sched.c 164.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264 265 266

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
275
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
276

277
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
300
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
301 302
};

303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

311 312 313 314 315 316 317 318 319
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
320
/*
I
Ingo Molnar 已提交
321 322
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
323
 */
I
Ingo Molnar 已提交
324
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
325 326 327 328 329 330
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
331 332 333
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
356
}
I
Ingo Molnar 已提交
357

I
Ingo Molnar 已提交
358 359 360 361
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
362 363
}

N
Nick Piggin 已提交
364 365
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
367 368 369 370
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
371 372
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
373 374 375 376 377 378

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

379 380 381 382 383 384 385 386
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
387
	struct rq *rq;
388

389
	local_irq_save(flags);
I
Ingo Molnar 已提交
390 391 392
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
393
	local_irq_restore(flags);
394 395 396 397

	return now;
}

I
Ingo Molnar 已提交
398 399 400 401 402 403 404 405 406 407 408 409
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
410
#ifndef prepare_arch_switch
411 412 413 414 415 416 417
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
418
static inline int task_running(struct rq *rq, struct task_struct *p)
419 420 421 422
{
	return rq->curr == p;
}

423
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
424 425 426
{
}

427
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
428
{
429 430 431 432
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
433 434 435 436 437 438 439
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

440 441 442 443
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
444
static inline int task_running(struct rq *rq, struct task_struct *p)
445 446 447 448 449 450 451 452
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

453
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

470
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
471 472 473 474 475 476 477 478 479 480 481 482
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
483
#endif
484 485
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
486

487 488 489 490
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
491
static inline struct rq *__task_rq_lock(struct task_struct *p)
492 493
	__acquires(rq->lock)
{
494
	struct rq *rq;
495 496 497 498 499 500 501 502 503 504 505

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
506 507 508 509 510
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
511
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
512 513
	__acquires(rq->lock)
{
514
	struct rq *rq;
L
Linus Torvalds 已提交
515 516 517 518 519 520 521 522 523 524 525 526

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

527
static inline void __task_rq_unlock(struct rq *rq)
528 529 530 531 532
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

533
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
534 535 536 537 538 539
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
540
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
541
 */
542
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
543 544
	__acquires(rq->lock)
{
545
	struct rq *rq;
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
641 642 643 644 645
/*
 * Shift right and round:
 */
#define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

646
static unsigned long
647 648 649 650 651 652
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
653
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
654 655 656 657 658

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
659 660 661 662 663
	if (unlikely(tmp > WMULT_CONST))
		tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
664

665
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

686 687 688 689 690 691 692 693 694
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
695 696 697 698 699 700 701 702 703 704 705
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
706 707 708
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
709 710
 */
static const int prio_to_weight[40] = {
711 712 713 714 715 716 717 718
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
719 720
};

721 722 723 724 725 726 727
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
728
static const u32 prio_to_wmult[40] = {
729 730 731 732 733 734 735 736
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
737
};
738

I
Ingo Molnar 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
756
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
757 758 759 760 761 762 763 764 765 766 767

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
792
static void update_curr_load(struct rq *rq)
793 794 795 796 797
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
798 799
	ls->load_update_start = rq->clock;
	ls->delta_stat += rq->clock - start;
800 801 802 803 804 805 806 807
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

808
static inline void inc_load(struct rq *rq, const struct task_struct *p)
809
{
810
	update_curr_load(rq);
811 812 813
	update_load_add(&rq->ls.load, p->se.load.weight);
}

814
static inline void dec_load(struct rq *rq, const struct task_struct *p)
815
{
816
	update_curr_load(rq);
817 818 819
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

820
static void inc_nr_running(struct task_struct *p, struct rq *rq)
821 822
{
	rq->nr_running++;
823
	inc_load(rq, p);
824 825
}

826
static void dec_nr_running(struct task_struct *p, struct rq *rq)
827 828
{
	rq->nr_running--;
829
	dec_load(rq, p);
830 831
}

832 833
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
834 835 836
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

837
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
838 839 840 841
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
842

I
Ingo Molnar 已提交
843 844 845 846 847 848 849 850
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
851

I
Ingo Molnar 已提交
852 853
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
854 855
}

856
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
857
{
I
Ingo Molnar 已提交
858
	sched_info_queued(p);
859
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
860
	p->se.on_rq = 1;
861 862
}

863
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
864
{
865
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
866
	p->se.on_rq = 0;
867 868
}

869
/*
I
Ingo Molnar 已提交
870
 * __normal_prio - return the priority that is based on the static prio
871 872 873
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
874
	return p->static_prio;
875 876
}

877 878 879 880 881 882 883
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
884
static inline int normal_prio(struct task_struct *p)
885 886 887
{
	int prio;

888
	if (task_has_rt_policy(p))
889 890 891 892 893 894 895 896 897 898 899 900 901
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
902
static int effective_prio(struct task_struct *p)
903 904 905 906 907 908 909 910 911 912 913 914
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
915
/*
I
Ingo Molnar 已提交
916
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
917
 */
I
Ingo Molnar 已提交
918
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
919
{
I
Ingo Molnar 已提交
920 921
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
922

923
	enqueue_task(rq, p, wakeup);
924
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
925 926 927
}

/*
I
Ingo Molnar 已提交
928
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
929
 */
I
Ingo Molnar 已提交
930
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
931
{
I
Ingo Molnar 已提交
932
	update_rq_clock(rq);
L
Linus Torvalds 已提交
933

I
Ingo Molnar 已提交
934 935
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
936

937
	enqueue_task(rq, p, 0);
938
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
939 940 941 942 943
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
944
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
945
{
I
Ingo Molnar 已提交
946 947 948
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

949
	dequeue_task(rq, p, sleep);
950
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
951 952 953 954 955 956
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
957
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
958 959 960 961
{
	return cpu_curr(task_cpu(p)) == p;
}

962 963 964
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
965 966 967 968 969 970 971 972 973
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
974 975
}

L
Linus Torvalds 已提交
976
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
977

I
Ingo Molnar 已提交
978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
979
{
I
Ingo Molnar 已提交
980 981 982 983 984
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
985 986
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
987 988
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
989 990 991 992 993 994
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
995 996 997 998
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
999
#endif
I
Ingo Molnar 已提交
1000 1001

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1002 1003
}

1004
struct migration_req {
L
Linus Torvalds 已提交
1005 1006
	struct list_head list;

1007
	struct task_struct *task;
L
Linus Torvalds 已提交
1008 1009 1010
	int dest_cpu;

	struct completion done;
1011
};
L
Linus Torvalds 已提交
1012 1013 1014 1015 1016

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1017
static int
1018
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1019
{
1020
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1026
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1027 1028 1029 1030 1031 1032 1033 1034
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1035

L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1048
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1049 1050
{
	unsigned long flags;
I
Ingo Molnar 已提交
1051
	int running, on_rq;
1052
	struct rq *rq;
L
Linus Torvalds 已提交
1053 1054

repeat:
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1082
	rq = task_rq_lock(p, &flags);
1083
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1084
	on_rq = p->se.on_rq;
1085 1086 1087 1088 1089 1090 1091 1092 1093
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1094 1095 1096
		cpu_relax();
		goto repeat;
	}
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1107
	if (unlikely(on_rq)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1132
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1144 1145
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1146 1147 1148 1149
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1150
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1151
{
1152
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1153
	unsigned long total = weighted_cpuload(cpu);
1154

1155
	if (type == 0)
I
Ingo Molnar 已提交
1156
		return total;
1157

I
Ingo Molnar 已提交
1158
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1159 1160 1161
}

/*
1162 1163
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1164
 */
N
Nick Piggin 已提交
1165
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1166
{
1167
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1168
	unsigned long total = weighted_cpuload(cpu);
1169

N
Nick Piggin 已提交
1170
	if (type == 0)
I
Ingo Molnar 已提交
1171
		return total;
1172

I
Ingo Molnar 已提交
1173
	return max(rq->cpu_load[type-1], total);
1174 1175 1176 1177 1178 1179 1180
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1181
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1182
	unsigned long total = weighted_cpuload(cpu);
1183 1184
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1185
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1186 1187
}

N
Nick Piggin 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1205 1206 1207 1208
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1225 1226
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1227 1228 1229 1230 1231 1232 1233 1234

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1235
nextgroup:
N
Nick Piggin 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1245
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1246
 */
I
Ingo Molnar 已提交
1247 1248
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1249
{
1250
	cpumask_t tmp;
N
Nick Piggin 已提交
1251 1252 1253 1254
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1255 1256 1257 1258
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1259
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1285

1286
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1287 1288 1289
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1290 1291
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1292 1293
		if (tmp->flags & flag)
			sd = tmp;
1294
	}
N
Nick Piggin 已提交
1295 1296 1297 1298

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1299 1300 1301 1302 1303 1304
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1305 1306 1307

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1308 1309 1310 1311
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1312

1313
		new_cpu = find_idlest_cpu(group, t, cpu);
1314 1315 1316 1317 1318
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1319

1320
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1347
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1348 1349 1350 1351 1352
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1363 1364 1365 1366
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1367
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1368 1369 1370 1371
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1372
		} else {
N
Nick Piggin 已提交
1373
			break;
I
Ingo Molnar 已提交
1374
		}
L
Linus Torvalds 已提交
1375 1376 1377 1378
	}
	return cpu;
}
#else
1379
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1399
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1400 1401 1402 1403
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1404
	struct rq *rq;
L
Linus Torvalds 已提交
1405
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1406
	struct sched_domain *sd, *this_sd = NULL;
1407
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414 1415
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1416
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1426 1427
	new_cpu = cpu;

L
Linus Torvalds 已提交
1428 1429 1430
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1431 1432 1433 1434 1435 1436 1437 1438
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1439 1440 1441
		}
	}

N
Nick Piggin 已提交
1442
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1443 1444 1445
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1446
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1447
	 */
N
Nick Piggin 已提交
1448 1449 1450
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1451

1452 1453
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1454 1455
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1456

N
Nick Piggin 已提交
1457 1458
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1459 1460
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1461 1462 1463
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1464

L
Linus Torvalds 已提交
1465
			/*
1466 1467 1468
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1469
			 */
1470
			if (sync)
I
Ingo Molnar 已提交
1471
				tl -= current->se.load.weight;
1472 1473

			if ((tl <= load &&
1474
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1475
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1509
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514 1515 1516 1517
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1518
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1519
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1528 1529
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1540
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1547
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1548 1549 1550 1551 1552 1553 1554
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1567 1568 1569 1570
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1581
#endif
N
Nick Piggin 已提交
1582

I
Ingo Molnar 已提交
1583 1584
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1585

1586 1587 1588 1589
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1612 1613 1614 1615 1616 1617

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1618
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1619
	if (likely(sched_info_on()))
1620
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1621
#endif
1622
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1623 1624
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1625
#ifdef CONFIG_PREEMPT
1626
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1627
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1628
#endif
N
Nick Piggin 已提交
1629
	put_cpu();
L
Linus Torvalds 已提交
1630 1631
}

I
Ingo Molnar 已提交
1632 1633 1634 1635 1636 1637
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1645
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1646 1647
{
	unsigned long flags;
I
Ingo Molnar 已提交
1648 1649
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1650 1651

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1652
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1653
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1654
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1655 1656 1657

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1658 1659 1660 1661
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1662
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1663 1664
	} else {
		/*
I
Ingo Molnar 已提交
1665 1666
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1667
		 */
1668
		p->sched_class->task_new(rq, p);
1669
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1670
	}
I
Ingo Molnar 已提交
1671 1672
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1673 1674
}

1675 1676 1677
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1678 1679
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1680 1681 1682 1683 1684 1685 1686 1687 1688
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1689
 * @notifier: notifier struct to unregister
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1733 1734 1735
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1736
 * @prev: the current task that is being switched out
1737 1738 1739 1740 1741 1742 1743 1744 1745
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1746 1747 1748
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1749
{
1750
	fire_sched_out_preempt_notifiers(prev, next);
1751 1752 1753 1754
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1755 1756
/**
 * finish_task_switch - clean up after a task-switch
1757
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1758 1759
 * @prev: the thread we just switched away from.
 *
1760 1761 1762 1763
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1770
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1771 1772 1773
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1774
	long prev_state;
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1780
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1781 1782
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1783
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1789
	prev_state = prev->state;
1790 1791
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1792
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1793 1794
	if (mm)
		mmdrop(mm);
1795
	if (unlikely(prev_state == TASK_DEAD)) {
1796 1797 1798
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1799
		 */
1800
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1801
		put_task_struct(prev);
1802
	}
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807 1808
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1809
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1810 1811
	__releases(rq->lock)
{
1812 1813
	struct rq *rq = this_rq();

1814 1815 1816 1817 1818
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1819 1820 1821 1822 1823 1824 1825 1826
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1827
static inline void
1828
context_switch(struct rq *rq, struct task_struct *prev,
1829
	       struct task_struct *next)
L
Linus Torvalds 已提交
1830
{
I
Ingo Molnar 已提交
1831
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1832

1833
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1834 1835
	mm = next->mm;
	oldmm = prev->active_mm;
1836 1837 1838 1839 1840 1841 1842
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1843
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1850
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1851 1852 1853
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1854 1855 1856 1857 1858 1859 1860
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1861
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1862
#endif
L
Linus Torvalds 已提交
1863 1864 1865 1866

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1867 1868 1869 1870 1871 1872 1873
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1897
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1912 1913
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1914

1915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1946
/*
I
Ingo Molnar 已提交
1947 1948
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1949
 */
I
Ingo Molnar 已提交
1950
static void update_cpu_load(struct rq *this_rq)
1951
{
I
Ingo Molnar 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
1963
	update_curr_load(this_rq);
I
Ingo Molnar 已提交
1964 1965 1966 1967 1968 1969 1970

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

1971 1972
	sample_interval64 = this_rq->clock - ls->load_update_last;
	ls->load_update_last = this_rq->clock;
I
Ingo Molnar 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2000 2001
}

I
Ingo Molnar 已提交
2002 2003
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2010
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2011 2012 2013
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2014
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2015 2016 2017 2018
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2019
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2027 2028
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2037
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2051
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2052 2053 2054 2055
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2056 2057 2058 2059 2060
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2061
	if (unlikely(!spin_trylock(&busiest->lock))) {
2062
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2077
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2078
{
2079
	struct migration_req req;
L
Linus Torvalds 已提交
2080
	unsigned long flags;
2081
	struct rq *rq;
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2092

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2098

L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2106 2107
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2108 2109 2110 2111
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2112
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2113
	put_cpu();
N
Nick Piggin 已提交
2114 2115
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2122 2123
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2124
{
2125
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2126
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2127
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2128 2129 2130 2131
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2132
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2138
static
2139
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2140
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2141
		     int *all_pinned)
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2151 2152 2153 2154
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2155 2156

	/*
I
Ingo Molnar 已提交
2157
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2158
	 */
I
Ingo Molnar 已提交
2159
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2165
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2166
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2167
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2168
		      int *all_pinned, unsigned long *load_moved,
2169
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2170
{
I
Ingo Molnar 已提交
2171 2172 2173
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2174

2175
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2176 2177
		goto out;

2178 2179
	pinned = 1;

L
Linus Torvalds 已提交
2180
	/*
I
Ingo Molnar 已提交
2181
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2182
	 */
I
Ingo Molnar 已提交
2183 2184 2185
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2186
		goto out;
2187 2188 2189 2190 2191
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2192 2193
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2194
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2195 2196 2197
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2198 2199
	}

I
Ingo Molnar 已提交
2200
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2201
	pulled++;
I
Ingo Molnar 已提交
2202
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2203

2204 2205 2206 2207 2208
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2209 2210
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2211 2212
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217 2218 2219 2220
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2221 2222 2223

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2224
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2225 2226 2227
	return pulled;
}

I
Ingo Molnar 已提交
2228
/*
P
Peter Williams 已提交
2229 2230 2231
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2232 2233 2234 2235
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2236
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2237 2238 2239 2240
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2241
	unsigned long total_load_moved = 0;
2242
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2243 2244

	do {
P
Peter Williams 已提交
2245 2246 2247
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2248
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2249
		class = class->next;
P
Peter Williams 已提交
2250
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2251

P
Peter Williams 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2266
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2267 2268 2269

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2270 2271
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2272 2273 2274
			return 1;

	return 0;
I
Ingo Molnar 已提交
2275 2276
}

L
Linus Torvalds 已提交
2277 2278
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2279 2280
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2281 2282 2283
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2284 2285
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2286 2287 2288
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2289
	unsigned long max_pull;
2290 2291
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2292
	int load_idx;
2293 2294 2295 2296 2297 2298
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2299 2300

	max_load = this_load = total_load = total_pwr = 0;
2301 2302
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2303
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2304
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2305
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2306 2307 2308
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2309 2310

	do {
2311
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2312 2313
		int local_group;
		int i;
2314
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2315
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2316 2317 2318

		local_group = cpu_isset(this_cpu, group->cpumask);

2319 2320 2321
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2322
		/* Tally up the load of all CPUs in the group */
2323
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2324 2325

		for_each_cpu_mask(i, group->cpumask) {
2326 2327 2328 2329 2330 2331
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2332

2333
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2334 2335
				*sd_idle = 0;

L
Linus Torvalds 已提交
2336
			/* Bias balancing toward cpus of our domain */
2337 2338 2339 2340 2341 2342
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2343
				load = target_load(i, load_idx);
2344
			} else
N
Nick Piggin 已提交
2345
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2346 2347

			avg_load += load;
2348
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2349
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2350 2351
		}

2352 2353 2354
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2355 2356
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2357
		 */
2358 2359
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2360 2361 2362 2363
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2364
		total_load += avg_load;
2365
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2366 2367

		/* Adjust by relative CPU power of the group */
2368 2369
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2370

2371
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2372

L
Linus Torvalds 已提交
2373 2374 2375
		if (local_group) {
			this_load = avg_load;
			this = group;
2376 2377 2378
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2379
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2380 2381
			max_load = avg_load;
			busiest = group;
2382 2383
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2384
		}
2385 2386 2387 2388 2389 2390

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2391 2392 2393
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2394 2395 2396 2397 2398 2399 2400 2401 2402

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2403
		/*
2404 2405
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2406 2407
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2408
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2409
			goto group_next;
2410

I
Ingo Molnar 已提交
2411
		/*
2412
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2413 2414 2415 2416 2417
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2418 2419
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2420 2421
			group_min = group;
			min_nr_running = sum_nr_running;
2422 2423
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2424
		}
2425

I
Ingo Molnar 已提交
2426
		/*
2427
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2439
		}
2440 2441
group_next:
#endif
L
Linus Torvalds 已提交
2442 2443 2444
		group = group->next;
	} while (group != sd->groups);

2445
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2446 2447 2448 2449 2450 2451 2452 2453
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2454
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2478 2479

	/* Don't want to pull so many tasks that a group would go idle */
2480
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2481

L
Linus Torvalds 已提交
2482
	/* How much load to actually move to equalise the imbalance */
2483 2484
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2485 2486
			/ SCHED_LOAD_SCALE;

2487 2488 2489 2490 2491 2492
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2493
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2494
		unsigned long tmp, pwr_now, pwr_move;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2506

I
Ingo Molnar 已提交
2507 2508
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2509
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2519 2520 2521 2522
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2523 2524 2525
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2526 2527
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2528
		if (max_load > tmp)
2529
			pwr_move += busiest->__cpu_power *
2530
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2531 2532

		/* Amount of load we'd add */
2533
		if (max_load * busiest->__cpu_power <
2534
				busiest_load_per_task * SCHED_LOAD_SCALE)
2535 2536
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2537
		else
2538 2539 2540 2541
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2548
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2549 2550 2551 2552 2553
	}

	return busiest;

out_balanced:
2554
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2555
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2556
		goto ret;
L
Linus Torvalds 已提交
2557

2558 2559 2560 2561 2562
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2563
ret:
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569 2570
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2571
static struct rq *
I
Ingo Molnar 已提交
2572
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2573
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2574
{
2575
	struct rq *busiest = NULL, *rq;
2576
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2577 2578 2579
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2580
		unsigned long wl;
2581 2582 2583 2584

		if (!cpu_isset(i, *cpus))
			continue;

2585
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2586
		wl = weighted_cpuload(i);
2587

I
Ingo Molnar 已提交
2588
		if (rq->nr_running == 1 && wl > imbalance)
2589
			continue;
L
Linus Torvalds 已提交
2590

I
Ingo Molnar 已提交
2591 2592
		if (wl > max_load) {
			max_load = wl;
2593
			busiest = rq;
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599
		}
	}

	return busiest;
}

2600 2601 2602 2603 2604 2605
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2606 2607 2608 2609
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2610
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2611
			struct sched_domain *sd, enum cpu_idle_type idle,
2612
			int *balance)
L
Linus Torvalds 已提交
2613
{
P
Peter Williams 已提交
2614
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2615 2616
	struct sched_group *group;
	unsigned long imbalance;
2617
	struct rq *busiest;
2618
	cpumask_t cpus = CPU_MASK_ALL;
2619
	unsigned long flags;
N
Nick Piggin 已提交
2620

2621 2622 2623
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2624
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2625
	 * portraying it as CPU_NOT_IDLE.
2626
	 */
I
Ingo Molnar 已提交
2627
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2628
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2629
		sd_idle = 1;
L
Linus Torvalds 已提交
2630 2631 2632

	schedstat_inc(sd, lb_cnt[idle]);

2633 2634
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2635 2636
				   &cpus, balance);

2637
	if (*balance == 0)
2638 2639
		goto out_balanced;

L
Linus Torvalds 已提交
2640 2641 2642 2643 2644
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2645
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2651
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2652 2653 2654

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2655
	ld_moved = 0;
L
Linus Torvalds 已提交
2656 2657 2658 2659
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2660
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2661 2662
		 * correctly treated as an imbalance.
		 */
2663
		local_irq_save(flags);
N
Nick Piggin 已提交
2664
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2665
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2666
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2667
		double_rq_unlock(this_rq, busiest);
2668
		local_irq_restore(flags);
2669

2670 2671 2672
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2673
		if (ld_moved && this_cpu != smp_processor_id())
2674 2675
			resched_cpu(this_cpu);

2676
		/* All tasks on this runqueue were pinned by CPU affinity */
2677 2678 2679 2680
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2681
			goto out_balanced;
2682
		}
L
Linus Torvalds 已提交
2683
	}
2684

P
Peter Williams 已提交
2685
	if (!ld_moved) {
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2691
			spin_lock_irqsave(&busiest->lock, flags);
2692 2693 2694 2695 2696

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2697
				spin_unlock_irqrestore(&busiest->lock, flags);
2698 2699 2700 2701
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2702 2703 2704
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2705
				active_balance = 1;
L
Linus Torvalds 已提交
2706
			}
2707
			spin_unlock_irqrestore(&busiest->lock, flags);
2708
			if (active_balance)
L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2715
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2716
		}
2717
	} else
L
Linus Torvalds 已提交
2718 2719
		sd->nr_balance_failed = 0;

2720
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2721 2722
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2723 2724 2725 2726 2727 2728 2729 2730 2731
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2732 2733
	}

P
Peter Williams 已提交
2734
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2735
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2736
		return -1;
P
Peter Williams 已提交
2737
	return ld_moved;
L
Linus Torvalds 已提交
2738 2739 2740 2741

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2742
	sd->nr_balance_failed = 0;
2743 2744

out_one_pinned:
L
Linus Torvalds 已提交
2745
	/* tune up the balancing interval */
2746 2747
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2748 2749
		sd->balance_interval *= 2;

2750
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2751
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2752
		return -1;
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2760
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2761 2762
 * this_rq is locked.
 */
2763
static int
2764
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2765 2766
{
	struct sched_group *group;
2767
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2768
	unsigned long imbalance;
P
Peter Williams 已提交
2769
	int ld_moved = 0;
N
Nick Piggin 已提交
2770
	int sd_idle = 0;
2771
	int all_pinned = 0;
2772
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2773

2774 2775 2776 2777
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2778
	 * portraying it as CPU_NOT_IDLE.
2779 2780 2781
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2782
		sd_idle = 1;
L
Linus Torvalds 已提交
2783

I
Ingo Molnar 已提交
2784
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2785
redo:
I
Ingo Molnar 已提交
2786
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2787
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2788
	if (!group) {
I
Ingo Molnar 已提交
2789
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2790
		goto out_balanced;
L
Linus Torvalds 已提交
2791 2792
	}

I
Ingo Molnar 已提交
2793
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2794
				&cpus);
N
Nick Piggin 已提交
2795
	if (!busiest) {
I
Ingo Molnar 已提交
2796
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2797
		goto out_balanced;
L
Linus Torvalds 已提交
2798 2799
	}

N
Nick Piggin 已提交
2800 2801
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2802
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2803

P
Peter Williams 已提交
2804
	ld_moved = 0;
2805 2806 2807
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2808 2809
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2810
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2811 2812
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2813
		spin_unlock(&busiest->lock);
2814

2815
		if (unlikely(all_pinned)) {
2816 2817 2818 2819
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2820 2821
	}

P
Peter Williams 已提交
2822
	if (!ld_moved) {
I
Ingo Molnar 已提交
2823
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2824 2825
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2826 2827
			return -1;
	} else
2828
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2829

P
Peter Williams 已提交
2830
	return ld_moved;
2831 2832

out_balanced:
I
Ingo Molnar 已提交
2833
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2834
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2835
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2836
		return -1;
2837
	sd->nr_balance_failed = 0;
2838

2839
	return 0;
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844 2845
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2846
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2847 2848
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2849 2850
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2851 2852

	for_each_domain(this_cpu, sd) {
2853 2854 2855 2856 2857 2858
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2859
			/* If we've pulled tasks over stop searching: */
2860
			pulled_task = load_balance_newidle(this_cpu,
2861 2862 2863 2864 2865 2866 2867
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2868
	}
I
Ingo Molnar 已提交
2869
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2870 2871 2872 2873 2874
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2875
	}
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2886
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2887
{
2888
	int target_cpu = busiest_rq->push_cpu;
2889 2890
	struct sched_domain *sd;
	struct rq *target_rq;
2891

2892
	/* Is there any task to move? */
2893 2894 2895 2896
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2897 2898

	/*
2899 2900 2901
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2902
	 */
2903
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2904

2905 2906
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2907 2908
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2909 2910

	/* Search for an sd spanning us and the target CPU. */
2911
	for_each_domain(target_cpu, sd) {
2912
		if ((sd->flags & SD_LOAD_BALANCE) &&
2913
		    cpu_isset(busiest_cpu, sd->span))
2914
				break;
2915
	}
2916

2917 2918
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2919

P
Peter Williams 已提交
2920 2921
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2922 2923 2924 2925
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2926
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936 2937
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2938
/*
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2949
 *
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3006 3007 3008 3009 3010
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3011
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3012
{
3013 3014
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3015 3016
	unsigned long interval;
	struct sched_domain *sd;
3017
	/* Earliest time when we have to do rebalance again */
3018
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3019

3020
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3021 3022 3023 3024
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3025
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030 3031
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3032 3033 3034
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3035

3036 3037 3038 3039 3040
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3041
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3042
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3043 3044
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3045 3046 3047
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3048
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3049
			}
3050
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3051
		}
3052 3053 3054
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3055 3056
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3057 3058 3059 3060 3061 3062 3063 3064

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3065
	}
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3076 3077 3078 3079
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3080

I
Ingo Molnar 已提交
3081
	rebalance_domains(this_cpu, idle);
3082 3083 3084 3085 3086 3087 3088

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3089 3090
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3091 3092 3093 3094
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3095
		cpu_clear(this_cpu, cpus);
3096 3097 3098 3099 3100 3101 3102 3103 3104
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3105
			rebalance_domains(balance_cpu, SCHED_IDLE);
3106 3107

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3108 3109
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3122
static inline void trigger_load_balance(struct rq *rq, int cpu)
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3174
}
I
Ingo Molnar 已提交
3175 3176 3177

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3178 3179 3180
/*
 * on UP we do not need to balance between CPUs:
 */
3181
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3182 3183
{
}
I
Ingo Molnar 已提交
3184 3185 3186 3187 3188 3189

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3190
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3191 3192 3193 3194 3195 3196
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3197 3198 3199 3200 3201 3202 3203
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3204 3205
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3206
 */
3207
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3208 3209
{
	unsigned long flags;
3210 3211
	u64 ns, delta_exec;
	struct rq *rq;
3212

3213 3214 3215
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3216 3217
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3218 3219 3220 3221
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3222

L
Linus Torvalds 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3287
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3310 3311 3312
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
3313
	__update_rq_clock(rq);
3314
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3315 3316 3317
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3318

3319
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3320 3321
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3322
#endif
L
Linus Torvalds 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3332 3333
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3334 3335 3336 3337
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3338 3339
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345 3346 3347
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3348 3349
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3350 3351 3352
	/*
	 * Is the spinlock portion underflowing?
	 */
3353 3354 3355 3356
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3357 3358 3359 3360 3361 3362 3363
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3364
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3365
 */
I
Ingo Molnar 已提交
3366
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3367
{
I
Ingo Molnar 已提交
3368 3369 3370 3371 3372 3373 3374
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3375

I
Ingo Molnar 已提交
3376 3377 3378 3379 3380
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3386 3387 3388
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3389 3390
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3391 3392 3393 3394 3395 3396 3397
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3398
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3399 3400 3401
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3402 3403

	/*
I
Ingo Molnar 已提交
3404 3405
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3406
	 */
I
Ingo Molnar 已提交
3407
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3408
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3409 3410
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3411 3412
	}

I
Ingo Molnar 已提交
3413 3414
	class = sched_class_highest;
	for ( ; ; ) {
3415
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3425

I
Ingo Molnar 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3448 3449

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3450
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3451
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3452 3453 3454

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3455
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3456
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3457
		} else {
3458
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3459
		}
I
Ingo Molnar 已提交
3460
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3461 3462
	}

I
Ingo Molnar 已提交
3463
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3464 3465
		idle_balance(cpu, rq);

3466
	prev->sched_class->put_prev_task(rq, prev);
3467
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3468 3469

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3470

L
Linus Torvalds 已提交
3471 3472 3473 3474 3475
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3476
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3477 3478 3479
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3480 3481 3482
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3483
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3484
	}
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490 3491 3492
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3493
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3508
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3536
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3548
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3578 3579
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3580
{
3581
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3600 3601 3602
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3603
		if (curr->func(curr, mode, sync, key) &&
3604
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3614
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3615 3616
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3617
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3636
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3648 3649
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3693

L
Linus Torvalds 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3812 3813 3814 3815 3816
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3817
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3818
}
L
Linus Torvalds 已提交
3819

I
Ingo Molnar 已提交
3820 3821 3822 3823 3824 3825 3826
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3827

I
Ingo Molnar 已提交
3828
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3829
{
I
Ingo Molnar 已提交
3830 3831 3832 3833
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3834 3835 3836

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3837
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3838
	schedule();
I
Ingo Molnar 已提交
3839
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3840 3841 3842
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3843
long __sched
I
Ingo Molnar 已提交
3844
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3845
{
I
Ingo Molnar 已提交
3846 3847 3848 3849
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3850 3851 3852

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3853
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3854
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3855
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3861
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3862
{
I
Ingo Molnar 已提交
3863 3864 3865 3866
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3867 3868 3869

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3870
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3871
	schedule();
I
Ingo Molnar 已提交
3872
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3873 3874 3875
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3876
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3877
{
I
Ingo Molnar 已提交
3878 3879 3880 3881
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3882 3883 3884

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3885
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3886
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3887
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3905
void rt_mutex_setprio(struct task_struct *p, int prio)
3906 3907
{
	unsigned long flags;
I
Ingo Molnar 已提交
3908
	int oldprio, on_rq;
3909
	struct rq *rq;
3910 3911 3912 3913

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3914
	update_rq_clock(rq);
3915

3916
	oldprio = p->prio;
I
Ingo Molnar 已提交
3917 3918
	on_rq = p->se.on_rq;
	if (on_rq)
3919
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3920 3921 3922 3923 3924 3925

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3926 3927
	p->prio = prio;

I
Ingo Molnar 已提交
3928
	if (on_rq) {
3929
		enqueue_task(rq, p, 0);
3930 3931
		/*
		 * Reschedule if we are currently running on this runqueue and
3932 3933
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3934
		 */
3935 3936 3937
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3938 3939 3940
		} else {
			check_preempt_curr(rq, p);
		}
3941 3942 3943 3944 3945 3946
	}
	task_rq_unlock(rq, &flags);
}

#endif

3947
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3948
{
I
Ingo Molnar 已提交
3949
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3950
	unsigned long flags;
3951
	struct rq *rq;
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956 3957 3958 3959

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3960
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3961 3962 3963 3964
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3965
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3966
	 */
3967
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3968 3969 3970
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3971 3972
	on_rq = p->se.on_rq;
	if (on_rq) {
3973
		dequeue_task(rq, p, 0);
3974
		dec_load(rq, p);
3975
	}
L
Linus Torvalds 已提交
3976 3977

	p->static_prio = NICE_TO_PRIO(nice);
3978
	set_load_weight(p);
3979 3980 3981
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3982

I
Ingo Molnar 已提交
3983
	if (on_rq) {
3984
		enqueue_task(rq, p, 0);
3985
		inc_load(rq, p);
L
Linus Torvalds 已提交
3986
		/*
3987 3988
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3989
		 */
3990
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996 3997
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3998 3999 4000 4001 4002
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4003
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4004
{
4005 4006
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4007

M
Matt Mackall 已提交
4008 4009 4010 4011
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4023
	long nice, retval;
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4030 4031
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4041 4042 4043
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4062
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4071
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4090
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096 4097 4098
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4099
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4105 4106
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4107
{
I
Ingo Molnar 已提交
4108
	BUG_ON(p->se.on_rq);
4109

L
Linus Torvalds 已提交
4110
	p->policy = policy;
I
Ingo Molnar 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4123
	p->rt_priority = prio;
4124 4125 4126
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4127
	set_load_weight(p);
L
Linus Torvalds 已提交
4128 4129 4130
}

/**
4131
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4132 4133 4134
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4135
 *
4136
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4137
 */
I
Ingo Molnar 已提交
4138 4139
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4140
{
I
Ingo Molnar 已提交
4141
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4142
	unsigned long flags;
4143
	struct rq *rq;
L
Linus Torvalds 已提交
4144

4145 4146
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4152 4153
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4154
		return -EINVAL;
L
Linus Torvalds 已提交
4155 4156
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4157 4158
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4159 4160
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4161
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4162
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4163
		return -EINVAL;
4164
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4165 4166
		return -EINVAL;

4167 4168 4169 4170
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4171
		if (rt_policy(policy)) {
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4188 4189 4190 4191 4192 4193
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4194

4195 4196 4197 4198 4199
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4200 4201 4202 4203

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4204 4205 4206 4207 4208
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4209 4210 4211 4212
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4213
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4214 4215 4216
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4217 4218
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4219 4220
		goto recheck;
	}
I
Ingo Molnar 已提交
4221
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4222
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4223
	if (on_rq)
4224
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4225
	oldprio = p->prio;
I
Ingo Molnar 已提交
4226 4227 4228
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4229 4230
		/*
		 * Reschedule if we are currently running on this runqueue and
4231 4232
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4233
		 */
4234 4235 4236
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4237 4238 4239
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4240
	}
4241 4242 4243
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4244 4245
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4246 4247 4248 4249
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4250 4251
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4252 4253 4254
{
	struct sched_param lparam;
	struct task_struct *p;
4255
	int retval;
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4261 4262 4263

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4264
	p = find_process_by_pid(pid);
4265 4266 4267
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4268

L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4281 4282 4283 4284
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4304
	struct task_struct *p;
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4332
	struct task_struct *p;
L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4367 4368
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4369

4370
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4376
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4393 4394 4395 4396
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4403
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4444
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4445 4446 4447
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4448
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4449 4450
EXPORT_SYMBOL(cpu_online_map);

4451
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4452
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4453 4454 4455 4456
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4457
	struct task_struct *p;
L
Linus Torvalds 已提交
4458 4459
	int retval;

4460
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4461 4462 4463 4464 4465 4466 4467
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4468 4469 4470 4471
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4472
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4473 4474 4475

out_unlock:
	read_unlock(&tasklist_lock);
4476
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4477

4478
	return retval;
L
Linus Torvalds 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4509 4510
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4511 4512 4513
 */
asmlinkage long sys_sched_yield(void)
{
4514
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4515 4516

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4517
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4518
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4519 4520
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4521 4522 4523 4524 4525 4526

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4527
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4528 4529 4530 4531 4532 4533 4534 4535
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4536
static void __cond_resched(void)
L
Linus Torvalds 已提交
4537
{
4538 4539 4540
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4541 4542 4543 4544 4545
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4555 4556
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4572
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4573
{
J
Jan Kara 已提交
4574 4575
	int ret = 0;

L
Linus Torvalds 已提交
4576 4577 4578
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4579
		ret = 1;
L
Linus Torvalds 已提交
4580 4581
		spin_lock(lock);
	}
4582
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4583
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4584 4585 4586
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4587
		ret = 1;
L
Linus Torvalds 已提交
4588 4589
		spin_lock(lock);
	}
J
Jan Kara 已提交
4590
	return ret;
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4598
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4599
		local_bh_enable();
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4611
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4630
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4631

4632
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4633 4634 4635
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4636
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4637 4638 4639 4640 4641
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4642
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4643 4644
	long ret;

4645
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4646 4647 4648
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4649
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4670
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4671
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4695
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4696
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4713
	struct task_struct *p;
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4730
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4731
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4741
static const char stat_nam[] = "RSDTtZX";
4742 4743

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4744 4745
{
	unsigned long free = 0;
4746
	unsigned state;
L
Linus Torvalds 已提交
4747 4748

	state = p->state ? __ffs(p->state) + 1 : 0;
4749 4750
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4751
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4752
	if (state == TASK_RUNNING)
4753
		printk(" running  ");
L
Linus Torvalds 已提交
4754
	else
4755
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4756 4757
#else
	if (state == TASK_RUNNING)
4758
		printk("  running task    ");
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4764
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4765 4766
		while (!*n)
			n++;
4767
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4768 4769
	}
#endif
4770
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4771 4772 4773 4774 4775

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4776
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4777
{
4778
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4779

4780 4781 4782
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4783
#else
4784 4785
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4786 4787 4788 4789 4790 4791 4792 4793
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4794
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4795
			show_task(p);
L
Linus Torvalds 已提交
4796 4797
	} while_each_thread(g, p);

4798 4799
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4800 4801 4802
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4803
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4804 4805 4806 4807 4808
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4809 4810
}

I
Ingo Molnar 已提交
4811 4812
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4813
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4814 4815
}

4816 4817 4818 4819 4820 4821 4822 4823
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4824
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4825
{
4826
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4827 4828
	unsigned long flags;

I
Ingo Molnar 已提交
4829 4830 4831
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4832
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4833
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4834
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4835 4836 4837

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4838 4839 4840
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4841 4842 4843 4844
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4845
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4846
#else
A
Al Viro 已提交
4847
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4848
#endif
I
Ingo Molnar 已提交
4849 4850 4851 4852
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4876
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4886 4887 4888 4889
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4890
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4912
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4913
{
4914
	struct migration_req req;
L
Linus Torvalds 已提交
4915
	unsigned long flags;
4916
	struct rq *rq;
4917
	int ret = 0;
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4940

L
Linus Torvalds 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4953 4954
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4955
 */
4956
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4957
{
4958
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4959
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4960 4961

	if (unlikely(cpu_is_offline(dest_cpu)))
4962
		return ret;
L
Linus Torvalds 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4975
	on_rq = p->se.on_rq;
4976
	if (on_rq)
4977
		deactivate_task(rq_src, p, 0);
4978

L
Linus Torvalds 已提交
4979
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4980 4981 4982
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4983
	}
4984
	ret = 1;
L
Linus Torvalds 已提交
4985 4986
out:
	double_rq_unlock(rq_src, rq_dest);
4987
	return ret;
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4995
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4996 4997
{
	int cpu = (long)data;
4998
	struct rq *rq;
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5005
		struct migration_req *req;
L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5028
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5029 5030
		list_del_init(head->next);

N
Nick Piggin 已提交
5031 5032 5033
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5052 5053 5054 5055
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5056
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5057
{
5058
	unsigned long flags;
L
Linus Torvalds 已提交
5059
	cpumask_t mask;
5060 5061
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5062

5063
restart:
L
Linus Torvalds 已提交
5064 5065
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5066
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5067 5068 5069 5070
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5071
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5072 5073 5074

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5075 5076 5077
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5078
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5085
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5086 5087
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5088
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5089
	}
5090
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5091
		goto restart;
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5101
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5102
{
5103
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5117
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5118 5119 5120

	write_lock_irq(&tasklist_lock);

5121 5122
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5123 5124
			continue;

5125 5126 5127
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5128 5129 5130 5131

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5132 5133
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5134
 * It does so by boosting its priority to highest possible and adding it to
5135
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5136 5137 5138
 */
void sched_idle_next(void)
{
5139
	int this_cpu = smp_processor_id();
5140
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5141 5142 5143 5144
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5145
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5146

5147 5148 5149
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5150 5151 5152
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5153
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5154 5155

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5156
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5157 5158 5159 5160

	spin_unlock_irqrestore(&rq->lock, flags);
}

5161 5162
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5176
/* called under rq->lock with disabled interrupts */
5177
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5178
{
5179
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5180 5181

	/* Must be exiting, otherwise would be on tasklist. */
5182
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5183 5184

	/* Cannot have done final schedule yet: would have vanished. */
5185
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5186

5187
	get_task_struct(p);
L
Linus Torvalds 已提交
5188 5189 5190 5191 5192

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5193
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5194
	 */
5195
	spin_unlock(&rq->lock);
5196
	move_task_off_dead_cpu(dead_cpu, p);
5197
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5198

5199
	put_task_struct(p);
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5205
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5206
	struct task_struct *next;
5207

I
Ingo Molnar 已提交
5208 5209 5210
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5211
		update_rq_clock(rq);
5212
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5213 5214 5215
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5216

L
Linus Torvalds 已提交
5217 5218 5219 5220
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5221 5222 5223
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5224 5225 5226 5227
	{
		.procname	= "sched_domain",
		.mode		= 0755,
	},
5228 5229 5230 5231
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5232 5233 5234 5235 5236
	{
		.procname	= "kernel",
		.mode		= 0755,
		.child		= sd_ctl_dir,
	},
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5252
set_table_entry(struct ctl_table *entry,
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5268
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5269
		sizeof(long), 0644, proc_doulongvec_minmax);
5270
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5271
		sizeof(long), 0644, proc_doulongvec_minmax);
5272
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5273
		sizeof(int), 0644, proc_dointvec_minmax);
5274
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5275
		sizeof(int), 0644, proc_dointvec_minmax);
5276
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5277
		sizeof(int), 0644, proc_dointvec_minmax);
5278
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5279
		sizeof(int), 0644, proc_dointvec_minmax);
5280
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5281
		sizeof(int), 0644, proc_dointvec_minmax);
5282
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5283
		sizeof(int), 0644, proc_dointvec_minmax);
5284
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5285
		sizeof(int), 0644, proc_dointvec_minmax);
5286
	set_table_entry(&table[10], "cache_nice_tries",
5287 5288
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5289
	set_table_entry(&table[12], "flags", &sd->flags,
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5341 5342 5343 5344
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5345 5346
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5347 5348
{
	struct task_struct *p;
5349
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5350
	unsigned long flags;
5351
	struct rq *rq;
L
Linus Torvalds 已提交
5352 5353

	switch (action) {
5354 5355 5356 5357
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5358
	case CPU_UP_PREPARE:
5359
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5360
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5361 5362 5363 5364 5365
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5366
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5367 5368 5369
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5370

L
Linus Torvalds 已提交
5371
	case CPU_ONLINE:
5372
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5373 5374 5375
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5376

L
Linus Torvalds 已提交
5377 5378
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5379
	case CPU_UP_CANCELED_FROZEN:
5380 5381
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5382
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5383 5384
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5385 5386 5387
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5388

L
Linus Torvalds 已提交
5389
	case CPU_DEAD:
5390
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5397
		update_rq_clock(rq);
5398
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5399
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5400 5401
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5402 5403 5404 5405 5406 5407
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5408
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5409 5410 5411
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5412 5413
			struct migration_req *req;

L
Linus Torvalds 已提交
5414
			req = list_entry(rq->migration_queue.next,
5415
					 struct migration_req, list);
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5422 5423 5424
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5432
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438 5439
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5440
	int err;
5441 5442

	/* Start one for the boot CPU: */
5443 5444
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5445 5446
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5447

L
Linus Torvalds 已提交
5448 5449 5450 5451 5452
	return 0;
}
#endif

#ifdef CONFIG_SMP
5453 5454 5455 5456 5457

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5458
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5464 5465 5466 5467 5468
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5488 5489
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5496 5497
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5498
		if (!cpu_isset(cpu, group->cpumask))
5499 5500
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5513
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5514
				printk("\n");
5515 5516
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5539 5540
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5541 5542 5543

		level++;
		sd = sd->parent;
5544 5545
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5546

5547 5548 5549
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5550 5551 5552 5553

	} while (sd);
}
#else
5554
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5555 5556
#endif

5557
static int sd_degenerate(struct sched_domain *sd)
5558 5559 5560 5561 5562 5563 5564 5565
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5566 5567 5568
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5582 5583
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5602 5603 5604
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5605 5606 5607 5608 5609 5610 5611
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5612 5613 5614 5615
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5616
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5617
{
5618
	struct rq *rq = cpu_rq(cpu);
5619 5620 5621 5622 5623 5624 5625
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5626
		if (sd_parent_degenerate(tmp, parent)) {
5627
			tmp->parent = parent->parent;
5628 5629 5630
			if (parent->parent)
				parent->parent->child = tmp;
		}
5631 5632
	}

5633
	if (sd && sd_degenerate(sd)) {
5634
		sd = sd->parent;
5635 5636 5637
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5638 5639 5640

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5641
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5642 5643 5644
}

/* cpus with isolated domains */
5645
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5663 5664 5665 5666
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5672
static void
5673 5674 5675
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5676 5677 5678 5679 5680 5681
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5682 5683
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5684 5685 5686 5687 5688 5689
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5690
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5691 5692

		for_each_cpu_mask(j, span) {
5693
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5708
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5709

5710
#ifdef CONFIG_NUMA
5711

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5764 5765
	cpumask_t span, nodemask;
	int i;
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5776

5777 5778 5779 5780 5781 5782 5783 5784
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5785
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5786

5787
/*
5788
 * SMT sched-domains:
5789
 */
L
Linus Torvalds 已提交
5790 5791
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5792
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5793

5794 5795
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5796
{
5797 5798
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5799 5800 5801 5802
	return cpu;
}
#endif

5803 5804 5805
/*
 * multi-core sched-domains:
 */
5806 5807
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5808
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5809 5810 5811
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5812 5813
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5814
{
5815
	int group;
5816 5817
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5818 5819 5820 5821
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5822 5823
}
#elif defined(CONFIG_SCHED_MC)
5824 5825
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5826
{
5827 5828
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5829 5830 5831 5832
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5833
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5834
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5835

5836 5837
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5838
{
5839
	int group;
5840
#ifdef CONFIG_SCHED_MC
5841
	cpumask_t mask = cpu_coregroup_map(cpu);
5842
	cpus_and(mask, mask, *cpu_map);
5843
	group = first_cpu(mask);
5844
#elif defined(CONFIG_SCHED_SMT)
5845 5846
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5847
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5848
#else
5849
	group = cpu;
L
Linus Torvalds 已提交
5850
#endif
5851 5852 5853
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5854 5855 5856 5857
}

#ifdef CONFIG_NUMA
/*
5858 5859 5860
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5861
 */
5862
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5863
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5864

5865
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5866
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5867

5868 5869
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5870
{
5871 5872 5873 5874 5875 5876 5877 5878 5879
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5880
}
5881

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5902
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5903 5904 5905 5906 5907
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5908 5909
#endif

5910
#ifdef CONFIG_NUMA
5911 5912 5913
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5914
	int cpu, i;
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5945 5946 5947 5948 5949
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5950

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5977 5978
	sd->groups->__cpu_power = 0;

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5989
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5990 5991 5992 5993 5994 5995 5996 5997
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5998
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5999 6000 6001 6002
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6003
/*
6004 6005
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6006
 */
6007
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6008 6009
{
	int i;
6010 6011
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6012
	int sd_allnodes = 0;
6013 6014 6015 6016

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6017
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6018
					   GFP_KERNEL);
6019 6020
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6021
		return -ENOMEM;
6022 6023 6024
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6025 6026

	/*
6027
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6028
	 */
6029
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6030 6031 6032
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6033
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6034 6035

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6036 6037
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6038 6039 6040
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6041
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6042
			p = sd;
6043
			sd_allnodes = 1;
6044 6045 6046
		} else
			p = NULL;

L
Linus Torvalds 已提交
6047 6048
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6049 6050
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6051 6052
		if (p)
			p->child = sd;
6053
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058 6059 6060
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6061 6062
		if (p)
			p->child = sd;
6063
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6064

6065 6066 6067 6068 6069 6070 6071
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6072
		p->child = sd;
6073
		cpu_to_core_group(i, cpu_map, &sd->groups);
6074 6075
#endif

L
Linus Torvalds 已提交
6076 6077 6078 6079 6080
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6081
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6082
		sd->parent = p;
6083
		p->child = sd;
6084
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6085 6086 6087 6088 6089
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6090
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6091
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6092
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6093 6094 6095
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6096 6097
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6098 6099 6100
	}
#endif

6101 6102 6103 6104 6105 6106 6107
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6108 6109
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6110 6111 6112
	}
#endif

L
Linus Torvalds 已提交
6113 6114 6115 6116
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6117
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6118 6119 6120
		if (cpus_empty(nodemask))
			continue;

6121
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6122 6123 6124 6125
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6126
	if (sd_allnodes)
I
Ingo Molnar 已提交
6127 6128
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6139 6140
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6141
			continue;
6142
		}
6143 6144 6145 6146

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6147
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6148 6149 6150 6151 6152
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6153 6154 6155
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6156

6157 6158 6159
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6160
		sg->__cpu_power = 0;
6161
		sg->cpumask = nodemask;
6162
		sg->next = sg;
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6181 6182
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6183 6184 6185
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6186
				goto error;
6187
			}
6188
			sg->__cpu_power = 0;
6189
			sg->cpumask = tmp;
6190
			sg->next = prev->next;
6191 6192 6193 6194 6195
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6196 6197 6198
#endif

	/* Calculate CPU power for physical packages and nodes */
6199
#ifdef CONFIG_SCHED_SMT
6200
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6201 6202
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6203
		init_sched_groups_power(i, sd);
6204
	}
L
Linus Torvalds 已提交
6205
#endif
6206
#ifdef CONFIG_SCHED_MC
6207
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6208 6209
		struct sched_domain *sd = &per_cpu(core_domains, i);

6210
		init_sched_groups_power(i, sd);
6211 6212
	}
#endif
6213

6214
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6215 6216
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6217
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6218 6219
	}

6220
#ifdef CONFIG_NUMA
6221 6222
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6223

6224 6225
	if (sd_allnodes) {
		struct sched_group *sg;
6226

6227
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6228 6229
		init_numa_sched_groups_power(sg);
	}
6230 6231
#endif

L
Linus Torvalds 已提交
6232
	/* Attach the domains */
6233
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6234 6235 6236
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6237 6238
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6239 6240 6241 6242 6243
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6244 6245 6246

	return 0;

6247
#ifdef CONFIG_NUMA
6248 6249 6250
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6251
#endif
L
Linus Torvalds 已提交
6252
}
6253 6254 6255
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6256
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6257 6258
{
	cpumask_t cpu_default_map;
6259
	int err;
L
Linus Torvalds 已提交
6260

6261 6262 6263 6264 6265 6266 6267
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6268 6269 6270
	err = build_sched_domains(&cpu_default_map);

	return err;
6271 6272 6273
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6274
{
6275
	free_sched_groups(cpu_map);
6276
}
L
Linus Torvalds 已提交
6277

6278 6279 6280 6281
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6282
static void detach_destroy_domains(const cpumask_t *cpu_map)
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6300
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6301 6302
{
	cpumask_t change_map;
6303
	int err = 0;
6304 6305 6306 6307 6308 6309 6310 6311

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6312 6313 6314 6315 6316
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6317 6318
}

6319 6320 6321 6322 6323
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6324
	mutex_lock(&sched_hotcpu_mutex);
6325 6326
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6327
	mutex_unlock(&sched_hotcpu_mutex);
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6352

6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6372 6373
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6386 6387
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6388 6389 6390 6391 6392 6393 6394
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6395 6396 6397
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6398
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6399 6400 6401 6402 6403 6404 6405
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6406
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6407
	case CPU_DOWN_PREPARE:
6408
	case CPU_DOWN_PREPARE_FROZEN:
6409
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6410 6411 6412
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6413
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6414
	case CPU_DOWN_FAILED:
6415
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6416
	case CPU_ONLINE:
6417
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6418
	case CPU_DEAD:
6419
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6429
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6430 6431 6432 6433 6434 6435

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6436 6437
	cpumask_t non_isolated_cpus;

6438
	mutex_lock(&sched_hotcpu_mutex);
6439
	arch_init_sched_domains(&cpu_online_map);
6440
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6441 6442
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6443
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6444 6445
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6446

6447 6448
	init_sched_domain_sysctl();

6449 6450 6451
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6452
	sched_init_granularity();
L
Linus Torvalds 已提交
6453 6454 6455 6456
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6457
	sched_init_granularity();
L
Linus Torvalds 已提交
6458 6459 6460 6461 6462 6463 6464
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6465

L
Linus Torvalds 已提交
6466 6467 6468 6469 6470
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6480 6481
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6482
	u64 now = sched_clock();
6483
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6484 6485 6486 6487 6488 6489 6490 6491
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6492

6493
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6494
		struct rt_prio_array *array;
6495
		struct rq *rq;
L
Linus Torvalds 已提交
6496 6497 6498

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6499
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6500
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6501 6502 6503 6504 6505 6506 6507 6508
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6509

I
Ingo Molnar 已提交
6510 6511
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6512
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6513
		rq->sd = NULL;
L
Linus Torvalds 已提交
6514
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6515
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6516
		rq->push_cpu = 0;
6517
		rq->cpu = i;
L
Linus Torvalds 已提交
6518 6519 6520 6521 6522
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6523 6524 6525 6526
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6527
		}
6528
		highest_cpu = i;
I
Ingo Molnar 已提交
6529 6530
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6531 6532
	}

6533
	set_load_weight(&init_task);
6534

6535 6536 6537 6538
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6539
#ifdef CONFIG_SMP
6540
	nr_cpu_ids = highest_cpu + 1;
6541 6542 6543
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6544 6545 6546 6547
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6561 6562 6563 6564
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6565 6566 6567 6568 6569
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6570
#ifdef in_atomic
L
Linus Torvalds 已提交
6571 6572 6573 6574 6575 6576 6577
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6578
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6579 6580 6581
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6582
		debug_show_held_locks(current);
6583 6584
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6595
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6596
	unsigned long flags;
6597
	struct rq *rq;
I
Ingo Molnar 已提交
6598
	int on_rq;
L
Linus Torvalds 已提交
6599 6600

	read_lock_irq(&tasklist_lock);
6601
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6602 6603
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6604
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6605
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6606 6607
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6608 6609 6610
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6611
#endif
I
Ingo Molnar 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6622
			continue;
I
Ingo Molnar 已提交
6623
		}
L
Linus Torvalds 已提交
6624

6625 6626
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6627 6628 6629 6630 6631 6632 6633
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6634

I
Ingo Molnar 已提交
6635
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6636
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6637 6638
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6639 6640
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6641
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6642 6643
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6644 6645 6646
#ifdef CONFIG_SMP
 out_unlock:
#endif
6647 6648
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6649 6650
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6651 6652 6653 6654
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6673
struct task_struct *curr_task(int cpu)
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6693
void set_curr_task(int cpu, struct task_struct *p)
6694 6695 6696 6697 6698
{
	cpu_curr(cpu) = p;
}

#endif