vmscan.c 109.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

94 95 96
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

97 98 99 100 101 102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
143 144 145 146 147
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
148 149 150 151

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
152
#ifdef CONFIG_MEMCG
153 154
static bool global_reclaim(struct scan_control *sc)
{
155
	return !sc->target_mem_cgroup;
156
}
157
#else
158 159 160 161
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
162 163
#endif

164
static unsigned long zone_reclaimable_pages(struct zone *zone)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
180 181
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
182 183
}

184
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185
{
186
	if (!mem_cgroup_disabled())
187
		return mem_cgroup_get_lru_size(lruvec, lru);
188

189
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 191
}

L
Linus Torvalds 已提交
192
/*
G
Glauber Costa 已提交
193
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
194
 */
G
Glauber Costa 已提交
195
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
196
{
G
Glauber Costa 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

214 215 216
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
217
	return 0;
L
Linus Torvalds 已提交
218
}
219
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
220 221 222 223

/*
 * Remove one
 */
224
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
225 226 227 228
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
229
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
230
}
231
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
232 233

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
234

235 236 237 238
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
239 240 241 242
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
243
	long freeable;
G
Glauber Costa 已提交
244 245 246 247 248 249
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

250 251
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
252 253 254 255 256 257 258 259 260 261
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
262
	delta = (4 * nr_scanned) / shrinker->seeks;
263
	delta *= freeable;
264
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
265 266
	total_scan += delta;
	if (total_scan < 0) {
267
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
268
		       shrinker->scan_objects, total_scan);
269
		total_scan = freeable;
G
Glauber Costa 已提交
270 271 272 273 274 275 276 277
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
278
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
279 280 281 282 283
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
284 285
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
286 287 288 289 290 291

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
292 293
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
294 295

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 297
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
298

299 300 301 302 303 304 305 306 307 308 309
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
310
	 * than the total number of objects on slab (freeable), we must be
311 312 313 314
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
315
	       total_scan >= freeable) {
D
Dave Chinner 已提交
316
		unsigned long ret;
317
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
318

319
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
320 321 322 323
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
324

325 326
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

342
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
343
	return freed;
344 345
}

346
/**
347
 * shrink_slab - shrink slab caches
348 349
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
350
 * @memcg: memory cgroup whose slab caches to target
351 352
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
353
 *
354
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
355
 *
356 357
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
358
 *
359 360 361 362 363 364
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 * objects from the memory cgroup specified. Otherwise all shrinkers
 * are called, and memcg aware shrinkers are supposed to scan the
 * global list then.
 *
365 366 367 368 369 370 371
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
372
 *
373
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
374
 */
375 376 377 378
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
379 380
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
381
	unsigned long freed = 0;
L
Linus Torvalds 已提交
382

383 384 385
	if (memcg && !memcg_kmem_is_active(memcg))
		return 0;

386 387
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
388

389
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
390 391 392 393 394 395 396
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
397 398
		goto out;
	}
L
Linus Torvalds 已提交
399 400

	list_for_each_entry(shrinker, &shrinker_list, list) {
401 402 403
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
404
			.memcg = memcg,
405
		};
406

407 408 409
		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
			continue;

410 411
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
412

413
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
414
	}
415

L
Linus Torvalds 已提交
416
	up_read(&shrinker_rwsem);
417 418
out:
	cond_resched();
D
Dave Chinner 已提交
419
	return freed;
L
Linus Torvalds 已提交
420 421
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
445 446
static inline int is_page_cache_freeable(struct page *page)
{
447 448 449 450 451
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
452
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
453 454
}

455
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
456
{
457
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
458
		return 1;
459
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
460
		return 1;
461
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
481
	lock_page(page);
482 483
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
484 485 486
	unlock_page(page);
}

487 488 489 490 491 492 493 494 495 496 497 498
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
499
/*
A
Andrew Morton 已提交
500 501
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
502
 */
503
static pageout_t pageout(struct page *page, struct address_space *mapping,
504
			 struct scan_control *sc)
L
Linus Torvalds 已提交
505 506 507 508 509 510 511 512
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
513
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
529
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
530 531
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
532
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
533 534 535 536 537 538 539
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
540
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
541 542 543 544 545 546 547
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
548 549
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
550 551 552 553 554 555 556
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
557
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
558 559 560
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
561

L
Linus Torvalds 已提交
562 563 564 565
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
566
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
567
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
568 569 570 571 572 573
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

574
/*
N
Nick Piggin 已提交
575 576
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
577
 */
578 579
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
580
{
581 582 583
	unsigned long flags;
	struct mem_cgroup *memcg;

584 585
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
586

587 588
	memcg = mem_cgroup_begin_page_stat(page);
	spin_lock_irqsave(&mapping->tree_lock, flags);
589
	/*
N
Nick Piggin 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
613
	 */
N
Nick Piggin 已提交
614
	if (!page_freeze_refs(page, 2))
615
		goto cannot_free;
N
Nick Piggin 已提交
616 617 618
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
619
		goto cannot_free;
N
Nick Piggin 已提交
620
	}
621 622 623

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
624
		mem_cgroup_swapout(page, swap);
625
		__delete_from_swap_cache(page);
626 627
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
628
		swapcache_free(swap);
N
Nick Piggin 已提交
629
	} else {
630
		void (*freepage)(struct page *);
631
		void *shadow = NULL;
632 633

		freepage = mapping->a_ops->freepage;
634 635 636 637 638 639 640 641 642 643 644 645 646
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
647 648 649
		__delete_from_page_cache(page, shadow, memcg);
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
650 651 652

		if (freepage != NULL)
			freepage(page);
653 654 655 656 657
	}

	return 1;

cannot_free:
658 659
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
	mem_cgroup_end_page_stat(memcg);
660 661 662
	return 0;
}

N
Nick Piggin 已提交
663 664 665 666 667 668 669 670
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
671
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
672 673 674 675 676 677 678 679 680 681 682
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
683 684 685 686 687 688 689 690 691 692 693
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
694
	bool is_unevictable;
695
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
696

697
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
698 699 700 701

redo:
	ClearPageUnevictable(page);

702
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
703 704 705 706 707 708
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
709
		is_unevictable = false;
710
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
711 712 713 714 715
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
716
		is_unevictable = true;
L
Lee Schermerhorn 已提交
717
		add_page_to_unevictable_list(page);
718
		/*
719 720 721
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
722
		 * isolation/check_move_unevictable_pages,
723
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
724 725
		 * the page back to the evictable list.
		 *
726
		 * The other side is TestClearPageMlocked() or shmem_lock().
727 728
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
729 730 731 732 733 734 735
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
736
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
737 738 739 740 741 742 743 744 745 746
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

747
	if (was_unevictable && !is_unevictable)
748
		count_vm_event(UNEVICTABLE_PGRESCUED);
749
	else if (!was_unevictable && is_unevictable)
750 751
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
752 753 754
	put_page(page);		/* drop ref from isolate */
}

755 756 757
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
758
	PAGEREF_KEEP,
759 760 761 762 763 764
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
765
	int referenced_ptes, referenced_page;
766 767
	unsigned long vm_flags;

768 769
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
770
	referenced_page = TestClearPageReferenced(page);
771 772 773 774 775 776 777 778

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

779
	if (referenced_ptes) {
780
		if (PageSwapBacked(page))
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

798
		if (referenced_page || referenced_ptes > 1)
799 800
			return PAGEREF_ACTIVATE;

801 802 803 804 805 806
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

807 808
		return PAGEREF_KEEP;
	}
809 810

	/* Reclaim if clean, defer dirty pages to writeback */
811
	if (referenced_page && !PageSwapBacked(page))
812 813 814
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
815 816
}

817 818 819 820
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
821 822
	struct address_space *mapping;

823 824 825 826 827 828 829 830 831 832 833 834 835
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
836 837 838 839 840 841 842 843

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
844 845
}

L
Linus Torvalds 已提交
846
/*
A
Andrew Morton 已提交
847
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
848
 */
A
Andrew Morton 已提交
849
static unsigned long shrink_page_list(struct list_head *page_list,
850
				      struct zone *zone,
851
				      struct scan_control *sc,
852
				      enum ttu_flags ttu_flags,
853
				      unsigned long *ret_nr_dirty,
854
				      unsigned long *ret_nr_unqueued_dirty,
855
				      unsigned long *ret_nr_congested,
856
				      unsigned long *ret_nr_writeback,
857
				      unsigned long *ret_nr_immediate,
858
				      bool force_reclaim)
L
Linus Torvalds 已提交
859 860
{
	LIST_HEAD(ret_pages);
861
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
862
	int pgactivate = 0;
863
	unsigned long nr_unqueued_dirty = 0;
864 865
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
866
	unsigned long nr_reclaimed = 0;
867
	unsigned long nr_writeback = 0;
868
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
869 870 871 872 873 874 875

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
876
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
877
		bool dirty, writeback;
L
Linus Torvalds 已提交
878 879 880 881 882 883

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
884
		if (!trylock_page(page))
L
Linus Torvalds 已提交
885 886
			goto keep;

887 888
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
889 890

		sc->nr_scanned++;
891

892
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
893
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
894

895
		if (!sc->may_unmap && page_mapped(page))
896 897
			goto keep_locked;

L
Linus Torvalds 已提交
898 899 900 901
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

902 903 904
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

905 906 907 908 909 910 911 912 913 914 915 916 917
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

918 919 920 921 922 923
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
924
		mapping = page_mapping(page);
925
		if (((dirty || writeback) && mapping &&
926
		     inode_write_congested(mapping->host)) ||
927
		    (writeback && PageReclaim(page)))
928 929
			nr_congested++;

930 931 932 933 934 935 936 937 938 939 940
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
941 942
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
967
		if (PageWriteback(page)) {
968 969 970
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
971
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
972 973
				nr_immediate++;
				goto keep_locked;
974 975 976

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
977 978 979 980 981 982 983 984 985 986 987 988 989
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
990
				nr_writeback++;
991

992
				goto keep_locked;
993 994 995 996

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
997
			}
998
		}
L
Linus Torvalds 已提交
999

1000 1001 1002
		if (!force_reclaim)
			references = page_check_references(page, sc);

1003 1004
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1005
			goto activate_locked;
1006 1007
		case PAGEREF_KEEP:
			goto keep_locked;
1008 1009 1010 1011
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1012 1013 1014 1015 1016

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1017
		if (PageAnon(page) && !PageSwapCache(page)) {
1018 1019
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1020
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1021
				goto activate_locked;
1022
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1023

1024 1025 1026
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
1027 1028 1029 1030 1031 1032

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
1033
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
1034 1035 1036 1037
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1038 1039
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044 1045
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1046 1047
			/*
			 * Only kswapd can writeback filesystem pages to
1048 1049
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1050
			 */
1051
			if (page_is_file_cache(page) &&
1052
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1053
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1054 1055 1056 1057 1058 1059 1060 1061 1062
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1063 1064 1065
				goto keep_locked;
			}

1066
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1067
				goto keep_locked;
1068
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1069
				goto keep_locked;
1070
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1071 1072 1073
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1074
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1080
				if (PageWriteback(page))
1081
					goto keep;
1082
				if (PageDirty(page))
L
Linus Torvalds 已提交
1083
					goto keep;
1084

L
Linus Torvalds 已提交
1085 1086 1087 1088
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1089
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1109
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1120
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1121 1122
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1139 1140
		}

1141
		if (!mapping || !__remove_mapping(mapping, page, true))
1142
			goto keep_locked;
L
Linus Torvalds 已提交
1143

N
Nick Piggin 已提交
1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1152
free_it:
1153
		nr_reclaimed++;
1154 1155 1156 1157 1158 1159

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1160 1161
		continue;

N
Nick Piggin 已提交
1162
cull_mlocked:
1163 1164
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1165 1166 1167 1168
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1169
activate_locked:
1170 1171
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1172
			try_to_free_swap(page);
1173
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178 1179
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1180
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1181
	}
1182

1183
	mem_cgroup_uncharge_list(&free_pages);
1184
	free_hot_cold_page_list(&free_pages, true);
1185

L
Linus Torvalds 已提交
1186
	list_splice(&ret_pages, page_list);
1187
	count_vm_events(PGACTIVATE, pgactivate);
1188

1189 1190
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1191
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1192
	*ret_nr_writeback += nr_writeback;
1193
	*ret_nr_immediate += nr_immediate;
1194
	return nr_reclaimed;
L
Linus Torvalds 已提交
1195 1196
}

1197 1198 1199 1200 1201 1202 1203 1204
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1205
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1206 1207 1208 1209
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1210 1211
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1212 1213 1214 1215 1216 1217
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1218 1219
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1220
	list_splice(&clean_pages, page_list);
1221
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1222 1223 1224
	return ret;
}

A
Andy Whitcroft 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1235
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1236 1237 1238 1239 1240 1241 1242
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1243 1244
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1245 1246
		return ret;

A
Andy Whitcroft 已提交
1247
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1282

1283 1284 1285
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1310
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1311
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1312
 * @nr_scanned:	The number of pages that were scanned.
1313
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1314
 * @mode:	One of the LRU isolation modes
1315
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1316 1317 1318
 *
 * returns how many pages were moved onto *@dst.
 */
1319
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1320
		struct lruvec *lruvec, struct list_head *dst,
1321
		unsigned long *nr_scanned, struct scan_control *sc,
1322
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1323
{
H
Hugh Dickins 已提交
1324
	struct list_head *src = &lruvec->lists[lru];
1325
	unsigned long nr_taken = 0;
1326
	unsigned long scan;
L
Linus Torvalds 已提交
1327

1328
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1329
		struct page *page;
1330
		int nr_pages;
A
Andy Whitcroft 已提交
1331

L
Linus Torvalds 已提交
1332 1333 1334
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1335
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1336

1337
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1338
		case 0:
1339 1340
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1341
			list_move(&page->lru, dst);
1342
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1343 1344 1345 1346 1347 1348
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1349

A
Andy Whitcroft 已提交
1350 1351 1352
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1353 1354
	}

H
Hugh Dickins 已提交
1355
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1356 1357
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1358 1359 1360
	return nr_taken;
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1372 1373 1374
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1390
	VM_BUG_ON_PAGE(!page_count(page), page);
1391

1392 1393
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1394
		struct lruvec *lruvec;
1395 1396

		spin_lock_irq(&zone->lru_lock);
1397
		lruvec = mem_cgroup_page_lruvec(page, zone);
1398
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1399
			int lru = page_lru(page);
1400
			get_page(page);
1401
			ClearPageLRU(page);
1402 1403
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1404 1405 1406 1407 1408 1409
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1410
/*
F
Fengguang Wu 已提交
1411 1412 1413 1414 1415
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1416 1417 1418 1419 1420 1421 1422 1423 1424
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1425
	if (!global_reclaim(sc))
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1444 1445 1446
	return isolated > inactive;
}

1447
static noinline_for_stack void
H
Hugh Dickins 已提交
1448
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1449
{
1450 1451
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1452
	LIST_HEAD(pages_to_free);
1453 1454 1455 1456 1457

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1458
		struct page *page = lru_to_page(page_list);
1459
		int lru;
1460

1461
		VM_BUG_ON_PAGE(PageLRU(page), page);
1462
		list_del(&page->lru);
1463
		if (unlikely(!page_evictable(page))) {
1464 1465 1466 1467 1468
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1469 1470 1471

		lruvec = mem_cgroup_page_lruvec(page, zone);

1472
		SetPageLRU(page);
1473
		lru = page_lru(page);
1474 1475
		add_page_to_lru_list(page, lruvec, lru);

1476 1477
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1478 1479
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1480
		}
1481 1482 1483
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1484
			del_page_from_lru_list(page, lruvec, lru);
1485 1486 1487

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1488
				mem_cgroup_uncharge(page);
1489 1490 1491 1492
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1493 1494 1495
		}
	}

1496 1497 1498 1499
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1515
/*
A
Andrew Morton 已提交
1516 1517
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1518
 */
1519
static noinline_for_stack unsigned long
1520
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1521
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1522 1523
{
	LIST_HEAD(page_list);
1524
	unsigned long nr_scanned;
1525
	unsigned long nr_reclaimed = 0;
1526
	unsigned long nr_taken;
1527 1528
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1529
	unsigned long nr_unqueued_dirty = 0;
1530
	unsigned long nr_writeback = 0;
1531
	unsigned long nr_immediate = 0;
1532
	isolate_mode_t isolate_mode = 0;
1533
	int file = is_file_lru(lru);
1534 1535
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1536

1537
	while (unlikely(too_many_isolated(zone, file, sc))) {
1538
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1539 1540 1541 1542 1543 1544

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1545
	lru_add_drain();
1546 1547

	if (!sc->may_unmap)
1548
		isolate_mode |= ISOLATE_UNMAPPED;
1549
	if (!sc->may_writepage)
1550
		isolate_mode |= ISOLATE_CLEAN;
1551

L
Linus Torvalds 已提交
1552
	spin_lock_irq(&zone->lru_lock);
1553

1554 1555
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1556 1557 1558 1559

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1560
	if (global_reclaim(sc)) {
1561
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1562
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1563
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1564
		else
H
Hugh Dickins 已提交
1565
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1566
	}
1567
	spin_unlock_irq(&zone->lru_lock);
1568

1569
	if (nr_taken == 0)
1570
		return 0;
A
Andy Whitcroft 已提交
1571

1572
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1573 1574 1575
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1576

1577 1578
	spin_lock_irq(&zone->lru_lock);

1579
	reclaim_stat->recent_scanned[file] += nr_taken;
1580

Y
Ying Han 已提交
1581 1582 1583 1584 1585 1586 1587 1588
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1589

1590
	putback_inactive_pages(lruvec, &page_list);
1591

1592
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1593 1594 1595

	spin_unlock_irq(&zone->lru_lock);

1596
	mem_cgroup_uncharge_list(&page_list);
1597
	free_hot_cold_page_list(&page_list, true);
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1609 1610 1611
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1612
	 */
1613
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1614
		set_bit(ZONE_WRITEBACK, &zone->flags);
1615

1616
	/*
1617 1618
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1619
	 */
1620
	if (global_reclaim(sc)) {
1621 1622 1623 1624 1625
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1626
			set_bit(ZONE_CONGESTED, &zone->flags);
1627

1628 1629 1630
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1631 1632
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1633 1634
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1635
			set_bit(ZONE_DIRTY, &zone->flags);
1636 1637

		/*
1638 1639 1640
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1641 1642
		 * they are written so also forcibly stall.
		 */
1643
		if (nr_immediate && current_may_throttle())
1644
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1645
	}
1646

1647 1648 1649 1650 1651
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1652 1653
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1654 1655
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1656 1657 1658
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1659
		sc->priority,
M
Mel Gorman 已提交
1660
		trace_shrink_flags(file));
1661
	return nr_reclaimed;
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1681

1682
static void move_active_pages_to_lru(struct lruvec *lruvec,
1683
				     struct list_head *list,
1684
				     struct list_head *pages_to_free,
1685 1686
				     enum lru_list lru)
{
1687
	struct zone *zone = lruvec_zone(lruvec);
1688 1689
	unsigned long pgmoved = 0;
	struct page *page;
1690
	int nr_pages;
1691 1692 1693

	while (!list_empty(list)) {
		page = lru_to_page(list);
1694
		lruvec = mem_cgroup_page_lruvec(page, zone);
1695

1696
		VM_BUG_ON_PAGE(PageLRU(page), page);
1697 1698
		SetPageLRU(page);

1699 1700
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1701
		list_move(&page->lru, &lruvec->lists[lru]);
1702
		pgmoved += nr_pages;
1703

1704 1705 1706
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1707
			del_page_from_lru_list(page, lruvec, lru);
1708 1709 1710

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1711
				mem_cgroup_uncharge(page);
1712 1713 1714 1715
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1716 1717 1718 1719 1720 1721
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1722

H
Hugh Dickins 已提交
1723
static void shrink_active_list(unsigned long nr_to_scan,
1724
			       struct lruvec *lruvec,
1725
			       struct scan_control *sc,
1726
			       enum lru_list lru)
L
Linus Torvalds 已提交
1727
{
1728
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1729
	unsigned long nr_scanned;
1730
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1731
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1732
	LIST_HEAD(l_active);
1733
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1734
	struct page *page;
1735
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1736
	unsigned long nr_rotated = 0;
1737
	isolate_mode_t isolate_mode = 0;
1738
	int file = is_file_lru(lru);
1739
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1740 1741

	lru_add_drain();
1742 1743

	if (!sc->may_unmap)
1744
		isolate_mode |= ISOLATE_UNMAPPED;
1745
	if (!sc->may_writepage)
1746
		isolate_mode |= ISOLATE_CLEAN;
1747

L
Linus Torvalds 已提交
1748
	spin_lock_irq(&zone->lru_lock);
1749

1750 1751
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1752
	if (global_reclaim(sc))
1753
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1754

1755
	reclaim_stat->recent_scanned[file] += nr_taken;
1756

H
Hugh Dickins 已提交
1757
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1758
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1759
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1760 1761 1762 1763 1764 1765
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1766

1767
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1768 1769 1770 1771
			putback_lru_page(page);
			continue;
		}

1772 1773 1774 1775 1776 1777 1778 1779
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1780 1781
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1782
			nr_rotated += hpage_nr_pages(page);
1783 1784 1785 1786 1787 1788 1789 1790 1791
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1792
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1793 1794 1795 1796
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1797

1798
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1799 1800 1801
		list_add(&page->lru, &l_inactive);
	}

1802
	/*
1803
	 * Move pages back to the lru list.
1804
	 */
1805
	spin_lock_irq(&zone->lru_lock);
1806
	/*
1807 1808 1809
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1810
	 * get_scan_count.
1811
	 */
1812
	reclaim_stat->recent_rotated[file] += nr_rotated;
1813

1814 1815
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1816
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1817
	spin_unlock_irq(&zone->lru_lock);
1818

1819
	mem_cgroup_uncharge_list(&l_hold);
1820
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1821 1822
}

1823
#ifdef CONFIG_SWAP
1824
static int inactive_anon_is_low_global(struct zone *zone)
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1837 1838
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1839
 * @lruvec: LRU vector to check
1840 1841 1842 1843
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1844
static int inactive_anon_is_low(struct lruvec *lruvec)
1845
{
1846 1847 1848 1849 1850 1851 1852
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1853
	if (!mem_cgroup_disabled())
1854
		return mem_cgroup_inactive_anon_is_low(lruvec);
1855

1856
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1857
}
1858
#else
1859
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1860 1861 1862 1863
{
	return 0;
}
#endif
1864

1865 1866
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1867
 * @lruvec: LRU vector to check
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1879
static int inactive_file_is_low(struct lruvec *lruvec)
1880
{
1881 1882 1883 1884 1885
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1886

1887
	return active > inactive;
1888 1889
}

H
Hugh Dickins 已提交
1890
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1891
{
H
Hugh Dickins 已提交
1892
	if (is_file_lru(lru))
1893
		return inactive_file_is_low(lruvec);
1894
	else
1895
		return inactive_anon_is_low(lruvec);
1896 1897
}

1898
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1899
				 struct lruvec *lruvec, struct scan_control *sc)
1900
{
1901
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1902
		if (inactive_list_is_low(lruvec, lru))
1903
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1904 1905 1906
		return 0;
	}

1907
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1908 1909
}

1910 1911 1912 1913 1914 1915 1916
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1917 1918 1919 1920 1921 1922
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1923 1924
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1925
 */
1926
static void get_scan_count(struct lruvec *lruvec, int swappiness,
1927 1928
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1929
{
1930 1931 1932 1933
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1934
	unsigned long anon_prio, file_prio;
1935
	enum scan_balance scan_balance;
1936
	unsigned long anon, file;
1937
	bool force_scan = false;
1938
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1939
	enum lru_list lru;
1940 1941
	bool some_scanned;
	int pass;
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1953 1954 1955 1956 1957 1958
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
		if (!mem_cgroup_lruvec_online(lruvec))
			force_scan = true;
	}
1959
	if (!global_reclaim(sc))
1960
		force_scan = true;
1961 1962

	/* If we have no swap space, do not bother scanning anon pages. */
1963
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1964
		scan_balance = SCAN_FILE;
1965 1966
		goto out;
	}
1967

1968 1969 1970 1971 1972 1973 1974
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1975
	if (!global_reclaim(sc) && !swappiness) {
1976
		scan_balance = SCAN_FILE;
1977 1978 1979 1980 1981 1982 1983 1984
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
1985
	if (!sc->priority && swappiness) {
1986
		scan_balance = SCAN_EQUAL;
1987 1988 1989
		goto out;
	}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
2000 2001 2002 2003 2004 2005
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
2006

2007
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2008 2009 2010 2011 2012
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2013 2014 2015 2016 2017
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
2018
		scan_balance = SCAN_FILE;
2019 2020 2021
		goto out;
	}

2022 2023
	scan_balance = SCAN_FRACT;

2024 2025 2026 2027
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2028
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2029
	file_prio = 200 - anon_prio;
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2042 2043 2044 2045 2046 2047

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

2048
	spin_lock_irq(&zone->lru_lock);
2049 2050 2051
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2052 2053
	}

2054 2055 2056
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2057 2058 2059
	}

	/*
2060 2061 2062
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2063
	 */
2064
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2065
	ap /= reclaim_stat->recent_rotated[0] + 1;
2066

2067
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2068
	fp /= reclaim_stat->recent_rotated[1] + 1;
2069
	spin_unlock_irq(&zone->lru_lock);
2070

2071 2072 2073 2074
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2075 2076 2077
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2078
		*lru_pages = 0;
2079 2080 2081 2082
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2083

2084 2085
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2086

2087 2088
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2105 2106
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2107
					scan = 0;
2108
				}
2109 2110 2111 2112 2113
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2114 2115

			*lru_pages += size;
2116
			nr[lru] = scan;
2117

2118
			/*
2119 2120
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2121
			 */
2122
			some_scanned |= !!scan;
2123
		}
2124
	}
2125
}
2126

2127 2128 2129
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2130
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2131
			  struct scan_control *sc, unsigned long *lru_pages)
2132 2133
{
	unsigned long nr[NR_LRU_LISTS];
2134
	unsigned long targets[NR_LRU_LISTS];
2135 2136 2137 2138 2139
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2140
	bool scan_adjusted;
2141

2142
	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2143

2144 2145 2146
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2161 2162 2163
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2164 2165 2166
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2167 2168 2169 2170 2171 2172 2173 2174 2175
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2176 2177 2178 2179 2180 2181

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2182
		 * requested. Ensure that the anon and file LRUs are scanned
2183 2184 2185 2186 2187 2188 2189
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2190 2191 2192 2193 2194 2195 2196 2197 2198
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2245
/* Use reclaim/compaction for costly allocs or under memory pressure */
2246
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2247
{
2248
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2249
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2250
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2251 2252 2253 2254 2255
		return true;

	return false;
}

2256
/*
M
Mel Gorman 已提交
2257 2258 2259 2260 2261
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2262
 */
2263
static inline bool should_continue_reclaim(struct zone *zone,
2264 2265 2266 2267 2268 2269 2270 2271
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2272
	if (!in_reclaim_compaction(sc))
2273 2274
		return false;

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2297 2298 2299 2300 2301 2302

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2303
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2304
	if (get_nr_swap_pages() > 0)
2305
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2306 2307 2308 2309 2310
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2311
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2312 2313 2314 2315 2316 2317 2318 2319
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2320 2321
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2322
{
2323
	struct reclaim_state *reclaim_state = current->reclaim_state;
2324
	unsigned long nr_reclaimed, nr_scanned;
2325
	bool reclaimable = false;
L
Linus Torvalds 已提交
2326

2327 2328 2329 2330 2331 2332
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2333
		unsigned long zone_lru_pages = 0;
2334
		struct mem_cgroup *memcg;
2335

2336 2337
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2338

2339 2340
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2341
			unsigned long lru_pages;
2342
			unsigned long scanned;
2343
			struct lruvec *lruvec;
2344
			int swappiness;
2345

2346 2347 2348 2349 2350 2351
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2352
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2353
			swappiness = mem_cgroup_swappiness(memcg);
2354
			scanned = sc->nr_scanned;
2355

2356 2357
			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
			zone_lru_pages += lru_pages;
2358

2359 2360 2361 2362 2363
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2364
			/*
2365 2366
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2367
			 * zone.
2368 2369 2370 2371 2372
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2373
			 */
2374 2375
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2376 2377 2378
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2379
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2380

2381 2382 2383 2384
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2385 2386 2387 2388 2389 2390 2391 2392
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2393 2394
		}

2395 2396 2397 2398
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2399 2400 2401
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2402 2403
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2404 2405

	return reclaimable;
2406 2407
}

2408 2409 2410 2411
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2412
static inline bool compaction_ready(struct zone *zone, int order)
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2423 2424
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2425
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2426 2427 2428 2429 2430 2431
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2432
	if (compaction_deferred(zone, order))
2433 2434
		return watermark_ok;

2435 2436 2437 2438
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2439
	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2440 2441 2442 2443 2444
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2445 2446 2447 2448 2449
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2450 2451
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2452 2453
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2454 2455 2456
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2457 2458 2459
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2460 2461
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2462
 */
2463
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2464
{
2465
	struct zoneref *z;
2466
	struct zone *zone;
2467 2468
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2469
	gfp_t orig_mask;
2470
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2471
	bool reclaimable = false;
2472

2473 2474 2475 2476 2477
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2478
	orig_mask = sc->gfp_mask;
2479 2480 2481
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2482
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2483 2484 2485
					requested_highidx, sc->nodemask) {
		enum zone_type classzone_idx;

2486
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2487
			continue;
2488 2489 2490 2491 2492 2493

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2494 2495 2496 2497
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2498
		if (global_reclaim(sc)) {
2499 2500
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2501
				continue;
2502

2503 2504
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2505
				continue;	/* Let kswapd poll it */
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2522
			}
2523

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2536 2537
			if (nr_soft_reclaimed)
				reclaimable = true;
2538
			/* need some check for avoid more shrink_zone() */
2539
		}
2540

2541
		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2542 2543 2544 2545 2546
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2547
	}
2548

2549 2550 2551 2552 2553
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2554

2555
	return reclaimable;
L
Linus Torvalds 已提交
2556
}
2557

L
Linus Torvalds 已提交
2558 2559 2560 2561 2562 2563 2564 2565
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2566 2567 2568 2569
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2570 2571 2572
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2573
 */
2574
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2575
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2576
{
2577
	int initial_priority = sc->priority;
2578
	unsigned long total_scanned = 0;
2579
	unsigned long writeback_threshold;
2580
	bool zones_reclaimable;
2581
retry:
2582 2583
	delayacct_freepages_start();

2584
	if (global_reclaim(sc))
2585
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2586

2587
	do {
2588 2589
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2590
		sc->nr_scanned = 0;
2591
		zones_reclaimable = shrink_zones(zonelist, sc);
2592

2593
		total_scanned += sc->nr_scanned;
2594
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2595 2596 2597 2598
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2599

2600 2601 2602 2603 2604 2605 2606
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612 2613
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2614 2615
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2616 2617
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2618
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2619
		}
2620
	} while (--sc->priority >= 0);
2621

2622 2623
	delayacct_freepages_end();

2624 2625 2626
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2627
	/* Aborted reclaim to try compaction? don't OOM, then */
2628
	if (sc->compaction_ready)
2629 2630
		return 1;

2631 2632 2633 2634 2635 2636 2637
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2638 2639
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2640 2641 2642
		return 1;

	return 0;
L
Linus Torvalds 已提交
2643 2644
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2655 2656 2657
		if (!populated_zone(zone))
			continue;

2658 2659 2660 2661
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2662 2663 2664 2665
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2682 2683 2684 2685
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2686
 */
2687
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2688 2689
					nodemask_t *nodemask)
{
2690
	struct zoneref *z;
2691
	struct zone *zone;
2692
	pg_data_t *pgdat = NULL;
2693 2694 2695 2696 2697 2698 2699 2700 2701

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2702 2703 2704 2705 2706 2707 2708 2709
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2726
					gfp_zone(gfp_mask), nodemask) {
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2739
		goto out;
2740

2741 2742 2743
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2755 2756

		goto check_pending;
2757 2758 2759 2760 2761
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2762 2763 2764 2765 2766 2767 2768

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2769 2770
}

2771
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2772
				gfp_t gfp_mask, nodemask_t *nodemask)
2773
{
2774
	unsigned long nr_reclaimed;
2775
	struct scan_control sc = {
2776
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2777
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2778 2779 2780
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2781
		.may_writepage = !laptop_mode,
2782
		.may_unmap = 1,
2783
		.may_swap = 1,
2784 2785
	};

2786
	/*
2787 2788 2789
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2790
	 */
2791
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2792 2793
		return 1;

2794 2795 2796 2797
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2798
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2799 2800 2801 2802

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2803 2804
}

A
Andrew Morton 已提交
2805
#ifdef CONFIG_MEMCG
2806

2807
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2808
						gfp_t gfp_mask, bool noswap,
2809 2810
						struct zone *zone,
						unsigned long *nr_scanned)
2811 2812
{
	struct scan_control sc = {
2813
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2814
		.target_mem_cgroup = memcg,
2815 2816 2817 2818
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2819
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2820
	int swappiness = mem_cgroup_swappiness(memcg);
2821
	unsigned long lru_pages;
2822

2823 2824
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2825

2826
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2827 2828 2829
						      sc.may_writepage,
						      sc.gfp_mask);

2830 2831 2832 2833 2834 2835 2836
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2837
	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2838 2839 2840

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2841
	*nr_scanned = sc.nr_scanned;
2842 2843 2844
	return sc.nr_reclaimed;
}

2845
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2846
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2847
					   gfp_t gfp_mask,
2848
					   bool may_swap)
2849
{
2850
	struct zonelist *zonelist;
2851
	unsigned long nr_reclaimed;
2852
	int nid;
2853
	struct scan_control sc = {
2854
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2855 2856
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2857 2858 2859 2860
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2861
		.may_swap = may_swap,
2862
	};
2863

2864 2865 2866 2867 2868
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2869
	nid = mem_cgroup_select_victim_node(memcg);
2870 2871

	zonelist = NODE_DATA(nid)->node_zonelists;
2872 2873 2874 2875 2876

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2877
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2878 2879 2880 2881

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2882 2883 2884
}
#endif

2885
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2886
{
2887
	struct mem_cgroup *memcg;
2888

2889 2890 2891 2892 2893
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2894
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2895

2896
		if (inactive_anon_is_low(lruvec))
2897
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2898
					   sc, LRU_ACTIVE_ANON);
2899 2900 2901

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2902 2903
}

2904 2905 2906 2907 2908 2909 2910
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2911 2912
	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
				order, 0, classzone_idx) == COMPACT_SKIPPED)
2913 2914 2915 2916 2917
		return false;

	return true;
}

2918
/*
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2929 2930 2931 2932
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2933
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2934 2935 2936 2937
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2938
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2939
{
2940
	unsigned long managed_pages = 0;
2941
	unsigned long balanced_pages = 0;
2942 2943
	int i;

2944 2945 2946
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2947

2948 2949 2950
		if (!populated_zone(zone))
			continue;

2951
		managed_pages += zone->managed_pages;
2952 2953 2954 2955 2956 2957 2958 2959

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2960
		if (!zone_reclaimable(zone)) {
2961
			balanced_pages += zone->managed_pages;
2962 2963 2964 2965
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2966
			balanced_pages += zone->managed_pages;
2967 2968 2969 2970 2971
		else if (!order)
			return false;
	}

	if (order)
2972
		return balanced_pages >= (managed_pages >> 2);
2973 2974
	else
		return true;
2975 2976
}

2977 2978 2979 2980 2981 2982 2983
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2984
					int classzone_idx)
2985 2986 2987
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2988 2989 2990
		return false;

	/*
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3002
	 */
3003 3004
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3005

3006
	return pgdat_balanced(pgdat, order, classzone_idx);
3007 3008
}

3009 3010 3011
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3012 3013
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3014 3015
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3016
 */
3017
static bool kswapd_shrink_zone(struct zone *zone,
3018
			       int classzone_idx,
3019
			       struct scan_control *sc,
3020
			       unsigned long *nr_attempted)
3021
{
3022 3023 3024
	int testorder = sc->order;
	unsigned long balance_gap;
	bool lowmem_pressure;
3025 3026 3027

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3028 3029 3030 3031 3032 3033 3034 3035

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3036 3037
			compaction_suitable(zone, sc->order, 0, classzone_idx)
							!= COMPACT_SKIPPED)
3038 3039 3040 3041 3042 3043 3044 3045
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3046 3047
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

3058
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3059

3060 3061 3062
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
3063
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3064

3065 3066 3067 3068 3069 3070
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3071
	if (zone_reclaimable(zone) &&
3072
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
3073 3074
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3075 3076
	}

3077
	return sc->nr_scanned >= sc->nr_to_reclaim;
3078 3079
}

L
Linus Torvalds 已提交
3080 3081
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3082
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3083
 *
3084
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3095 3096 3097 3098 3099
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3100
 */
3101
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3102
							int *classzone_idx)
L
Linus Torvalds 已提交
3103 3104
{
	int i;
3105
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3106 3107
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3108 3109
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3110
		.order = order,
3111
		.priority = DEF_PRIORITY,
3112
		.may_writepage = !laptop_mode,
3113
		.may_unmap = 1,
3114
		.may_swap = 1,
3115
	};
3116
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3117

3118
	do {
3119
		unsigned long nr_attempted = 0;
3120
		bool raise_priority = true;
3121
		bool pgdat_needs_compaction = (order > 0);
3122 3123

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3124

3125 3126 3127 3128 3129 3130
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3131

3132 3133
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3134

3135 3136
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3137
				continue;
L
Linus Torvalds 已提交
3138

3139 3140 3141 3142
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3143
			age_active_anon(zone, &sc);
3144

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3156
			if (!zone_balanced(zone, order, 0, 0)) {
3157
				end_zone = i;
A
Andrew Morton 已提交
3158
				break;
3159
			} else {
3160 3161 3162 3163
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3164 3165
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3166 3167
			}
		}
3168

3169
		if (i < 0)
A
Andrew Morton 已提交
3170 3171
			goto out;

L
Linus Torvalds 已提交
3172 3173 3174
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
			if (!populated_zone(zone))
				continue;

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3188 3189
		}

3190 3191 3192 3193 3194 3195 3196
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3209
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3210 3211
				continue;

3212 3213
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3214 3215 3216
				continue;

			sc.nr_scanned = 0;
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3227
			/*
3228 3229 3230 3231
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3232
			 */
3233 3234
			if (kswapd_shrink_zone(zone, end_zone,
					       &sc, &nr_attempted))
3235
				raise_priority = false;
L
Linus Torvalds 已提交
3236
		}
3237 3238 3239 3240 3241 3242 3243 3244

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3245
			wake_up_all(&pgdat->pfmemalloc_wait);
3246

L
Linus Torvalds 已提交
3247
		/*
3248 3249 3250 3251 3252 3253
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3254
		 */
3255 3256
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3257

3258 3259 3260
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3261

3262 3263 3264 3265 3266 3267 3268
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3269
		/*
3270 3271
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3272
		 */
3273 3274
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3275
	} while (sc.priority >= 1 &&
3276
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3277

3278
out:
3279
	/*
3280
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3281 3282 3283 3284
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3285
	*classzone_idx = end_zone;
3286
	return order;
L
Linus Torvalds 已提交
3287 3288
}

3289
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3300
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3301 3302 3303 3304 3305 3306 3307 3308 3309
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3310
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3322

3323 3324 3325 3326 3327 3328 3329 3330
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3331 3332 3333
		if (!kthread_should_stop())
			schedule();

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3344 3345
/*
 * The background pageout daemon, started as a kernel thread
3346
 * from the init process.
L
Linus Torvalds 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3359
	unsigned long order, new_order;
3360
	unsigned balanced_order;
3361
	int classzone_idx, new_classzone_idx;
3362
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3363 3364
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3365

L
Linus Torvalds 已提交
3366 3367 3368
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3369
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3370

3371 3372
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3373
	if (!cpumask_empty(cpumask))
3374
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3389
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3390
	set_freezable();
L
Linus Torvalds 已提交
3391

3392
	order = new_order = 0;
3393
	balanced_order = 0;
3394
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3395
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3396
	for ( ; ; ) {
3397
		bool ret;
3398

3399 3400 3401 3402 3403
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3404 3405
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3406 3407 3408 3409 3410 3411
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3412
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3413 3414
			/*
			 * Don't sleep if someone wants a larger 'order'
3415
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3416 3417
			 */
			order = new_order;
3418
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3419
		} else {
3420 3421
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3422
			order = pgdat->kswapd_max_order;
3423
			classzone_idx = pgdat->classzone_idx;
3424 3425
			new_order = order;
			new_classzone_idx = classzone_idx;
3426
			pgdat->kswapd_max_order = 0;
3427
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3428 3429
		}

3430 3431 3432 3433 3434 3435 3436 3437
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3438 3439
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3440 3441 3442
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3443
		}
L
Linus Torvalds 已提交
3444
	}
3445

3446
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3447
	current->reclaim_state = NULL;
3448 3449
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3450 3451 3452 3453 3454 3455
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3456
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3457 3458 3459
{
	pg_data_t *pgdat;

3460
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3461 3462
		return;

3463
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3464
		return;
3465
	pgdat = zone->zone_pgdat;
3466
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3467
		pgdat->kswapd_max_order = order;
3468 3469
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3470
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3471
		return;
3472
	if (zone_balanced(zone, order, 0, 0))
3473 3474 3475
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3476
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3477 3478
}

3479
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3480
/*
3481
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3482 3483 3484 3485 3486
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3487
 */
3488
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3489
{
3490 3491
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3492
		.nr_to_reclaim = nr_to_reclaim,
3493
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3494
		.priority = DEF_PRIORITY,
3495
		.may_writepage = 1,
3496 3497
		.may_unmap = 1,
		.may_swap = 1,
3498
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3499
	};
3500
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3501 3502
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3503

3504 3505 3506 3507
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3508

3509
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3510

3511 3512 3513
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3514

3515
	return nr_reclaimed;
L
Linus Torvalds 已提交
3516
}
3517
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3518 3519 3520 3521 3522

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3523 3524
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3525
{
3526
	int nid;
L
Linus Torvalds 已提交
3527

3528
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3529
		for_each_node_state(nid, N_MEMORY) {
3530
			pg_data_t *pgdat = NODE_DATA(nid);
3531 3532 3533
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3534

3535
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3536
				/* One of our CPUs online: restore mask */
3537
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3538 3539 3540 3541 3542
		}
	}
	return NOTIFY_OK;
}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3559 3560
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3561
		pgdat->kswapd = NULL;
3562 3563 3564 3565
	}
	return ret;
}

3566
/*
3567
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3568
 * hold mem_hotplug_begin/end().
3569 3570 3571 3572 3573
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3574
	if (kswapd) {
3575
		kthread_stop(kswapd);
3576 3577
		NODE_DATA(nid)->kswapd = NULL;
	}
3578 3579
}

L
Linus Torvalds 已提交
3580 3581
static int __init kswapd_init(void)
{
3582
	int nid;
3583

L
Linus Torvalds 已提交
3584
	swap_setup();
3585
	for_each_node_state(nid, N_MEMORY)
3586
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3602
#define RECLAIM_OFF 0
3603
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3604 3605 3606
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3607 3608 3609 3610 3611 3612 3613
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3614 3615 3616 3617 3618 3619
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3620 3621 3622 3623 3624 3625
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3668 3669 3670
/*
 * Try to free up some pages from this zone through reclaim.
 */
3671
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3672
{
3673
	/* Minimum pages needed in order to stay on node */
3674
	const unsigned long nr_pages = 1 << order;
3675 3676
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3677
	struct scan_control sc = {
3678
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3679
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3680
		.order = order,
3681
		.priority = ZONE_RECLAIM_PRIORITY,
3682 3683 3684
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.may_swap = 1,
3685
	};
3686 3687

	cond_resched();
3688 3689 3690 3691 3692 3693
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3694
	lockdep_set_current_reclaim_state(gfp_mask);
3695 3696
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3697

3698
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3699 3700 3701 3702 3703
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3704
			shrink_zone(zone, &sc, true);
3705
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3706
	}
3707

3708
	p->reclaim_state = NULL;
3709
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3710
	lockdep_clear_current_reclaim_state();
3711
	return sc.nr_reclaimed >= nr_pages;
3712
}
3713 3714 3715 3716

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3717
	int ret;
3718 3719

	/*
3720 3721
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3722
	 *
3723 3724 3725 3726 3727
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3728
	 */
3729 3730
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3731
		return ZONE_RECLAIM_FULL;
3732

3733
	if (!zone_reclaimable(zone))
3734
		return ZONE_RECLAIM_FULL;
3735

3736
	/*
3737
	 * Do not scan if the allocation should not be delayed.
3738
	 */
3739
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3740
		return ZONE_RECLAIM_NOSCAN;
3741 3742 3743 3744 3745 3746 3747

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3748
	node_id = zone_to_nid(zone);
3749
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3750
		return ZONE_RECLAIM_NOSCAN;
3751

J
Johannes Weiner 已提交
3752
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3753 3754
		return ZONE_RECLAIM_NOSCAN;

3755
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3756
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3757

3758 3759 3760
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3761
	return ret;
3762
}
3763
#endif
L
Lee Schermerhorn 已提交
3764 3765 3766 3767 3768 3769

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3770
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3771 3772
 *
 * Reasons page might not be evictable:
3773
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3774
 * (2) page is part of an mlocked VMA
3775
 *
L
Lee Schermerhorn 已提交
3776
 */
3777
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3778
{
3779
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3780
}
3781

3782
#ifdef CONFIG_SHMEM
3783
/**
3784 3785 3786
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3787
 *
3788
 * Checks pages for evictability and moves them to the appropriate lru list.
3789 3790
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3791
 */
3792
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3793
{
3794
	struct lruvec *lruvec;
3795 3796 3797 3798
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3799

3800 3801 3802
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3803

3804 3805 3806 3807 3808 3809 3810 3811
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3812
		lruvec = mem_cgroup_page_lruvec(page, zone);
3813

3814 3815
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3816

3817
		if (page_evictable(page)) {
3818 3819
			enum lru_list lru = page_lru_base_type(page);

3820
			VM_BUG_ON_PAGE(PageActive(page), page);
3821
			ClearPageUnevictable(page);
3822 3823
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3824
			pgrescued++;
3825
		}
3826
	}
3827

3828 3829 3830 3831
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3832 3833
	}
}
3834
#endif /* CONFIG_SHMEM */