vmscan.c 111.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
91 92 93 94 95 96 97 98
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

99 100 101
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

102 103 104 105 106 107 108 109 110 111
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
146 147 148 149 150
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
151 152 153 154

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
155
#ifdef CONFIG_MEMCG
156 157
static bool global_reclaim(struct scan_control *sc)
{
158
	return !sc->target_mem_cgroup;
159
}
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
181
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
182 183 184 185
		return true;
#endif
	return false;
}
186
#else
187 188 189 190
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
191 192 193 194 195

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
196 197
#endif

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
216 217 218 219 220 221 222
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
223 224

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
225 226 227
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
228 229 230 231

	return nr;
}

M
Mel Gorman 已提交
232
bool pgdat_reclaimable(struct pglist_data *pgdat)
233
{
M
Mel Gorman 已提交
234 235
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
236 237
}

238 239 240 241 242 243 244
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245
{
246 247 248
	unsigned long lru_size;
	int zid;

249
	if (!mem_cgroup_disabled())
250 251 252
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253

254 255 256
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
257

258 259 260 261 262 263 264 265 266 267 268 269
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
270 271 272

}

L
Linus Torvalds 已提交
273
/*
G
Glauber Costa 已提交
274
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
275
 */
G
Glauber Costa 已提交
276
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
277
{
G
Glauber Costa 已提交
278 279 280 281 282 283 284 285 286
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

287 288 289
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
290
	return 0;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
293 294 295 296

/*
 * Remove one
 */
297
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
298 299 300 301
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
302
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
303
}
304
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
305 306

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
307

308 309 310 311
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
312 313 314 315
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
316
	long freeable;
G
Glauber Costa 已提交
317 318 319 320 321
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
322
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
323

324 325
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
326 327 328 329 330 331 332 333 334 335
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
336
	delta = (4 * nr_scanned) / shrinker->seeks;
337
	delta *= freeable;
338
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
339 340
	total_scan += delta;
	if (total_scan < 0) {
341
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
342
		       shrinker->scan_objects, total_scan);
343
		total_scan = freeable;
344 345 346
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
347 348 349 350 351 352 353

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
354
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
355 356 357 358 359
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
360 361
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
362 363 364 365 366 367

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
368 369
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
370 371

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 373
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
374

375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
386
	 * than the total number of objects on slab (freeable), we must be
387 388 389 390
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
391
	       total_scan >= freeable) {
D
Dave Chinner 已提交
392
		unsigned long ret;
393
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
394

395
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
396 397 398 399
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
400

401 402
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
403
		scanned += nr_to_scan;
G
Glauber Costa 已提交
404 405 406 407

		cond_resched();
	}

408 409 410 411
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
412 413 414 415 416
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
417 418
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
419 420 421 422
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

423
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
424
	return freed;
425 426
}

427
/**
428
 * shrink_slab - shrink slab caches
429 430
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
431
 * @memcg: memory cgroup whose slab caches to target
432 433
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
434
 *
435
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
436
 *
437 438
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
439
 *
440 441
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 443
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
444
 *
445 446 447 448 449 450 451
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
452
 *
453
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
454
 */
455 456 457 458
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
459 460
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
461
	unsigned long freed = 0;
L
Linus Torvalds 已提交
462

463
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 465
		return 0;

466 467
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
468

469
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
470 471 472 473 474 475 476
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
477 478
		goto out;
	}
L
Linus Torvalds 已提交
479 480

	list_for_each_entry(shrinker, &shrinker_list, list) {
481 482 483
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
484
			.memcg = memcg,
485
		};
486

487 488 489 490 491 492 493
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 495
			continue;

496 497
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
498

499
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
500
	}
501

L
Linus Torvalds 已提交
502
	up_read(&shrinker_rwsem);
503 504
out:
	cond_resched();
D
Dave Chinner 已提交
505
	return freed;
L
Linus Torvalds 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
531 532
static inline int is_page_cache_freeable(struct page *page)
{
533 534 535 536 537
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
538
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
539 540
}

541
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
542
{
543
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
544
		return 1;
545
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
546
		return 1;
547
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
567
	lock_page(page);
568 569
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
570 571 572
	unlock_page(page);
}

573 574 575 576 577 578 579 580 581 582 583 584
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
585
/*
A
Andrew Morton 已提交
586 587
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
588
 */
589
static pageout_t pageout(struct page *page, struct address_space *mapping,
590
			 struct scan_control *sc)
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
599
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
615
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
616 617
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
618
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
626
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
627 628 629 630 631 632 633
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
634 635
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
636 637 638 639 640 641 642
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
643
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
644 645 646
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
647

L
Linus Torvalds 已提交
648 649 650 651
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
652
		trace_mm_vmscan_writepage(page);
653
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
654 655 656 657 658 659
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

660
/*
N
Nick Piggin 已提交
661 662
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
663
 */
664 665
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
666
{
667 668
	unsigned long flags;

669 670
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
671

672
	spin_lock_irqsave(&mapping->tree_lock, flags);
673
	/*
N
Nick Piggin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
694 695 696
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
697
	 */
698
	if (!page_ref_freeze(page, 2))
699
		goto cannot_free;
N
Nick Piggin 已提交
700 701
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
702
		page_ref_unfreeze(page, 2);
703
		goto cannot_free;
N
Nick Piggin 已提交
704
	}
705 706 707

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
708
		mem_cgroup_swapout(page, swap);
709
		__delete_from_swap_cache(page);
710
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711
		swapcache_free(swap);
N
Nick Piggin 已提交
712
	} else {
713
		void (*freepage)(struct page *);
714
		void *shadow = NULL;
715 716

		freepage = mapping->a_ops->freepage;
717 718 719 720 721 722 723 724 725
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
726 727 728 729 730 731
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
732 733
		 */
		if (reclaimed && page_is_file_cache(page) &&
734
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
736
		__delete_from_page_cache(page, shadow);
737
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 739 740

		if (freepage != NULL)
			freepage(page);
741 742 743 744 745
	}

	return 1;

cannot_free:
746
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 748 749
	return 0;
}

N
Nick Piggin 已提交
750 751 752 753 754 755 756 757
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
758
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
759 760 761 762 763
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
764
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
765 766 767 768 769
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779 780
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
781
	bool is_unevictable;
782
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
783

784
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
785 786 787 788

redo:
	ClearPageUnevictable(page);

789
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
790 791 792 793 794 795
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
796
		is_unevictable = false;
797
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
798 799 800 801 802
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
803
		is_unevictable = true;
L
Lee Schermerhorn 已提交
804
		add_page_to_unevictable_list(page);
805
		/*
806 807 808
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
809
		 * isolation/check_move_unevictable_pages,
810
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 812
		 * the page back to the evictable list.
		 *
813
		 * The other side is TestClearPageMlocked() or shmem_lock().
814 815
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
816 817 818 819 820 821 822
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
823
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
824 825 826 827 828 829 830 831 832 833
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

834
	if (was_unevictable && !is_unevictable)
835
		count_vm_event(UNEVICTABLE_PGRESCUED);
836
	else if (!was_unevictable && is_unevictable)
837 838
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
839 840 841
	put_page(page);		/* drop ref from isolate */
}

842 843 844
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
845
	PAGEREF_KEEP,
846 847 848 849 850 851
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
852
	int referenced_ptes, referenced_page;
853 854
	unsigned long vm_flags;

855 856
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
857
	referenced_page = TestClearPageReferenced(page);
858 859 860 861 862 863 864 865

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

866
	if (referenced_ptes) {
867
		if (PageSwapBacked(page))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

885
		if (referenced_page || referenced_ptes > 1)
886 887
			return PAGEREF_ACTIVATE;

888 889 890 891 892 893
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

894 895
		return PAGEREF_KEEP;
	}
896 897

	/* Reclaim if clean, defer dirty pages to writeback */
898
	if (referenced_page && !PageSwapBacked(page))
899 900 901
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
902 903
}

904 905 906 907
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
908 909
	struct address_space *mapping;

910 911 912 913 914 915 916 917 918 919 920 921 922
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
923 924 925 926 927 928 929 930

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
931 932
}

933 934 935 936 937 938
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
939 940 941
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
942 943
};

L
Linus Torvalds 已提交
944
/*
A
Andrew Morton 已提交
945
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
946
 */
A
Andrew Morton 已提交
947
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
948
				      struct pglist_data *pgdat,
949
				      struct scan_control *sc,
950
				      enum ttu_flags ttu_flags,
951
				      struct reclaim_stat *stat,
952
				      bool force_reclaim)
L
Linus Torvalds 已提交
953 954
{
	LIST_HEAD(ret_pages);
955
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
956
	int pgactivate = 0;
957 958 959 960 961 962
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
963 964
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
965 966 967 968 969 970 971

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
972
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
973
		bool dirty, writeback;
M
Minchan Kim 已提交
974 975
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
976 977 978 979 980 981

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
982
		if (!trylock_page(page))
L
Linus Torvalds 已提交
983 984
			goto keep;

985
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
986 987

		sc->nr_scanned++;
988

989
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
990
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
991

992
		if (!sc->may_unmap && page_mapped(page))
993 994
			goto keep_locked;

L
Linus Torvalds 已提交
995 996 997 998
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

999 1000 1001
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1015 1016 1017 1018 1019 1020
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1021
		mapping = page_mapping(page);
1022
		if (((dirty || writeback) && mapping &&
1023
		     inode_write_congested(mapping->host)) ||
1024
		    (writeback && PageReclaim(page)))
1025 1026
			nr_congested++;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1038 1039
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1040
		 *
1041
		 * 2) Global or new memcg reclaim encounters a page that is
1042 1043 1044
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1045
		 *    reclaim and continue scanning.
1046
		 *
1047 1048
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1049 1050 1051 1052 1053
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1054
		 * 3) Legacy memcg encounters a page that is already marked
1055 1056 1057 1058
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1059 1060 1061 1062 1063 1064 1065 1066 1067
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1068
		 */
1069
		if (PageWriteback(page)) {
1070 1071 1072
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1073
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074
				nr_immediate++;
1075
				goto activate_locked;
1076 1077

			/* Case 2 above */
1078
			} else if (sane_reclaim(sc) ||
1079
			    !PageReclaim(page) || !may_enter_fs) {
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1092
				nr_writeback++;
1093
				goto activate_locked;
1094 1095 1096

			/* Case 3 above */
			} else {
1097
				unlock_page(page);
1098
				wait_on_page_writeback(page);
1099 1100 1101
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1102
			}
1103
		}
L
Linus Torvalds 已提交
1104

1105 1106 1107
		if (!force_reclaim)
			references = page_check_references(page, sc);

1108 1109
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1110
			goto activate_locked;
1111
		case PAGEREF_KEEP:
1112
			nr_ref_keep++;
1113
			goto keep_locked;
1114 1115 1116 1117
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1118 1119 1120 1121 1122

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1123
		if (PageAnon(page) && !PageSwapCache(page)) {
1124 1125
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1126
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1127
				goto activate_locked;
M
Minchan Kim 已提交
1128
			lazyfree = true;
1129
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1130

1131 1132
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1133 1134 1135 1136
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1137
		}
L
Linus Torvalds 已提交
1138

1139 1140
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1141 1142 1143 1144 1145
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1146 1147 1148
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1149
			case SWAP_FAIL:
1150
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1151 1152 1153
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1154 1155
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1156 1157
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1158 1159 1160 1161 1162 1163
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1164
			/*
1165 1166 1167 1168 1169 1170 1171 1172
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1173
			 */
1174
			if (page_is_file_cache(page) &&
1175 1176
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1177 1178 1179 1180 1181 1182
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1183
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1184 1185
				SetPageReclaim(page);

1186
				goto activate_locked;
1187 1188
			}

1189
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1190
				goto keep_locked;
1191
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1192
				goto keep_locked;
1193
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1194 1195
				goto keep_locked;

1196 1197 1198 1199 1200 1201
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1202
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1208
				if (PageWriteback(page))
1209
					goto keep;
1210
				if (PageDirty(page))
L
Linus Torvalds 已提交
1211
					goto keep;
1212

L
Linus Torvalds 已提交
1213 1214 1215 1216
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1217
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1237
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1248
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1249 1250
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1267 1268
		}

M
Minchan Kim 已提交
1269
lazyfree:
1270
		if (!mapping || !__remove_mapping(mapping, page, true))
1271
			goto keep_locked;
L
Linus Torvalds 已提交
1272

N
Nick Piggin 已提交
1273 1274 1275 1276 1277 1278 1279
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1280
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1281
free_it:
M
Minchan Kim 已提交
1282 1283 1284
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1285
		nr_reclaimed++;
1286 1287 1288 1289 1290 1291

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1292 1293
		continue;

N
Nick Piggin 已提交
1294
cull_mlocked:
1295 1296
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1297
		unlock_page(page);
1298
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1299 1300
		continue;

L
Linus Torvalds 已提交
1301
activate_locked:
1302
		/* Not a candidate for swapping, so reclaim swap space. */
1303
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1304
			try_to_free_swap(page);
1305
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1312
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1313
	}
1314

1315
	mem_cgroup_uncharge_list(&free_pages);
1316
	try_to_unmap_flush();
1317
	free_hot_cold_page_list(&free_pages, true);
1318

L
Linus Torvalds 已提交
1319
	list_splice(&ret_pages, page_list);
1320
	count_vm_events(PGACTIVATE, pgactivate);
1321

1322 1323 1324 1325 1326 1327
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1328 1329 1330
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1331
	}
1332
	return nr_reclaimed;
L
Linus Torvalds 已提交
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1343
	unsigned long ret;
1344 1345 1346 1347
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1348
		if (page_is_file_cache(page) && !PageDirty(page) &&
1349
		    !__PageMovable(page)) {
1350 1351 1352 1353 1354
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1355
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1356
			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1357
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1358
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1359 1360 1361
	return ret;
}

A
Andy Whitcroft 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1372
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1373 1374 1375 1376 1377 1378 1379
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1380 1381
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1382 1383
		return ret;

A
Andy Whitcroft 已提交
1384
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1385

1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1394
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1412

1413 1414 1415
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1429 1430 1431 1432 1433 1434

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1435
			enum lru_list lru, unsigned long *nr_zone_taken)
1436 1437 1438 1439 1440 1441 1442 1443 1444
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1445
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1446
#endif
1447 1448
	}

1449 1450
}

L
Linus Torvalds 已提交
1451
/*
1452
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1462
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1463
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1464
 * @nr_scanned:	The number of pages that were scanned.
1465
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1466
 * @mode:	One of the LRU isolation modes
1467
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1468 1469 1470
 *
 * returns how many pages were moved onto *@dst.
 */
1471
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1472
		struct lruvec *lruvec, struct list_head *dst,
1473
		unsigned long *nr_scanned, struct scan_control *sc,
1474
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1475
{
H
Hugh Dickins 已提交
1476
	struct list_head *src = &lruvec->lists[lru];
1477
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1478
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1479
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1480
	unsigned long skipped = 0, total_skipped = 0;
M
Mel Gorman 已提交
1481
	unsigned long scan, nr_pages;
1482
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1483

1484
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1485
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1486 1487
		struct page *page;

L
Linus Torvalds 已提交
1488 1489 1490
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1491
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1492

1493 1494
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1495
			nr_skipped[page_zonenum(page)]++;
1496 1497 1498
			continue;
		}

1499 1500 1501 1502 1503 1504
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1505
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1506
		case 0:
M
Mel Gorman 已提交
1507 1508 1509
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1510 1511 1512 1513 1514 1515 1516
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1517

A
Andy Whitcroft 已提交
1518 1519 1520
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1521 1522
	}

1523 1524 1525 1526 1527 1528 1529
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1530 1531 1532 1533 1534 1535 1536 1537
	if (!list_empty(&pages_skipped)) {
		int zid;

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1538
			skipped += nr_skipped[zid];
1539
		}
1540 1541 1542 1543 1544 1545

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
1546
		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1547 1548

		list_splice(&pages_skipped, src);
1549
	}
1550 1551
	*nr_scanned = scan + total_skipped;
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1552
				    scan, skipped, nr_taken, mode, lru);
1553
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1554 1555 1556
	return nr_taken;
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1568 1569 1570
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1586
	VM_BUG_ON_PAGE(!page_count(page), page);
1587
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1588

1589 1590
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1591
		struct lruvec *lruvec;
1592

1593
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1594
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1595
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1596
			int lru = page_lru(page);
1597
			get_page(page);
1598
			ClearPageLRU(page);
1599 1600
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1601
		}
1602
		spin_unlock_irq(zone_lru_lock(zone));
1603 1604 1605 1606
	}
	return ret;
}

1607
/*
F
Fengguang Wu 已提交
1608 1609 1610 1611 1612
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1613
 */
M
Mel Gorman 已提交
1614
static int too_many_isolated(struct pglist_data *pgdat, int file,
1615 1616 1617 1618 1619 1620 1621
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1622
	if (!sane_reclaim(sc))
1623 1624 1625
		return 0;

	if (file) {
M
Mel Gorman 已提交
1626 1627
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1628
	} else {
M
Mel Gorman 已提交
1629 1630
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1631 1632
	}

1633 1634 1635 1636 1637
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1638
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1639 1640
		inactive >>= 3;

1641 1642 1643
	return isolated > inactive;
}

1644
static noinline_for_stack void
H
Hugh Dickins 已提交
1645
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1646
{
1647
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1648
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1649
	LIST_HEAD(pages_to_free);
1650 1651 1652 1653 1654

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1655
		struct page *page = lru_to_page(page_list);
1656
		int lru;
1657

1658
		VM_BUG_ON_PAGE(PageLRU(page), page);
1659
		list_del(&page->lru);
1660
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1661
			spin_unlock_irq(&pgdat->lru_lock);
1662
			putback_lru_page(page);
M
Mel Gorman 已提交
1663
			spin_lock_irq(&pgdat->lru_lock);
1664 1665
			continue;
		}
1666

M
Mel Gorman 已提交
1667
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1668

1669
		SetPageLRU(page);
1670
		lru = page_lru(page);
1671 1672
		add_page_to_lru_list(page, lruvec, lru);

1673 1674
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1675 1676
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1677
		}
1678 1679 1680
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1681
			del_page_from_lru_list(page, lruvec, lru);
1682 1683

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1684
				spin_unlock_irq(&pgdat->lru_lock);
1685
				mem_cgroup_uncharge(page);
1686
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1687
				spin_lock_irq(&pgdat->lru_lock);
1688 1689
			} else
				list_add(&page->lru, &pages_to_free);
1690 1691 1692
		}
	}

1693 1694 1695 1696
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1712
/*
1713
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1714
 * of reclaimed pages
L
Linus Torvalds 已提交
1715
 */
1716
static noinline_for_stack unsigned long
1717
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1718
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1719 1720
{
	LIST_HEAD(page_list);
1721
	unsigned long nr_scanned;
1722
	unsigned long nr_reclaimed = 0;
1723
	unsigned long nr_taken;
1724
	struct reclaim_stat stat = {};
1725
	isolate_mode_t isolate_mode = 0;
1726
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1727
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1728
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1729

M
Mel Gorman 已提交
1730
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1731
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1732 1733 1734 1735 1736 1737

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1738
	lru_add_drain();
1739 1740

	if (!sc->may_unmap)
1741
		isolate_mode |= ISOLATE_UNMAPPED;
1742

M
Mel Gorman 已提交
1743
	spin_lock_irq(&pgdat->lru_lock);
1744

1745 1746
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1747

M
Mel Gorman 已提交
1748
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1749
	reclaim_stat->recent_scanned[file] += nr_taken;
1750

1751
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1752
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1753
		if (current_is_kswapd())
M
Mel Gorman 已提交
1754
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1755
		else
M
Mel Gorman 已提交
1756
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1757
	}
M
Mel Gorman 已提交
1758
	spin_unlock_irq(&pgdat->lru_lock);
1759

1760
	if (nr_taken == 0)
1761
		return 0;
A
Andy Whitcroft 已提交
1762

M
Mel Gorman 已提交
1763
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1764
				&stat, false);
1765

M
Mel Gorman 已提交
1766
	spin_lock_irq(&pgdat->lru_lock);
1767

Y
Ying Han 已提交
1768 1769
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1770
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1771
		else
M
Mel Gorman 已提交
1772
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1773
	}
N
Nick Piggin 已提交
1774

1775
	putback_inactive_pages(lruvec, &page_list);
1776

M
Mel Gorman 已提交
1777
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1778

M
Mel Gorman 已提交
1779
	spin_unlock_irq(&pgdat->lru_lock);
1780

1781
	mem_cgroup_uncharge_list(&page_list);
1782
	free_hot_cold_page_list(&page_list, true);
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1794 1795 1796
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1797
	 */
1798
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1799
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1800

1801
	/*
1802 1803
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1804
	 */
1805
	if (sane_reclaim(sc)) {
1806 1807 1808 1809
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1810
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1811
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1812

1813 1814
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1815 1816 1817 1818 1819 1820 1821 1822 1823
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1824
		 */
1825 1826
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1827
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1828
		}
1829 1830

		/*
1831 1832 1833
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1834 1835
		 * they are written so also forcibly stall.
		 */
1836
		if (stat.nr_immediate && current_may_throttle())
1837
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1838
	}
1839

1840 1841 1842 1843 1844
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1845 1846
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1847
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1848

M
Mel Gorman 已提交
1849 1850
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1851 1852 1853 1854
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1855
			sc->priority, file);
1856
	return nr_reclaimed;
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1866
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1867
 * the pages are mapped, the processing is slow (page_referenced()) so we
1868
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1869 1870 1871 1872
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1873
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1874
 * But we had to alter page->flags anyway.
1875 1876
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1877
 */
1878

1879
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1880
				     struct list_head *list,
1881
				     struct list_head *pages_to_free,
1882 1883
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1884
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1885
	struct page *page;
1886
	int nr_pages;
1887
	int nr_moved = 0;
1888 1889 1890

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1891
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1892

1893
		VM_BUG_ON_PAGE(PageLRU(page), page);
1894 1895
		SetPageLRU(page);

1896
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1897
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1898
		list_move(&page->lru, &lruvec->lists[lru]);
1899

1900 1901 1902
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1903
			del_page_from_lru_list(page, lruvec, lru);
1904 1905

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1906
				spin_unlock_irq(&pgdat->lru_lock);
1907
				mem_cgroup_uncharge(page);
1908
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1909
				spin_lock_irq(&pgdat->lru_lock);
1910 1911
			} else
				list_add(&page->lru, pages_to_free);
1912 1913
		} else {
			nr_moved += nr_pages;
1914 1915
		}
	}
1916

1917
	if (!is_active_lru(lru))
1918
		__count_vm_events(PGDEACTIVATE, nr_moved);
1919 1920

	return nr_moved;
1921
}
1922

H
Hugh Dickins 已提交
1923
static void shrink_active_list(unsigned long nr_to_scan,
1924
			       struct lruvec *lruvec,
1925
			       struct scan_control *sc,
1926
			       enum lru_list lru)
L
Linus Torvalds 已提交
1927
{
1928
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1929
	unsigned long nr_scanned;
1930
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1931
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1932
	LIST_HEAD(l_active);
1933
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1934
	struct page *page;
1935
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1936 1937
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1938
	isolate_mode_t isolate_mode = 0;
1939
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1940
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1941 1942

	lru_add_drain();
1943 1944

	if (!sc->may_unmap)
1945
		isolate_mode |= ISOLATE_UNMAPPED;
1946

M
Mel Gorman 已提交
1947
	spin_lock_irq(&pgdat->lru_lock);
1948

1949 1950
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1951

M
Mel Gorman 已提交
1952
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953
	reclaim_stat->recent_scanned[file] += nr_taken;
1954

1955
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1956 1957
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1958

M
Mel Gorman 已提交
1959
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1965

1966
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1967 1968 1969 1970
			putback_lru_page(page);
			continue;
		}

1971 1972 1973 1974 1975 1976 1977 1978
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1979 1980
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1981
			nr_rotated += hpage_nr_pages(page);
1982 1983 1984 1985 1986 1987 1988 1989 1990
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1991
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1992 1993 1994 1995
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1996

1997
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1998 1999 2000
		list_add(&page->lru, &l_inactive);
	}

2001
	/*
2002
	 * Move pages back to the lru list.
2003
	 */
M
Mel Gorman 已提交
2004
	spin_lock_irq(&pgdat->lru_lock);
2005
	/*
2006 2007 2008
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2009
	 * get_scan_count.
2010
	 */
2011
	reclaim_stat->recent_rotated[file] += nr_rotated;
2012

2013 2014
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2015 2016
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2017

2018
	mem_cgroup_uncharge_list(&l_hold);
2019
	free_hot_cold_page_list(&l_hold, true);
2020 2021
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2022 2023
}

2024 2025 2026
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2027
 *
2028 2029 2030
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2031
 *
2032 2033
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2034
 *
2035 2036 2037
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2038
 *
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2049
 */
2050
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2051
						struct scan_control *sc, bool trace)
2052
{
2053
	unsigned long inactive_ratio;
2054 2055 2056
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2057
	unsigned long gb;
2058

2059 2060 2061 2062 2063 2064
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2065

2066 2067
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2068

2069 2070 2071
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2072
	else
2073 2074
		inactive_ratio = 1;

2075
	if (trace)
2076
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2077
				sc->reclaim_idx,
2078 2079 2080 2081
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2082
	return inactive * inactive_ratio < active;
2083 2084
}

2085
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2086
				 struct lruvec *lruvec, struct scan_control *sc)
2087
{
2088
	if (is_active_lru(lru)) {
2089
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2090
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2091 2092 2093
		return 0;
	}

2094
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2095 2096
}

2097 2098 2099 2100 2101 2102 2103
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2104 2105 2106 2107 2108 2109
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2110 2111
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2112
 */
2113
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2114 2115
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2116
{
2117
	int swappiness = mem_cgroup_swappiness(memcg);
2118 2119 2120
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2121
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2122
	unsigned long anon_prio, file_prio;
2123
	enum scan_balance scan_balance;
2124
	unsigned long anon, file;
2125
	bool force_scan = false;
2126
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2127
	enum lru_list lru;
2128 2129
	bool some_scanned;
	int pass;
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2141
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2142
		if (!pgdat_reclaimable(pgdat))
2143
			force_scan = true;
2144
		if (!mem_cgroup_online(memcg))
2145 2146
			force_scan = true;
	}
2147
	if (!global_reclaim(sc))
2148
		force_scan = true;
2149 2150

	/* If we have no swap space, do not bother scanning anon pages. */
2151
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2152
		scan_balance = SCAN_FILE;
2153 2154
		goto out;
	}
2155

2156 2157 2158 2159 2160 2161 2162
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2163
	if (!global_reclaim(sc) && !swappiness) {
2164
		scan_balance = SCAN_FILE;
2165 2166 2167 2168 2169 2170 2171 2172
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2173
	if (!sc->priority && swappiness) {
2174
		scan_balance = SCAN_EQUAL;
2175 2176 2177
		goto out;
	}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2188 2189 2190 2191
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2192

M
Mel Gorman 已提交
2193 2194 2195 2196 2197 2198
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2199
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2200 2201 2202 2203
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2204

M
Mel Gorman 已提交
2205
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2206 2207 2208 2209 2210
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2211
	/*
2212 2213 2214 2215 2216 2217 2218
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2219
	 */
2220
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2221
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2222
		scan_balance = SCAN_FILE;
2223 2224 2225
		goto out;
	}

2226 2227
	scan_balance = SCAN_FRACT;

2228 2229 2230 2231
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2232
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2233
	file_prio = 200 - anon_prio;
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2246

2247 2248 2249 2250
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2251

M
Mel Gorman 已提交
2252
	spin_lock_irq(&pgdat->lru_lock);
2253 2254 2255
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2256 2257
	}

2258 2259 2260
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2261 2262 2263
	}

	/*
2264 2265 2266
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2267
	 */
2268
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2269
	ap /= reclaim_stat->recent_rotated[0] + 1;
2270

2271
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2272
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2273
	spin_unlock_irq(&pgdat->lru_lock);
2274

2275 2276 2277 2278
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2279 2280 2281
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2282
		*lru_pages = 0;
2283 2284 2285 2286
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2287

2288
			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2289
			scan = size >> sc->priority;
2290

2291 2292
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2309 2310
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2311
					scan = 0;
2312
				}
2313 2314 2315 2316 2317
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2318 2319

			*lru_pages += size;
2320
			nr[lru] = scan;
2321

2322
			/*
2323 2324
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2325
			 */
2326
			some_scanned |= !!scan;
2327
		}
2328
	}
2329
}
2330

2331
/*
2332
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2333
 */
2334
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2335
			      struct scan_control *sc, unsigned long *lru_pages)
2336
{
2337
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2338
	unsigned long nr[NR_LRU_LISTS];
2339
	unsigned long targets[NR_LRU_LISTS];
2340 2341 2342 2343 2344
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2345
	bool scan_adjusted;
2346

2347
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2348

2349 2350 2351
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2366 2367 2368
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2369 2370 2371
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2372 2373 2374 2375 2376 2377 2378 2379 2380
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2381

2382 2383
		cond_resched();

2384 2385 2386 2387 2388
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2389
		 * requested. Ensure that the anon and file LRUs are scanned
2390 2391 2392 2393 2394 2395 2396
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2397 2398 2399 2400 2401 2402 2403 2404 2405
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2437 2438 2439 2440 2441 2442 2443 2444
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2445
	if (inactive_list_is_low(lruvec, false, sc, true))
2446 2447 2448 2449
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2450
/* Use reclaim/compaction for costly allocs or under memory pressure */
2451
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2452
{
2453
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2454
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2455
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2456 2457 2458 2459 2460
		return true;

	return false;
}

2461
/*
M
Mel Gorman 已提交
2462 2463 2464 2465 2466
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2467
 */
2468
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2469 2470 2471 2472 2473 2474
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2475
	int z;
2476 2477

	/* If not in reclaim/compaction mode, stop */
2478
	if (!in_reclaim_compaction(sc))
2479 2480
		return false;

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2503 2504 2505 2506 2507

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2508
	pages_for_compaction = compact_gap(sc->order);
2509
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2510
	if (get_nr_swap_pages() > 0)
2511
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2512 2513 2514 2515 2516
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2517 2518
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2519
		if (!managed_zone(zone))
2520 2521 2522
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2523
		case COMPACT_SUCCESS:
2524 2525 2526 2527 2528 2529
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2530
	}
2531
	return true;
2532 2533
}

2534
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2535
{
2536
	struct reclaim_state *reclaim_state = current->reclaim_state;
2537
	unsigned long nr_reclaimed, nr_scanned;
2538
	bool reclaimable = false;
L
Linus Torvalds 已提交
2539

2540 2541 2542
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2543
			.pgdat = pgdat,
2544 2545
			.priority = sc->priority,
		};
2546
		unsigned long node_lru_pages = 0;
2547
		struct mem_cgroup *memcg;
2548

2549 2550
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2551

2552 2553
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2554
			unsigned long lru_pages;
2555
			unsigned long reclaimed;
2556
			unsigned long scanned;
2557

2558 2559 2560 2561 2562 2563
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2564
			reclaimed = sc->nr_reclaimed;
2565
			scanned = sc->nr_scanned;
2566

2567 2568
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2569

2570
			if (memcg)
2571
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2572 2573 2574
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2575 2576 2577 2578 2579
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2580
			/*
2581 2582
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2583
			 * node.
2584 2585 2586 2587 2588
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2589
			 */
2590 2591
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2592 2593 2594
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2595
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2596

2597 2598 2599 2600
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2601
		if (global_reclaim(sc))
2602
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2603
				    sc->nr_scanned - nr_scanned,
2604
				    node_lru_pages);
2605 2606 2607 2608

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2609 2610
		}

2611 2612
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 2614 2615
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2616 2617 2618
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2619
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2620
					 sc->nr_scanned - nr_scanned, sc));
2621 2622

	return reclaimable;
2623 2624
}

2625
/*
2626 2627 2628
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2629
 */
2630
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2631
{
M
Mel Gorman 已提交
2632
	unsigned long watermark;
2633
	enum compact_result suitable;
2634

2635 2636 2637 2638 2639 2640 2641
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2642

2643
	/*
2644 2645 2646 2647 2648 2649 2650
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2651
	 */
2652
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2653

2654
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2655 2656
}

L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662 2663 2664
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2665
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2666
{
2667
	struct zoneref *z;
2668
	struct zone *zone;
2669 2670
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2671
	gfp_t orig_mask;
2672
	pg_data_t *last_pgdat = NULL;
2673

2674 2675 2676 2677 2678
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2679
	orig_mask = sc->gfp_mask;
2680
	if (buffer_heads_over_limit) {
2681
		sc->gfp_mask |= __GFP_HIGHMEM;
2682
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2683
	}
2684

2685
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2686
					sc->reclaim_idx, sc->nodemask) {
2687 2688 2689 2690
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2691
		if (global_reclaim(sc)) {
2692 2693
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2694
				continue;
2695

2696
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2697
			    !pgdat_reclaimable(zone->zone_pgdat))
2698
				continue;	/* Let kswapd poll it */
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2711
			    compaction_ready(zone, sc)) {
2712 2713
				sc->compaction_ready = true;
				continue;
2714
			}
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2725 2726 2727 2728 2729 2730 2731
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2732
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2733 2734 2735 2736
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2737
			/* need some check for avoid more shrink_zone() */
2738
		}
2739

2740 2741 2742 2743
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2744
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2745
	}
2746

2747 2748 2749 2750 2751
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2752
}
2753

L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759 2760 2761
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2762 2763 2764 2765
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2766 2767 2768
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2769
 */
2770
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2772
{
2773 2774
	int initial_priority = sc->priority;
retry:
2775 2776
	delayacct_freepages_start();

2777
	if (global_reclaim(sc))
2778
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2779

2780
	do {
2781 2782
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2783
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2784
		shrink_zones(zonelist, sc);
2785

2786
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2787 2788 2789 2790
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2791

2792 2793 2794 2795 2796 2797
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2798
	} while (--sc->priority >= 0);
2799

2800 2801
	delayacct_freepages_end();

2802 2803 2804
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2805
	/* Aborted reclaim to try compaction? don't OOM, then */
2806
	if (sc->compaction_ready)
2807 2808
		return 1;

2809 2810 2811 2812 2813 2814 2815
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2816
	return 0;
L
Linus Torvalds 已提交
2817 2818
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2829
		if (!managed_zone(zone) ||
M
Mel Gorman 已提交
2830
		    pgdat_reclaimable_pages(pgdat) == 0)
2831 2832
			continue;

2833 2834 2835 2836
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2837 2838 2839 2840
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2841 2842 2843 2844
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2845
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2857 2858 2859 2860
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2861
 */
2862
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2863 2864
					nodemask_t *nodemask)
{
2865
	struct zoneref *z;
2866
	struct zone *zone;
2867
	pg_data_t *pgdat = NULL;
2868 2869 2870 2871 2872 2873 2874 2875 2876

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2877 2878 2879 2880 2881 2882 2883 2884
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2901
					gfp_zone(gfp_mask), nodemask) {
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2914
		goto out;
2915

2916 2917 2918
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2930 2931

		goto check_pending;
2932 2933 2934 2935 2936
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2937 2938 2939 2940 2941 2942 2943

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2944 2945
}

2946
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2947
				gfp_t gfp_mask, nodemask_t *nodemask)
2948
{
2949
	unsigned long nr_reclaimed;
2950
	struct scan_control sc = {
2951
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2952
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2953
		.reclaim_idx = gfp_zone(gfp_mask),
2954 2955 2956
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2957
		.may_writepage = !laptop_mode,
2958
		.may_unmap = 1,
2959
		.may_swap = 1,
2960 2961
	};

2962
	/*
2963 2964 2965
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2966
	 */
2967
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2968 2969
		return 1;

2970 2971
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2972 2973
				gfp_mask,
				sc.reclaim_idx);
2974

2975
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2976 2977 2978 2979

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2980 2981
}

A
Andrew Morton 已提交
2982
#ifdef CONFIG_MEMCG
2983

2984
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2985
						gfp_t gfp_mask, bool noswap,
2986
						pg_data_t *pgdat,
2987
						unsigned long *nr_scanned)
2988 2989
{
	struct scan_control sc = {
2990
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2991
		.target_mem_cgroup = memcg,
2992 2993
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2994
		.reclaim_idx = MAX_NR_ZONES - 1,
2995 2996
		.may_swap = !noswap,
	};
2997
	unsigned long lru_pages;
2998

2999 3000
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3001

3002
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3003
						      sc.may_writepage,
3004 3005
						      sc.gfp_mask,
						      sc.reclaim_idx);
3006

3007 3008 3009
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3010
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3011 3012 3013
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3014
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3015 3016 3017

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3018
	*nr_scanned = sc.nr_scanned;
3019 3020 3021
	return sc.nr_reclaimed;
}

3022
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3023
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3024
					   gfp_t gfp_mask,
3025
					   bool may_swap)
3026
{
3027
	struct zonelist *zonelist;
3028
	unsigned long nr_reclaimed;
3029
	int nid;
3030
	struct scan_control sc = {
3031
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3032 3033
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3034
		.reclaim_idx = MAX_NR_ZONES - 1,
3035 3036 3037 3038
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3039
		.may_swap = may_swap,
3040
	};
3041

3042 3043 3044 3045 3046
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3047
	nid = mem_cgroup_select_victim_node(memcg);
3048

3049
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3050 3051 3052

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3053 3054
					    sc.gfp_mask,
					    sc.reclaim_idx);
3055

3056
	current->flags |= PF_MEMALLOC;
3057
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3058
	current->flags &= ~PF_MEMALLOC;
3059 3060 3061 3062

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3063 3064 3065
}
#endif

3066
static void age_active_anon(struct pglist_data *pgdat,
3067
				struct scan_control *sc)
3068
{
3069
	struct mem_cgroup *memcg;
3070

3071 3072 3073 3074 3075
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3076
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3077

3078
		if (inactive_list_is_low(lruvec, false, sc, true))
3079
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3080
					   sc, LRU_ACTIVE_ANON);
3081 3082 3083

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3084 3085
}

M
Mel Gorman 已提交
3086
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3087
{
M
Mel Gorman 已提交
3088
	unsigned long mark = high_wmark_pages(zone);
3089

3090 3091 3092 3093 3094 3095 3096 3097 3098
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3099
	clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3100 3101

	return true;
3102 3103
}

3104 3105 3106 3107 3108 3109
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3110
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3111
{
3112 3113
	int i;

3114
	/*
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3126
	 */
3127 3128
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3129

3130 3131 3132
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3133
		if (!managed_zone(zone))
3134 3135
			continue;

3136 3137
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3138 3139
	}

3140
	return true;
3141 3142
}

3143
/*
3144 3145
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3146 3147
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3148 3149
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3150
 */
3151
static bool kswapd_shrink_node(pg_data_t *pgdat,
3152
			       struct scan_control *sc)
3153
{
3154 3155
	struct zone *zone;
	int z;
3156

3157 3158
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3159
	for (z = 0; z <= sc->reclaim_idx; z++) {
3160
		zone = pgdat->node_zones + z;
3161
		if (!managed_zone(zone))
3162
			continue;
3163

3164 3165
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3166 3167

	/*
3168 3169
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3170
	 */
3171
	shrink_node(pgdat, sc);
3172

3173
	/*
3174 3175 3176 3177 3178
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3179
	 */
3180
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3181
		sc->order = 0;
3182

3183
	return sc->nr_scanned >= sc->nr_to_reclaim;
3184 3185
}

L
Linus Torvalds 已提交
3186
/*
3187 3188 3189
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3190
 *
3191
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3192 3193
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3194
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3195 3196 3197
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3198
 */
3199
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3200 3201
{
	int i;
3202 3203
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3204
	struct zone *zone;
3205 3206
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3207
		.order = order,
3208
		.priority = DEF_PRIORITY,
3209
		.may_writepage = !laptop_mode,
3210
		.may_unmap = 1,
3211
		.may_swap = 1,
3212
	};
3213
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3214

3215
	do {
3216 3217 3218
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3219
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3220

3221
		/*
3222 3223 3224 3225 3226 3227 3228 3229
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3230 3231 3232 3233
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3234
				if (!managed_zone(zone))
3235
					continue;
3236

3237
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3238
				break;
L
Linus Torvalds 已提交
3239 3240
			}
		}
3241

3242 3243 3244 3245 3246 3247
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3248 3249 3250
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3251
		 */
3252
		for (i = classzone_idx; i >= 0; i--) {
3253
			zone = pgdat->node_zones + i;
3254
			if (!managed_zone(zone))
3255 3256
				continue;

3257
			if (zone_balanced(zone, sc.order, classzone_idx))
3258 3259
				goto out;
		}
A
Andrew Morton 已提交
3260

3261 3262 3263 3264 3265 3266
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3267
		age_active_anon(pgdat, &sc);
3268

3269 3270 3271 3272
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3273
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3274 3275
			sc.may_writepage = 1;

3276 3277 3278
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3279
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3280 3281 3282
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3283
		/*
3284 3285 3286
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3287
		 */
3288
		if (kswapd_shrink_node(pgdat, &sc))
3289
			raise_priority = false;
3290 3291 3292 3293 3294 3295 3296 3297

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3298
			wake_up_all(&pgdat->pfmemalloc_wait);
3299

3300 3301 3302
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3303

3304
		/*
3305 3306
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3307
		 */
3308 3309
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3310
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3311

3312
out:
3313
	/*
3314 3315 3316 3317
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3318
	 */
3319
	return sc.order;
L
Linus Torvalds 已提交
3320 3321
}

3322 3323
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3334
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3347
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3348

3349
		remaining = schedule_timeout(HZ/10);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3361 3362 3363 3364 3365 3366 3367 3368
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3369 3370
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3382 3383 3384 3385

		if (!kthread_should_stop())
			schedule();

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3396 3397
/*
 * The background pageout daemon, started as a kernel thread
3398
 * from the init process.
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3411
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3412 3413
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3414

L
Linus Torvalds 已提交
3415 3416 3417
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3418
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3419

3420 3421
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3422
	if (!cpumask_empty(cpumask))
3423
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3438
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3439
	set_freezable();
L
Linus Torvalds 已提交
3440

3441 3442
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3443
	for ( ; ; ) {
3444
		bool ret;
3445

3446 3447 3448
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3449

3450 3451 3452 3453 3454
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3455

3456 3457 3458 3459 3460 3461 3462 3463
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3475 3476
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3477 3478 3479
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3480

3481 3482
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3483
	}
3484

3485
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3486
	current->reclaim_state = NULL;
3487 3488
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3489 3490 3491 3492 3493 3494
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3495
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3496 3497
{
	pg_data_t *pgdat;
3498
	int z;
L
Linus Torvalds 已提交
3499

3500
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3501 3502
		return;

3503
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3504
		return;
3505
	pgdat = zone->zone_pgdat;
3506 3507
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3508
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3509
		return;
3510 3511 3512 3513

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3514
		if (!managed_zone(zone))
3515 3516 3517 3518 3519
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3520 3521

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3522
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3523 3524
}

3525
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3526
/*
3527
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3528 3529 3530 3531 3532
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3533
 */
3534
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3535
{
3536 3537
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3538
		.nr_to_reclaim = nr_to_reclaim,
3539
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3540
		.reclaim_idx = MAX_NR_ZONES - 1,
3541
		.priority = DEF_PRIORITY,
3542
		.may_writepage = 1,
3543 3544
		.may_unmap = 1,
		.may_swap = 1,
3545
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3546
	};
3547
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3548 3549
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3550

3551 3552 3553 3554
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3555

3556
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3557

3558 3559 3560
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3561

3562
	return nr_reclaimed;
L
Linus Torvalds 已提交
3563
}
3564
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3565 3566 3567 3568 3569

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3570
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3571
{
3572
	int nid;
L
Linus Torvalds 已提交
3573

3574 3575 3576
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3577

3578
		mask = cpumask_of_node(pgdat->node_id);
3579

3580 3581 3582
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3583
	}
3584
	return 0;
L
Linus Torvalds 已提交
3585 3586
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3603 3604
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3605
		pgdat->kswapd = NULL;
3606 3607 3608 3609
	}
	return ret;
}

3610
/*
3611
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3612
 * hold mem_hotplug_begin/end().
3613 3614 3615 3616 3617
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3618
	if (kswapd) {
3619
		kthread_stop(kswapd);
3620 3621
		NODE_DATA(nid)->kswapd = NULL;
	}
3622 3623
}

L
Linus Torvalds 已提交
3624 3625
static int __init kswapd_init(void)
{
3626
	int nid, ret;
3627

L
Linus Torvalds 已提交
3628
	swap_setup();
3629
	for_each_node_state(nid, N_MEMORY)
3630
 		kswapd_run(nid);
3631 3632 3633 3634
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3635 3636 3637 3638
	return 0;
}

module_init(kswapd_init)
3639 3640 3641

#ifdef CONFIG_NUMA
/*
3642
 * Node reclaim mode
3643
 *
3644
 * If non-zero call node_reclaim when the number of free pages falls below
3645 3646
 * the watermarks.
 */
3647
int node_reclaim_mode __read_mostly;
3648

3649
#define RECLAIM_OFF 0
3650
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3651
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3652
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3653

3654
/*
3655
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3656 3657 3658
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3659
#define NODE_RECLAIM_PRIORITY 4
3660

3661
/*
3662
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3663 3664 3665 3666
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3667 3668 3669 3670 3671 3672
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3673
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3674
{
3675 3676 3677
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3688
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3689
{
3690 3691
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3692 3693

	/*
3694
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3695
	 * potentially reclaimable. Otherwise, we have to worry about
3696
	 * pages like swapcache and node_unmapped_file_pages() provides
3697 3698
	 * a better estimate
	 */
3699 3700
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3701
	else
3702
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3703 3704

	/* If we can't clean pages, remove dirty pages from consideration */
3705 3706
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3707 3708 3709 3710 3711 3712 3713 3714

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3715
/*
3716
 * Try to free up some pages from this node through reclaim.
3717
 */
3718
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3719
{
3720
	/* Minimum pages needed in order to stay on node */
3721
	const unsigned long nr_pages = 1 << order;
3722 3723
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3724
	int classzone_idx = gfp_zone(gfp_mask);
3725
	struct scan_control sc = {
3726
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3727
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3728
		.order = order,
3729 3730 3731
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3732
		.may_swap = 1,
3733
		.reclaim_idx = classzone_idx,
3734
	};
3735 3736

	cond_resched();
3737
	/*
3738
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3739
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3740
	 * and RECLAIM_UNMAP.
3741 3742
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3743
	lockdep_set_current_reclaim_state(gfp_mask);
3744 3745
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3746

3747
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3748 3749 3750 3751 3752
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3753
			shrink_node(pgdat, &sc);
3754
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3755
	}
3756

3757
	p->reclaim_state = NULL;
3758
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3759
	lockdep_clear_current_reclaim_state();
3760
	return sc.nr_reclaimed >= nr_pages;
3761
}
3762

3763
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3764
{
3765
	int ret;
3766 3767

	/*
3768
	 * Node reclaim reclaims unmapped file backed pages and
3769
	 * slab pages if we are over the defined limits.
3770
	 *
3771 3772
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3773 3774
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3775
	 * unmapped file backed pages.
3776
	 */
3777 3778 3779
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3780

3781 3782
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3783

3784
	/*
3785
	 * Do not scan if the allocation should not be delayed.
3786
	 */
3787
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3788
		return NODE_RECLAIM_NOSCAN;
3789 3790

	/*
3791
	 * Only run node reclaim on the local node or on nodes that do not
3792 3793 3794 3795
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3796 3797
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3798

3799 3800
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3801

3802 3803
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3804

3805 3806 3807
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3808
	return ret;
3809
}
3810
#endif
L
Lee Schermerhorn 已提交
3811 3812 3813 3814 3815 3816

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3817
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3818 3819
 *
 * Reasons page might not be evictable:
3820
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3821
 * (2) page is part of an mlocked VMA
3822
 *
L
Lee Schermerhorn 已提交
3823
 */
3824
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3825
{
3826
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3827
}
3828

3829
#ifdef CONFIG_SHMEM
3830
/**
3831 3832 3833
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3834
 *
3835
 * Checks pages for evictability and moves them to the appropriate lru list.
3836 3837
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3838
 */
3839
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3840
{
3841
	struct lruvec *lruvec;
3842
	struct pglist_data *pgdat = NULL;
3843 3844 3845
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3846

3847 3848
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3849
		struct pglist_data *pagepgdat = page_pgdat(page);
3850

3851
		pgscanned++;
3852 3853 3854 3855 3856
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3857
		}
3858
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3859

3860 3861
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3862

3863
		if (page_evictable(page)) {
3864 3865
			enum lru_list lru = page_lru_base_type(page);

3866
			VM_BUG_ON_PAGE(PageActive(page), page);
3867
			ClearPageUnevictable(page);
3868 3869
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3870
			pgrescued++;
3871
		}
3872
	}
3873

3874
	if (pgdat) {
3875 3876
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3877
		spin_unlock_irq(&pgdat->lru_lock);
3878 3879
	}
}
3880
#endif /* CONFIG_SHMEM */