7041
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7042
		else if (IS_IVYBRIDGE(dev))
7043
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7044
		else if (IS_HASWELL(dev))
7045
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7046
		else if (INTEL_INFO(dev)->gen == 8)
7047
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7048
	} else if (IS_CHERRYVIEW(dev)) {
7049 7050 7051
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7052 7053
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7054
	} else if (IS_VALLEYVIEW(dev)) {
7055 7056 7057
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7071
			intel_set_memory_cxsr(dev_priv, false);
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7089 7090 7091
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7092
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7093 7094
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7095
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7096 7097 7098 7099 7100 7101 7102 7103
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7104 7105 7106
	}
}

7107
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7108
{
7109
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7110 7111 7112 7113 7114 7115 7116

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7117
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7132
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7133
{
7134
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7154

7155
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7156
{
7157 7158 7159 7160 7161 7162 7163 7164
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7165 7166
	case 400:
		return 20;
7167 7168 7169
	default:
		return -1;
	}
7170
}
7171

7172 7173
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7174
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7175 7176 7177 7178 7179 7180

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7181 7182
}

7183
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7184
{
7185
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7186

7187 7188 7189
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7190

7191
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7192 7193
}

7194
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7195
{
7196
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7197

7198 7199 7200
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7201

7202
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7203 7204
}

7205
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7206
{
7207
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7208

7209 7210 7211
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7212

7213
	/* CHV needs even values */
7214
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7215 7216
}

7217
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7218
{
7219 7220 7221
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7222
		return chv_gpu_freq(dev_priv, val);
7223
	else if (IS_VALLEYVIEW(dev_priv->dev))
7224 7225 7226
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7227 7228
}

7229 7230
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7231 7232 7233
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7234
		return chv_freq_opcode(dev_priv, val);
7235
	else if (IS_VALLEYVIEW(dev_priv->dev))
7236 7237 7238 7239
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
7240

7241 7242
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7243
	struct drm_i915_gem_request *req;
7244 7245 7246 7247 7248
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7249
	struct drm_i915_gem_request *req = boost->req;
7250

7251 7252 7253
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7254

7255
	i915_gem_request_unreference__unlocked(req);
7256 7257 7258 7259
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7260
				       struct drm_i915_gem_request *req)
7261 7262 7263
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7264
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7265 7266
		return;

7267 7268 7269
	if (i915_gem_request_completed(req, true))
		return;

7270 7271 7272 7273
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7274 7275
	i915_gem_request_reference(req);
	boost->req = req;
7276 7277 7278 7279 7280

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7281
void intel_pm_setup(struct drm_device *dev)
7282 7283 7284
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7285
	mutex_init(&dev_priv->rps.hw_lock);
7286
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7287

7288 7289
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7290
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7291 7292
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7293

7294
	dev_priv->pm.suspended = false;
7295
}