vmscan.c 98.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107 108
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

109 110 111 112 113
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
150
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
151 152 153 154

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

155
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157
#else
158
#define scanning_global_lru(sc)	(1)
159 160
#endif

161 162 163
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
164
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
165 166
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

167 168 169
	return &zone->reclaim_stat;
}

170 171
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
172
{
173
	if (!scanning_global_lru(sc))
174 175
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176

177 178 179 180
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
181 182 183
/*
 * Add a shrinker callback to be called from the vm
 */
184
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
185
{
186
	atomic_long_set(&shrinker->nr_in_batch, 0);
187 188 189
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
190
}
191
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
192 193 194 195

/*
 * Remove one
 */
196
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
197 198 199 200 201
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
202
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
221
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
222 223 224 225 226 227 228
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
229 230
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
231
 */
232
unsigned long shrink_slab(struct shrink_control *shrink,
233
			  unsigned long nr_pages_scanned,
234
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
235 236
{
	struct shrinker *shrinker;
237
	unsigned long ret = 0;
L
Linus Torvalds 已提交
238

239 240
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
241

242 243 244 245 246
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
247 248 249

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
250 251
		long total_scan;
		long max_pass;
252
		int shrink_ret = 0;
253 254
		long nr;
		long new_nr;
255 256
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
257

258 259 260 261
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

262 263 264 265 266
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
267
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268 269

		total_scan = nr;
270
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
271
		delta *= max_pass;
L
Linus Torvalds 已提交
272
		do_div(delta, lru_pages + 1);
273 274
		total_scan += delta;
		if (total_scan < 0) {
275 276
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
277 278
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
279 280
		}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

296 297 298 299 300
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
301 302
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
303

304
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 306 307
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

308
		while (total_scan >= batch_size) {
309
			int nr_before;
L
Linus Torvalds 已提交
310

311 312
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
313
							batch_size);
L
Linus Torvalds 已提交
314 315
			if (shrink_ret == -1)
				break;
316 317
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
318 319
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
320 321 322 323

			cond_resched();
		}

324 325 326 327 328
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
329 330 331 332 333
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
334 335

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
336 337
	}
	up_read(&shrinker_rwsem);
338 339
out:
	cond_resched();
340
	return ret;
L
Linus Torvalds 已提交
341 342
}

343
static void set_reclaim_mode(int priority, struct scan_control *sc,
344 345
				   bool sync)
{
346
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347 348

	/*
349 350 351
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
352
	 */
353
	if (COMPACTION_BUILD)
354
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355
	else
356
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357 358

	/*
359 360 361
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
362 363
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364
		sc->reclaim_mode |= syncmode;
365
	else if (sc->order && priority < DEF_PRIORITY - 2)
366
		sc->reclaim_mode |= syncmode;
367
	else
368
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 370
}

371
static void reset_reclaim_mode(struct scan_control *sc)
372
{
373
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 375
}

L
Linus Torvalds 已提交
376 377
static inline int is_page_cache_freeable(struct page *page)
{
378 379 380 381 382
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
383
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
384 385
}

386 387
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
388
{
389
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
390 391 392 393 394
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
395 396 397 398

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
417
	lock_page(page);
418 419
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
420 421 422
	unlock_page(page);
}

423 424 425 426 427 428 429 430 431 432 433 434
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
435
/*
A
Andrew Morton 已提交
436 437
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
438
 */
439
static pageout_t pageout(struct page *page, struct address_space *mapping,
440
			 struct scan_control *sc)
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
449
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
465
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
466 467
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
468
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
469 470 471 472 473 474 475
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
476
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
477 478 479 480 481 482 483
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
484 485
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
486 487 488 489 490 491 492
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
493
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
494 495 496
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
497

L
Linus Torvalds 已提交
498 499 500 501
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
502
		trace_mm_vmscan_writepage(page,
503
			trace_reclaim_flags(page, sc->reclaim_mode));
504
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
505 506 507 508 509 510
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

511
/*
N
Nick Piggin 已提交
512 513
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
514
 */
N
Nick Piggin 已提交
515
static int __remove_mapping(struct address_space *mapping, struct page *page)
516
{
517 518
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
519

N
Nick Piggin 已提交
520
	spin_lock_irq(&mapping->tree_lock);
521
	/*
N
Nick Piggin 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
545
	 */
N
Nick Piggin 已提交
546
	if (!page_freeze_refs(page, 2))
547
		goto cannot_free;
N
Nick Piggin 已提交
548 549 550
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
551
		goto cannot_free;
N
Nick Piggin 已提交
552
	}
553 554 555 556

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
557
		spin_unlock_irq(&mapping->tree_lock);
558
		swapcache_free(swap, page);
N
Nick Piggin 已提交
559
	} else {
560 561 562 563
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

564
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
565
		spin_unlock_irq(&mapping->tree_lock);
566
		mem_cgroup_uncharge_cache_page(page);
567 568 569

		if (freepage != NULL)
			freepage(page);
570 571 572 573 574
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
575
	spin_unlock_irq(&mapping->tree_lock);
576 577 578
	return 0;
}

N
Nick Piggin 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
612
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
626
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
627 628 629 630 631 632 633 634
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
635
		/*
636 637 638 639 640
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
		 * isolation/check_move_unevictable_page,
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641 642
		 * the page back to the evictable list.
		 *
643
		 * The other side is TestClearPageMlocked() or shmem_lock().
644 645
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

664 665 666 667 668
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
669 670 671
	put_page(page);		/* drop ref from isolate */
}

672 673 674
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
675
	PAGEREF_KEEP,
676 677 678 679 680 681
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
682
	int referenced_ptes, referenced_page;
683 684
	unsigned long vm_flags;

685 686
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
687 688

	/* Lumpy reclaim - ignore references */
689
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690 691 692 693 694 695 696 697 698
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
723 724

	/* Reclaim if clean, defer dirty pages to writeback */
725
	if (referenced_page && !PageSwapBacked(page))
726 727 728
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
749
/*
A
Andrew Morton 已提交
750
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
751
 */
A
Andrew Morton 已提交
752
static unsigned long shrink_page_list(struct list_head *page_list,
753
				      struct zone *zone,
754
				      struct scan_control *sc,
755 756 757
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
758 759
{
	LIST_HEAD(ret_pages);
760
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
761
	int pgactivate = 0;
762 763
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
764
	unsigned long nr_reclaimed = 0;
765
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
766 767 768 769

	cond_resched();

	while (!list_empty(page_list)) {
770
		enum page_references references;
L
Linus Torvalds 已提交
771 772 773 774 775 776 777 778 779
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
780
		if (!trylock_page(page))
L
Linus Torvalds 已提交
781 782
			goto keep;

N
Nick Piggin 已提交
783
		VM_BUG_ON(PageActive(page));
784
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
785 786

		sc->nr_scanned++;
787

N
Nick Piggin 已提交
788 789
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
790

791
		if (!sc->may_unmap && page_mapped(page))
792 793
			goto keep_locked;

L
Linus Torvalds 已提交
794 795 796 797
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

798 799 800 801
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
802
			nr_writeback++;
803
			/*
804 805 806 807
			 * Synchronous reclaim cannot queue pages for
			 * writeback due to the possibility of stack overflow
			 * but if it encounters a page under writeback, wait
			 * for the IO to complete.
808
			 */
809
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810
			    may_enter_fs)
811
				wait_on_page_writeback(page);
812 813 814 815
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
816
		}
L
Linus Torvalds 已提交
817

818 819 820
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
821
			goto activate_locked;
822 823
		case PAGEREF_KEEP:
			goto keep_locked;
824 825 826 827
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
828 829 830 831 832

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
833
		if (PageAnon(page) && !PageSwapCache(page)) {
834 835
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
836
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
837
				goto activate_locked;
838
			may_enter_fs = 1;
N
Nick Piggin 已提交
839
		}
L
Linus Torvalds 已提交
840 841 842 843 844 845 846 847

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
848
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
849 850 851 852
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
853 854
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
855 856 857 858 859 860
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
861 862
			nr_dirty++;

863 864
			/*
			 * Only kswapd can writeback filesystem pages to
865 866
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
867
			 */
868 869
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870 871 872 873 874 875 876 877 878
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

879 880 881
				goto keep_locked;
			}

882
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
883
				goto keep_locked;
884
			if (!may_enter_fs)
L
Linus Torvalds 已提交
885
				goto keep_locked;
886
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
887 888 889
				goto keep_locked;

			/* Page is dirty, try to write it out here */
890
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
891
			case PAGE_KEEP:
892
				nr_congested++;
L
Linus Torvalds 已提交
893 894 895 896
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
897 898 899
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
900
					goto keep;
901

L
Linus Torvalds 已提交
902 903 904 905
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
906
				if (!trylock_page(page))
L
Linus Torvalds 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
926
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
937
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
938 939
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
956 957
		}

N
Nick Piggin 已提交
958
		if (!mapping || !__remove_mapping(mapping, page))
959
			goto keep_locked;
L
Linus Torvalds 已提交
960

N
Nick Piggin 已提交
961 962 963 964 965 966 967 968
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
969
free_it:
970
		nr_reclaimed++;
971 972 973 974 975 976

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
977 978
		continue;

N
Nick Piggin 已提交
979
cull_mlocked:
980 981
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
982 983
		unlock_page(page);
		putback_lru_page(page);
984
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
985 986
		continue;

L
Linus Torvalds 已提交
987
activate_locked:
988 989
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
990
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
991
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
992 993 994 995 996
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
997
		reset_reclaim_mode(sc);
998
keep_lumpy:
L
Linus Torvalds 已提交
999
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1000
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1001
	}
1002

1003 1004 1005 1006 1007 1008
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
1009
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1010 1011
		zone_set_flag(zone, ZONE_CONGESTED);

1012 1013
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
1014
	list_splice(&ret_pages, page_list);
1015
	count_vm_events(PGACTIVATE, pgactivate);
1016 1017
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
1018
	return nr_reclaimed;
L
Linus Torvalds 已提交
1019 1020
}

A
Andy Whitcroft 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1031
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1032
{
1033
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1034 1035 1036 1037 1038 1039
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1040 1041 1042
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1043 1044 1045 1046 1047
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1048
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1049 1050
		return ret;

1051
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1052 1053
		return ret;

L
Lee Schermerhorn 已提交
1054 1055 1056 1057 1058 1059 1060 1061
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1062
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1063

1064 1065 1066
	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
		return ret;

1067 1068 1069
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1097 1098
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1099
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1100 1101 1102
 *
 * returns how many pages were moved onto *@dst.
 */
1103 1104
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1105 1106
		unsigned long *scanned, int order, isolate_mode_t mode,
		int file)
L
Linus Torvalds 已提交
1107
{
1108
	unsigned long nr_taken = 0;
1109 1110 1111
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1112
	unsigned long scan;
L
Linus Torvalds 已提交
1113

1114
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1115 1116 1117 1118 1119 1120
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1121 1122 1123
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1124
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1125

1126
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1127 1128
		case 0:
			list_move(&page->lru, dst);
1129
			mem_cgroup_del_lru(page);
1130
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1131 1132 1133 1134 1135
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1136
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1137
			continue;
1138

A
Andy Whitcroft 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1151
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1171

A
Andy Whitcroft 已提交
1172 1173
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1174
				break;
1175 1176 1177 1178 1179 1180 1181

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1182 1183
			    !PageSwapCache(cursor_page))
				break;
1184

1185
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1186
				list_move(&cursor_page->lru, dst);
1187
				mem_cgroup_del_lru(cursor_page);
1188
				nr_taken += hpage_nr_pages(page);
1189 1190 1191
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1192
				scan++;
1193
			} else {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1208 1209
					continue;
				break;
A
Andy Whitcroft 已提交
1210 1211
			}
		}
1212 1213 1214 1215

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1216 1217 1218
	}

	*scanned = scan;
1219 1220 1221 1222 1223 1224

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1225 1226 1227
	return nr_taken;
}

1228 1229 1230
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
1231 1232
					isolate_mode_t mode,
					struct zone *z,	int active, int file)
1233
{
1234
	int lru = LRU_BASE;
1235
	if (active)
1236 1237 1238 1239
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1240
								mode, file);
1241 1242
}

A
Andy Whitcroft 已提交
1243 1244 1245 1246
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1247 1248
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1249 1250
{
	int nr_active = 0;
1251
	int lru;
A
Andy Whitcroft 已提交
1252 1253
	struct page *page;

1254
	list_for_each_entry(page, page_list, lru) {
1255
		int numpages = hpage_nr_pages(page);
1256
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1257
		if (PageActive(page)) {
1258
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1259
			ClearPageActive(page);
1260
			nr_active += numpages;
A
Andy Whitcroft 已提交
1261
		}
1262
		if (count)
1263
			count[lru] += numpages;
1264
	}
A
Andy Whitcroft 已提交
1265 1266 1267 1268

	return nr_active;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1280 1281 1282
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1298 1299
	VM_BUG_ON(!page_count(page));

1300 1301 1302 1303
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1304
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1305
			int lru = page_lru(page);
1306
			ret = 0;
1307
			get_page(page);
1308
			ClearPageLRU(page);
1309 1310

			del_page_from_lru_list(zone, page, lru);
1311 1312 1313 1314 1315 1316
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1342 1343 1344 1345
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1346
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1347 1348 1349 1350 1351
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1352
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1371
		SetPageLRU(page);
1372
		lru = page_lru(page);
1373
		add_page_to_lru_list(zone, page, lru);
1374 1375
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1376 1377
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1423
/*
1424
 * Returns true if a direct reclaim should wait on pages under writeback.
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1443
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1444 1445
		return false;

1446
	/* If we have reclaimed everything on the isolated list, no stall */
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1464
/*
A
Andrew Morton 已提交
1465 1466
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1467
 */
1468 1469 1470
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1471 1472
{
	LIST_HEAD(page_list);
1473
	unsigned long nr_scanned;
1474
	unsigned long nr_reclaimed = 0;
1475 1476 1477
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1478 1479
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1480
	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1481

1482
	while (unlikely(too_many_isolated(zone, file, sc))) {
1483
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1484 1485 1486 1487 1488 1489

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1490
	set_reclaim_mode(priority, sc, false);
1491 1492 1493
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
		reclaim_mode |= ISOLATE_ACTIVE;

L
Linus Torvalds 已提交
1494
	lru_add_drain();
1495 1496 1497 1498 1499 1500

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1501
	spin_lock_irq(&zone->lru_lock);
1502

1503
	if (scanning_global_lru(sc)) {
1504 1505
		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1506 1507 1508 1509 1510 1511 1512 1513
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
1514 1515 1516
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone,
			sc->mem_cgroup, 0, file);
1517 1518 1519 1520 1521
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1522

1523 1524 1525 1526
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1527

1528
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1529

1530
	spin_unlock_irq(&zone->lru_lock);
1531

1532 1533
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
						&nr_dirty, &nr_writeback);
1534

1535 1536
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1537
		set_reclaim_mode(priority, sc, true);
1538 1539
		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
					priority, &nr_dirty, &nr_writeback);
1540
	}
1541

1542 1543 1544 1545
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1546

1547
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1575 1576 1577 1578
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1579
		trace_shrink_flags(file, sc->reclaim_mode));
1580
	return nr_reclaimed;
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1619
		pgmoved += hpage_nr_pages(page);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1633

A
Andrew Morton 已提交
1634
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1635
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1636
{
1637
	unsigned long nr_taken;
1638
	unsigned long pgscanned;
1639
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1640
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1641
	LIST_HEAD(l_active);
1642
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1643
	struct page *page;
1644
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1645
	unsigned long nr_rotated = 0;
1646
	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
L
Linus Torvalds 已提交
1647 1648

	lru_add_drain();
1649 1650 1651 1652 1653 1654

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1655
	spin_lock_irq(&zone->lru_lock);
1656
	if (scanning_global_lru(sc)) {
1657 1658
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
1659
						reclaim_mode, zone,
1660
						1, file);
1661
		zone->pages_scanned += pgscanned;
1662 1663 1664
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
1665
						reclaim_mode, zone,
1666 1667 1668 1669 1670
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1671
	}
1672

1673
	reclaim_stat->recent_scanned[file] += nr_taken;
1674

1675
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1676
	if (file)
1677
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1678
	else
1679
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1680
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1687

L
Lee Schermerhorn 已提交
1688 1689 1690 1691 1692
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1693
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1694
			nr_rotated += hpage_nr_pages(page);
1695 1696 1697 1698 1699 1700 1701 1702 1703
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1704
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1705 1706 1707 1708
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1709

1710
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1711 1712 1713
		list_add(&page->lru, &l_inactive);
	}

1714
	/*
1715
	 * Move pages back to the lru list.
1716
	 */
1717
	spin_lock_irq(&zone->lru_lock);
1718
	/*
1719 1720 1721 1722
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1723
	 */
1724
	reclaim_stat->recent_rotated[file] += nr_rotated;
1725

1726 1727 1728 1729
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1730
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1731
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1732 1733
}

1734
#ifdef CONFIG_SWAP
1735
static int inactive_anon_is_low_global(struct zone *zone)
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1760 1761 1762 1763 1764 1765 1766
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1767
	if (scanning_global_lru(sc))
1768 1769
		low = inactive_anon_is_low_global(zone);
	else
1770
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1771 1772
	return low;
}
1773 1774 1775 1776 1777 1778 1779
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
1813
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1814 1815 1816
	return low;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1826
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1827 1828
	struct zone *zone, struct scan_control *sc, int priority)
{
1829 1830
	int file = is_file_lru(lru);

1831 1832 1833
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1834 1835 1836
		return 0;
	}

R
Rik van Riel 已提交
1837
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1838 1839
}

1840 1841 1842 1843 1844 1845 1846
static int vmscan_swappiness(struct scan_control *sc)
{
	if (scanning_global_lru(sc))
		return vm_swappiness;
	return mem_cgroup_swappiness(sc->mem_cgroup);
}

1847 1848 1849 1850 1851 1852
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1853
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1854
 */
1855 1856
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1857 1858 1859 1860
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1861
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1862 1863 1864
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1865
	bool force_scan = false;
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1877 1878 1879 1880
	if (scanning_global_lru(sc) && current_is_kswapd())
		force_scan = true;
	if (!scanning_global_lru(sc))
		force_scan = true;
1881 1882 1883 1884 1885 1886 1887 1888 1889

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1890

1891 1892 1893 1894 1895
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

1896
	if (scanning_global_lru(sc)) {
1897 1898 1899
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1900
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1901 1902 1903 1904
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1905
		}
1906 1907
	}

1908 1909 1910 1911
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1912 1913
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1926
	spin_lock_irq(&zone->lru_lock);
1927 1928 1929
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1930 1931
	}

1932 1933 1934
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1935 1936 1937
	}

	/*
1938 1939 1940
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1941
	 */
1942 1943
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1944

1945 1946
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1947
	spin_unlock_irq(&zone->lru_lock);
1948

1949 1950 1951 1952 1953 1954 1955
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1956

1957 1958 1959
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
1960 1961
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1962 1963
			scan = div64_u64(scan * fraction[file], denominator);
		}
1964
		nr[l] = scan;
1965
	}
1966
}
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1984
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1985 1986
		return false;

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
2031 2032 2033
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2034
static void shrink_zone(int priority, struct zone *zone,
2035
				struct scan_control *sc)
L
Linus Torvalds 已提交
2036
{
2037
	unsigned long nr[NR_LRU_LISTS];
2038
	unsigned long nr_to_scan;
2039
	enum lru_list l;
2040
	unsigned long nr_reclaimed, nr_scanned;
2041
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2042
	struct blk_plug plug;
2043

2044 2045
restart:
	nr_reclaimed = 0;
2046
	nr_scanned = sc->nr_scanned;
2047
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
2048

2049
	blk_start_plug(&plug);
2050 2051
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2052
		for_each_evictable_lru(l) {
2053
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2054 2055
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2056
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2057

2058 2059
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
2060
			}
L
Linus Torvalds 已提交
2061
		}
2062 2063 2064 2065 2066 2067 2068 2069
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2070
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2071
			break;
L
Linus Torvalds 已提交
2072
	}
2073
	blk_finish_plug(&plug);
2074
	sc->nr_reclaimed += nr_reclaimed;
2075

2076 2077 2078 2079
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2080
	if (inactive_anon_is_low(zone, sc))
2081 2082
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

2083 2084 2085 2086 2087
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2088
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2096 2097
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2098 2099
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2100 2101 2102
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2103 2104 2105
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2106 2107 2108 2109
 *
 * This function returns true if a zone is being reclaimed for a costly
 * high-order allocation and compaction is either ready to begin or deferred.
 * This indicates to the caller that it should retry the allocation or fail.
L
Linus Torvalds 已提交
2110
 */
2111
static bool shrink_zones(int priority, struct zonelist *zonelist,
2112
					struct scan_control *sc)
L
Linus Torvalds 已提交
2113
{
2114
	struct zoneref *z;
2115
	struct zone *zone;
2116 2117
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2118
	bool should_abort_reclaim = false;
2119

2120 2121
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2122
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2123
			continue;
2124 2125 2126 2127
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2128
		if (scanning_global_lru(sc)) {
2129 2130
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2131
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2132
				continue;	/* Let kswapd poll it */
2133 2134
			if (COMPACTION_BUILD) {
				/*
2135 2136 2137 2138 2139 2140 2141
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
				 * noticable problem, like transparent huge page
				 * allocations.
2142 2143 2144
				 */
				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
					(compaction_suitable(zone, sc->order) ||
2145 2146
					 compaction_deferred(zone))) {
					should_abort_reclaim = true;
2147
					continue;
2148
				}
2149
			}
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2163
		}
2164

2165
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2166
	}
2167 2168

	return should_abort_reclaim;
2169 2170 2171 2172 2173 2174 2175
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2176
/* All zones in zonelist are unreclaimable? */
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2189 2190
		if (!zone->all_unreclaimable)
			return false;
2191 2192
	}

2193
	return true;
L
Linus Torvalds 已提交
2194
}
2195

L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2204 2205 2206 2207
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2208 2209 2210
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2211
 */
2212
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2213 2214
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2215 2216
{
	int priority;
2217
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2218
	struct reclaim_state *reclaim_state = current->reclaim_state;
2219
	struct zoneref *z;
2220
	struct zone *zone;
2221
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2222

2223
	get_mems_allowed();
2224 2225
	delayacct_freepages_start();

2226
	if (scanning_global_lru(sc))
2227
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2228 2229

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2230
		sc->nr_scanned = 0;
2231
		if (!priority)
2232
			disable_swap_token(sc->mem_cgroup);
2233 2234 2235
		if (shrink_zones(priority, zonelist, sc))
			break;

2236 2237 2238 2239
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2240
		if (scanning_global_lru(sc)) {
2241
			unsigned long lru_pages = 0;
2242 2243
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2244 2245 2246 2247 2248 2249
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2250
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2251
			if (reclaim_state) {
2252
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2253 2254
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2255
		}
2256
		total_scanned += sc->nr_scanned;
2257
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2267 2268
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2269 2270
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2271
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2272 2273 2274
		}

		/* Take a nap, wait for some writeback to complete */
2275
		if (!sc->hibernation_mode && sc->nr_scanned &&
2276 2277 2278 2279
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2280 2281
						&cpuset_current_mems_allowed,
						&preferred_zone);
2282 2283
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2284
	}
2285

L
Linus Torvalds 已提交
2286
out:
2287
	delayacct_freepages_end();
2288
	put_mems_allowed();
2289

2290 2291 2292
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2301
	/* top priority shrink_zones still had more to do? don't OOM, then */
2302
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2303 2304 2305
		return 1;

	return 0;
L
Linus Torvalds 已提交
2306 2307
}

2308
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2309
				gfp_t gfp_mask, nodemask_t *nodemask)
2310
{
2311
	unsigned long nr_reclaimed;
2312 2313 2314
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2315
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2316
		.may_unmap = 1,
2317
		.may_swap = 1,
2318 2319
		.order = order,
		.mem_cgroup = NULL,
2320
		.nodemask = nodemask,
2321
	};
2322 2323 2324
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2325

2326 2327 2328 2329
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2330
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2331 2332 2333 2334

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2335 2336
}

2337
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2338

2339 2340
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
2341 2342
						struct zone *zone,
						unsigned long *nr_scanned)
2343 2344
{
	struct scan_control sc = {
2345
		.nr_scanned = 0,
2346
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2347 2348 2349 2350 2351 2352
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
		.mem_cgroup = mem,
	};
2353

2354 2355
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2356 2357 2358 2359 2360

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2361 2362 2363 2364 2365 2366 2367 2368
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2369 2370 2371

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2372
	*nr_scanned = sc.nr_scanned;
2373 2374 2375
	return sc.nr_reclaimed;
}

2376
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2377
					   gfp_t gfp_mask,
2378
					   bool noswap)
2379
{
2380
	struct zonelist *zonelist;
2381
	unsigned long nr_reclaimed;
2382
	int nid;
2383 2384
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2385
		.may_unmap = 1,
2386
		.may_swap = !noswap,
2387
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2388 2389
		.order = 0,
		.mem_cgroup = mem_cont,
2390
		.nodemask = NULL, /* we don't care the placement */
2391 2392 2393 2394 2395
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2396 2397
	};

2398 2399 2400 2401 2402 2403 2404 2405
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2406 2407 2408 2409 2410

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2411
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2412 2413 2414 2415

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2416 2417 2418
}
#endif

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2430
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2444 2445
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2446 2447
}

2448
/* is kswapd sleeping prematurely? */
2449 2450
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2451
{
2452
	int i;
2453 2454
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2455 2456 2457

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2458
		return true;
2459

2460
	/* Check the watermark levels */
2461
	for (i = 0; i <= classzone_idx; i++) {
2462 2463 2464 2465 2466
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2467 2468 2469 2470 2471 2472 2473 2474
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2475
			continue;
2476
		}
2477

2478
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2479
							i, 0))
2480 2481 2482
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2483
	}
2484

2485 2486 2487 2488 2489 2490
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2491
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2492 2493
	else
		return !all_zones_ok;
2494 2495
}

L
Linus Torvalds 已提交
2496 2497
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2498
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2499
 *
2500
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2511 2512 2513 2514 2515
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2516
 */
2517
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2518
							int *classzone_idx)
L
Linus Torvalds 已提交
2519 2520
{
	int all_zones_ok;
2521
	unsigned long balanced;
L
Linus Torvalds 已提交
2522 2523
	int priority;
	int i;
2524
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2525
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2526
	struct reclaim_state *reclaim_state = current->reclaim_state;
2527 2528
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2529 2530
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2531
		.may_unmap = 1,
2532
		.may_swap = 1,
2533 2534 2535 2536 2537
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2538
		.order = order,
2539
		.mem_cgroup = NULL,
2540
	};
2541 2542 2543
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2544 2545
loop_again:
	total_scanned = 0;
2546
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2547
	sc.may_writepage = !laptop_mode;
2548
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2549 2550 2551

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2552
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2553

2554 2555
		/* The swap token gets in the way of swapout... */
		if (!priority)
2556
			disable_swap_token(NULL);
2557

L
Linus Torvalds 已提交
2558
		all_zones_ok = 1;
2559
		balanced = 0;
L
Linus Torvalds 已提交
2560

2561 2562 2563 2564 2565 2566
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2567

2568 2569
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2570

2571
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2572
				continue;
L
Linus Torvalds 已提交
2573

2574 2575 2576 2577
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2578
			if (inactive_anon_is_low(zone, &sc))
2579 2580 2581
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2582
			if (!zone_watermark_ok_safe(zone, order,
2583
					high_wmark_pages(zone), 0, 0)) {
2584
				end_zone = i;
A
Andrew Morton 已提交
2585
				break;
2586 2587 2588
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2589 2590
			}
		}
A
Andrew Morton 已提交
2591 2592 2593
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2594 2595 2596
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2597
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2611
			int nr_slab;
2612
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2613

2614
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2615 2616
				continue;

2617
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2618 2619 2620
				continue;

			sc.nr_scanned = 0;
2621

2622
			nr_soft_scanned = 0;
2623 2624 2625
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2626 2627 2628 2629 2630
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2631

2632
			/*
2633 2634 2635 2636 2637 2638
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2639
			 */
2640 2641 2642 2643
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2644
			if (!zone_watermark_ok_safe(zone, order,
2645
					high_wmark_pages(zone) + balance_gap,
2646
					end_zone, 0)) {
2647
				shrink_zone(priority, zone, &sc);
2648

2649 2650 2651 2652 2653 2654 2655 2656 2657
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2658 2659 2660 2661 2662 2663
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2664
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2665
				sc.may_writepage = 1;
2666

2667 2668 2669
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2670
				continue;
2671
			}
2672

2673
			if (!zone_watermark_ok_safe(zone, order,
2674 2675 2676 2677 2678 2679 2680
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2681
				if (!zone_watermark_ok_safe(zone, order,
2682 2683
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2684 2685 2686 2687 2688 2689 2690 2691 2692
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2693
				if (i <= *classzone_idx)
2694
					balanced += zone->present_pages;
2695
			}
2696

L
Linus Torvalds 已提交
2697
		}
2698
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2704 2705 2706 2707 2708 2709
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715 2716

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2717
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2718 2719 2720
			break;
	}
out:
2721 2722 2723

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2724 2725
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2726
	 */
2727
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2728
		cond_resched();
2729 2730 2731

		try_to_freeze();

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2749 2750 2751
		goto loop_again;
	}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
2779 2780
			if (i <= *classzone_idx)
				balanced += zone->present_pages;
2781 2782 2783
		}
	}

2784 2785 2786 2787 2788 2789
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2790
	*classzone_idx = end_zone;
2791
	return order;
L
Linus Torvalds 已提交
2792 2793
}

2794
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2805
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2806 2807 2808 2809 2810 2811 2812 2813 2814
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2815
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2838 2839
/*
 * The background pageout daemon, started as a kernel thread
2840
 * from the init process.
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2853
	unsigned long order, new_order;
2854
	unsigned balanced_order;
2855
	int classzone_idx, new_classzone_idx;
2856
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2857 2858
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2859

L
Linus Torvalds 已提交
2860 2861 2862
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2863
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2864

2865 2866
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2867
	if (!cpumask_empty(cpumask))
2868
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2883
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2884
	set_freezable();
L
Linus Torvalds 已提交
2885

2886
	order = new_order = 0;
2887
	balanced_order = 0;
2888
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2889
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2890
	for ( ; ; ) {
2891
		int ret;
2892

2893 2894 2895 2896 2897
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2898 2899
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2900 2901 2902 2903 2904 2905
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2906
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2907 2908
			/*
			 * Don't sleep if someone wants a larger 'order'
2909
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2910 2911
			 */
			order = new_order;
2912
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2913
		} else {
2914 2915
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2916
			order = pgdat->kswapd_max_order;
2917
			classzone_idx = pgdat->classzone_idx;
2918 2919
			new_order = order;
			new_classzone_idx = classzone_idx;
2920
			pgdat->kswapd_max_order = 0;
2921
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2922 2923
		}

2924 2925 2926 2927 2928 2929 2930 2931
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2932 2933
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2934 2935 2936
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2937
		}
L
Linus Torvalds 已提交
2938 2939 2940 2941 2942 2943 2944
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2945
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2946 2947 2948
{
	pg_data_t *pgdat;

2949
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2950 2951
		return;

2952
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2953
		return;
2954
	pgdat = zone->zone_pgdat;
2955
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2956
		pgdat->kswapd_max_order = order;
2957 2958
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2959
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2960
		return;
2961 2962 2963 2964
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2965
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2966 2967
}

2968 2969 2970 2971 2972 2973 2974 2975
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2976
{
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3001 3002
}

3003
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3004
/*
3005
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3006 3007 3008 3009 3010
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3011
 */
3012
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3013
{
3014 3015
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3016 3017 3018
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3019
		.may_writepage = 1,
3020 3021 3022
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3023
	};
3024 3025 3026 3027
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3028 3029
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3030

3031 3032 3033 3034
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3035

3036
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3037

3038 3039 3040
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3041

3042
	return nr_reclaimed;
L
Linus Torvalds 已提交
3043
}
3044
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3045 3046 3047 3048 3049

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3050
static int __devinit cpu_callback(struct notifier_block *nfb,
3051
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3052
{
3053
	int nid;
L
Linus Torvalds 已提交
3054

3055
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3056
		for_each_node_state(nid, N_HIGH_MEMORY) {
3057
			pg_data_t *pgdat = NODE_DATA(nid);
3058 3059 3060
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3061

3062
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3063
				/* One of our CPUs online: restore mask */
3064
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3065 3066 3067 3068 3069
		}
	}
	return NOTIFY_OK;
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3103 3104
static int __init kswapd_init(void)
{
3105
	int nid;
3106

L
Linus Torvalds 已提交
3107
	swap_setup();
3108
	for_each_node_state(nid, N_HIGH_MEMORY)
3109
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3125
#define RECLAIM_OFF 0
3126
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3127 3128 3129
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3130 3131 3132 3133 3134 3135 3136
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3137 3138 3139 3140 3141 3142
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3143 3144 3145 3146 3147 3148
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3191 3192 3193
/*
 * Try to free up some pages from this zone through reclaim.
 */
3194
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3195
{
3196
	/* Minimum pages needed in order to stay on node */
3197
	const unsigned long nr_pages = 1 << order;
3198 3199
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3200
	int priority;
3201 3202
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3203
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3204
		.may_swap = 1,
3205 3206
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3207
		.gfp_mask = gfp_mask,
3208
		.order = order,
3209
	};
3210 3211 3212
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3213
	unsigned long nr_slab_pages0, nr_slab_pages1;
3214 3215

	cond_resched();
3216 3217 3218 3219 3220 3221
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3222
	lockdep_set_current_reclaim_state(gfp_mask);
3223 3224
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3225

3226
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3227 3228 3229 3230 3231 3232
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3233
			shrink_zone(priority, zone, &sc);
3234
			priority--;
3235
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3236
	}
3237

3238 3239
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3240
		/*
3241
		 * shrink_slab() does not currently allow us to determine how
3242 3243 3244 3245
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3246
		 *
3247 3248
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3249
		 */
3250 3251 3252 3253
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3254
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3255 3256 3257 3258 3259 3260 3261 3262
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3263 3264 3265 3266 3267

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3268 3269 3270
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3271 3272
	}

3273
	p->reclaim_state = NULL;
3274
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3275
	lockdep_clear_current_reclaim_state();
3276
	return sc.nr_reclaimed >= nr_pages;
3277
}
3278 3279 3280 3281

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3282
	int ret;
3283 3284

	/*
3285 3286
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3287
	 *
3288 3289 3290 3291 3292
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3293
	 */
3294 3295
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3296
		return ZONE_RECLAIM_FULL;
3297

3298
	if (zone->all_unreclaimable)
3299
		return ZONE_RECLAIM_FULL;
3300

3301
	/*
3302
	 * Do not scan if the allocation should not be delayed.
3303
	 */
3304
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3305
		return ZONE_RECLAIM_NOSCAN;
3306 3307 3308 3309 3310 3311 3312

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3313
	node_id = zone_to_nid(zone);
3314
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3315
		return ZONE_RECLAIM_NOSCAN;
3316 3317

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3318 3319
		return ZONE_RECLAIM_NOSCAN;

3320 3321 3322
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3323 3324 3325
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3326
	return ret;
3327
}
3328
#endif
L
Lee Schermerhorn 已提交
3329 3330 3331 3332 3333 3334 3335

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3336 3337
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3338 3339
 *
 * Reasons page might not be evictable:
3340
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3341
 * (2) page is part of an mlocked VMA
3342
 *
L
Lee Schermerhorn 已提交
3343 3344 3345 3346
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3347 3348 3349
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3350 3351
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3352 3353 3354

	return 1;
}
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3374
		enum lru_list l = page_lru_base_type(page);
3375

3376 3377
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3378
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3379 3380 3381 3382 3383 3384 3385 3386
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3387
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3447

3448
static void warn_scan_unevictable_pages(void)
3449
{
3450 3451 3452 3453
	printk_once(KERN_WARNING
		    "The scan_unevictable_pages sysctl/node-interface has been "
		    "disabled for lack of a legitimate use case.  If you have "
		    "one, please send an email to linux-mm@kvack.org.\n");
3454 3455 3456 3457 3458 3459 3460 3461 3462
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3463
			   void __user *buffer,
3464 3465
			   size_t *length, loff_t *ppos)
{
3466
	warn_scan_unevictable_pages();
3467
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3468 3469 3470 3471
	scan_unevictable_pages = 0;
	return 0;
}

3472
#ifdef CONFIG_NUMA
3473 3474 3475 3476 3477
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3478 3479
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3480 3481
					  char *buf)
{
3482
	warn_scan_unevictable_pages();
3483 3484 3485
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3486 3487
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3488 3489
					const char *buf, size_t count)
{
3490
	warn_scan_unevictable_pages();
3491 3492 3493 3494
	return 1;
}


3495
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3496 3497 3498 3499 3500
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3501
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3502 3503 3504 3505
}

void scan_unevictable_unregister_node(struct node *node)
{
3506
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3507
}
3508
#endif