vmscan.c 109.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
140
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
141 142 143 144

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
145
#ifdef CONFIG_MEMCG
146 147
static bool global_reclaim(struct scan_control *sc)
{
148
	return !sc->target_mem_cgroup;
149
}
150
#else
151 152 153 154
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
155 156
#endif

157
static unsigned long zone_reclaimable_pages(struct zone *zone)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

176
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
177
{
178
	if (!mem_cgroup_disabled())
179
		return mem_cgroup_get_lru_size(lruvec, lru);
180

181
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
182 183
}

L
Linus Torvalds 已提交
184
/*
G
Glauber Costa 已提交
185
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
186
 */
G
Glauber Costa 已提交
187
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
188
{
G
Glauber Costa 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

206 207 208
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
209
	return 0;
L
Linus Torvalds 已提交
210
}
211
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
212 213 214 215

/*
 * Remove one
 */
216
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
217 218 219 220
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
221
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
222
}
223
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
224 225

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
226 227 228 229 230 231 232 233

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
234
	long freeable;
G
Glauber Costa 已提交
235 236 237 238 239 240
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

241 242
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
243 244 245 246 247 248 249 250 251 252 253
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
254
	delta *= freeable;
G
Glauber Costa 已提交
255 256 257 258 259
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
		printk(KERN_ERR
		"shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
260
		       shrinker->scan_objects, total_scan);
261
		total_scan = freeable;
G
Glauber Costa 已提交
262 263 264 265 266 267 268 269
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
270
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
271 272 273 274 275
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
276 277
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
278 279 280 281 282 283

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
284 285
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
286 287 288

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
289
				freeable, delta, total_scan);
G
Glauber Costa 已提交
290

291 292 293 294 295 296 297 298 299 300 301
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
302
	 * than the total number of objects on slab (freeable), we must be
303 304 305 306
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
307
	       total_scan >= freeable) {
D
Dave Chinner 已提交
308
		unsigned long ret;
309
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
310

311
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
312 313 314 315
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
316

317 318
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

334
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
335
	return freed;
336 337
}

L
Linus Torvalds 已提交
338 339 340 341 342 343 344 345
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
346
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
347 348 349 350 351 352 353
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
354 355
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
356
 */
D
Dave Chinner 已提交
357
unsigned long shrink_slab(struct shrink_control *shrinkctl,
358
			  unsigned long nr_pages_scanned,
359
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
360 361
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
362
	unsigned long freed = 0;
L
Linus Torvalds 已提交
363

364 365
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
366

367
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
368 369 370 371 372 373 374
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
375 376
		goto out;
	}
L
Linus Torvalds 已提交
377 378

	list_for_each_entry(shrinker, &shrinker_list, list) {
379 380
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
			shrinkctl->nid = 0;
G
Glauber Costa 已提交
381
			freed += shrink_slab_node(shrinkctl, shrinker,
382 383 384 385 386 387 388 389
					nr_pages_scanned, lru_pages);
			continue;
		}

		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (node_online(shrinkctl->nid))
				freed += shrink_slab_node(shrinkctl, shrinker,
						nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
390 391 392 393

		}
	}
	up_read(&shrinker_rwsem);
394 395
out:
	cond_resched();
D
Dave Chinner 已提交
396
	return freed;
L
Linus Torvalds 已提交
397 398 399 400
}

static inline int is_page_cache_freeable(struct page *page)
{
401 402 403 404 405
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
406
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
407 408
}

409 410
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
411
{
412
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
436
	lock_page(page);
437 438
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
439 440 441
	unlock_page(page);
}

442 443 444 445 446 447 448 449 450 451 452 453
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
454
/*
A
Andrew Morton 已提交
455 456
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
457
 */
458
static pageout_t pageout(struct page *page, struct address_space *mapping,
459
			 struct scan_control *sc)
L
Linus Torvalds 已提交
460 461 462 463 464 465 466 467
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
468
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
484
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
485 486
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
487
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
488 489 490 491 492 493 494
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
495
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
496 497 498 499 500 501 502
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
503 504
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
505 506 507 508 509 510 511
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
512
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
513 514 515
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
516

L
Linus Torvalds 已提交
517 518 519 520
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
521
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
522
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
523 524 525 526 527 528
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

529
/*
N
Nick Piggin 已提交
530 531
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
532
 */
533 534
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
535
{
536 537
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
538

N
Nick Piggin 已提交
539
	spin_lock_irq(&mapping->tree_lock);
540
	/*
N
Nick Piggin 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
564
	 */
N
Nick Piggin 已提交
565
	if (!page_freeze_refs(page, 2))
566
		goto cannot_free;
N
Nick Piggin 已提交
567 568 569
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
570
		goto cannot_free;
N
Nick Piggin 已提交
571
	}
572 573 574 575

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
576
		spin_unlock_irq(&mapping->tree_lock);
577
		swapcache_free(swap, page);
N
Nick Piggin 已提交
578
	} else {
579
		void (*freepage)(struct page *);
580
		void *shadow = NULL;
581 582

		freepage = mapping->a_ops->freepage;
583 584 585 586 587 588 589 590 591 592 593 594 595 596
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
597
		spin_unlock_irq(&mapping->tree_lock);
598
		mem_cgroup_uncharge_cache_page(page);
599 600 601

		if (freepage != NULL)
			freepage(page);
602 603 604 605 606
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
607
	spin_unlock_irq(&mapping->tree_lock);
608 609 610
	return 0;
}

N
Nick Piggin 已提交
611 612 613 614 615 616 617 618
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
619
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
620 621 622 623 624 625 626 627 628 629 630
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
631 632 633 634 635 636 637 638 639 640 641
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
642
	bool is_unevictable;
643
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
644

645
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
646 647 648 649

redo:
	ClearPageUnevictable(page);

650
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
651 652 653 654 655 656
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
657
		is_unevictable = false;
658
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
659 660 661 662 663
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
664
		is_unevictable = true;
L
Lee Schermerhorn 已提交
665
		add_page_to_unevictable_list(page);
666
		/*
667 668 669
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
670
		 * isolation/check_move_unevictable_pages,
671
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
672 673
		 * the page back to the evictable list.
		 *
674
		 * The other side is TestClearPageMlocked() or shmem_lock().
675 676
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
677 678 679 680 681 682 683
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
684
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
685 686 687 688 689 690 691 692 693 694
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

695
	if (was_unevictable && !is_unevictable)
696
		count_vm_event(UNEVICTABLE_PGRESCUED);
697
	else if (!was_unevictable && is_unevictable)
698 699
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
700 701 702
	put_page(page);		/* drop ref from isolate */
}

703 704 705
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
706
	PAGEREF_KEEP,
707 708 709 710 711 712
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
713
	int referenced_ptes, referenced_page;
714 715
	unsigned long vm_flags;

716 717
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
718
	referenced_page = TestClearPageReferenced(page);
719 720 721 722 723 724 725 726

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

727
	if (referenced_ptes) {
728
		if (PageSwapBacked(page))
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

746
		if (referenced_page || referenced_ptes > 1)
747 748
			return PAGEREF_ACTIVATE;

749 750 751 752 753 754
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

755 756
		return PAGEREF_KEEP;
	}
757 758

	/* Reclaim if clean, defer dirty pages to writeback */
759
	if (referenced_page && !PageSwapBacked(page))
760 761 762
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
763 764
}

765 766 767 768
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
769 770
	struct address_space *mapping;

771 772 773 774 775 776 777 778 779 780 781 782 783
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
784 785 786 787 788 789 790 791

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
792 793
}

L
Linus Torvalds 已提交
794
/*
A
Andrew Morton 已提交
795
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
796
 */
A
Andrew Morton 已提交
797
static unsigned long shrink_page_list(struct list_head *page_list,
798
				      struct zone *zone,
799
				      struct scan_control *sc,
800
				      enum ttu_flags ttu_flags,
801
				      unsigned long *ret_nr_dirty,
802
				      unsigned long *ret_nr_unqueued_dirty,
803
				      unsigned long *ret_nr_congested,
804
				      unsigned long *ret_nr_writeback,
805
				      unsigned long *ret_nr_immediate,
806
				      bool force_reclaim)
L
Linus Torvalds 已提交
807 808
{
	LIST_HEAD(ret_pages);
809
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
810
	int pgactivate = 0;
811
	unsigned long nr_unqueued_dirty = 0;
812 813
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
814
	unsigned long nr_reclaimed = 0;
815
	unsigned long nr_writeback = 0;
816
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
817 818 819

	cond_resched();

820
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
821 822 823 824
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
825
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
826
		bool dirty, writeback;
L
Linus Torvalds 已提交
827 828 829 830 831 832

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
833
		if (!trylock_page(page))
L
Linus Torvalds 已提交
834 835
			goto keep;

836 837
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
838 839

		sc->nr_scanned++;
840

841
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
842
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
843

844
		if (!sc->may_unmap && page_mapped(page))
845 846
			goto keep_locked;

L
Linus Torvalds 已提交
847 848 849 850
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

851 852 853
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

854 855 856 857 858 859 860 861 862 863 864 865 866
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

867 868 869 870 871 872
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
873
		mapping = page_mapping(page);
874 875
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
876 877
			nr_congested++;

878 879 880 881 882 883 884 885 886 887 888
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
889 890
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
915
		if (PageWriteback(page)) {
916 917 918 919
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
920 921
				nr_immediate++;
				goto keep_locked;
922 923 924

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
925 926 927 928 929 930 931 932 933 934 935 936 937
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
938
				nr_writeback++;
939

940
				goto keep_locked;
941 942 943 944

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
945
			}
946
		}
L
Linus Torvalds 已提交
947

948 949 950
		if (!force_reclaim)
			references = page_check_references(page, sc);

951 952
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
953
			goto activate_locked;
954 955
		case PAGEREF_KEEP:
			goto keep_locked;
956 957 958 959
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
960 961 962 963 964

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
965
		if (PageAnon(page) && !PageSwapCache(page)) {
966 967
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
968
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
969
				goto activate_locked;
970
			may_enter_fs = 1;
L
Linus Torvalds 已提交
971

972 973 974
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
975 976 977 978 979 980

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
981
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
982 983 984 985
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
986 987
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
988 989 990 991 992 993
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
994 995
			/*
			 * Only kswapd can writeback filesystem pages to
996 997
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
998
			 */
999
			if (page_is_file_cache(page) &&
1000
					(!current_is_kswapd() ||
1001
					 !zone_is_reclaim_dirty(zone))) {
1002 1003 1004 1005 1006 1007 1008 1009 1010
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1011 1012 1013
				goto keep_locked;
			}

1014
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1015
				goto keep_locked;
1016
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1017
				goto keep_locked;
1018
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1019 1020 1021
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1022
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1028
				if (PageWriteback(page))
1029
					goto keep;
1030
				if (PageDirty(page))
L
Linus Torvalds 已提交
1031
					goto keep;
1032

L
Linus Torvalds 已提交
1033 1034 1035 1036
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1037
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1057
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1068
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1069 1070
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1087 1088
		}

1089
		if (!mapping || !__remove_mapping(mapping, page, true))
1090
			goto keep_locked;
L
Linus Torvalds 已提交
1091

N
Nick Piggin 已提交
1092 1093 1094 1095 1096 1097 1098 1099
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1100
free_it:
1101
		nr_reclaimed++;
1102 1103 1104 1105 1106 1107

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1108 1109
		continue;

N
Nick Piggin 已提交
1110
cull_mlocked:
1111 1112
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1113 1114 1115 1116
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1117
activate_locked:
1118 1119
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1120
			try_to_free_swap(page);
1121
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1122 1123 1124 1125 1126 1127
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1128
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1129
	}
1130

1131
	free_hot_cold_page_list(&free_pages, true);
1132

L
Linus Torvalds 已提交
1133
	list_splice(&ret_pages, page_list);
1134
	count_vm_events(PGACTIVATE, pgactivate);
1135
	mem_cgroup_uncharge_end();
1136 1137
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1138
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1139
	*ret_nr_writeback += nr_writeback;
1140
	*ret_nr_immediate += nr_immediate;
1141
	return nr_reclaimed;
L
Linus Torvalds 已提交
1142 1143
}

1144 1145 1146 1147 1148 1149 1150 1151
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1152
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1153 1154 1155 1156
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1157 1158
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1159 1160 1161 1162 1163 1164
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1165 1166
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1167
	list_splice(&clean_pages, page_list);
1168
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1169 1170 1171
	return ret;
}

A
Andy Whitcroft 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1182
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1183 1184 1185 1186 1187 1188 1189
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1190 1191
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1192 1193
		return ret;

A
Andy Whitcroft 已提交
1194
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1229

1230 1231 1232
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1257
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1258
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1259
 * @nr_scanned:	The number of pages that were scanned.
1260
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1261
 * @mode:	One of the LRU isolation modes
1262
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1263 1264 1265
 *
 * returns how many pages were moved onto *@dst.
 */
1266
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1267
		struct lruvec *lruvec, struct list_head *dst,
1268
		unsigned long *nr_scanned, struct scan_control *sc,
1269
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1270
{
H
Hugh Dickins 已提交
1271
	struct list_head *src = &lruvec->lists[lru];
1272
	unsigned long nr_taken = 0;
1273
	unsigned long scan;
L
Linus Torvalds 已提交
1274

1275
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1276
		struct page *page;
1277
		int nr_pages;
A
Andy Whitcroft 已提交
1278

L
Linus Torvalds 已提交
1279 1280 1281
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1282
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1283

1284
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1285
		case 0:
1286 1287
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1288
			list_move(&page->lru, dst);
1289
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1290 1291 1292 1293 1294 1295
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1296

A
Andy Whitcroft 已提交
1297 1298 1299
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1300 1301
	}

H
Hugh Dickins 已提交
1302
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1303 1304
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1305 1306 1307
	return nr_taken;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1319 1320 1321
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1337
	VM_BUG_ON_PAGE(!page_count(page), page);
1338

1339 1340
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1341
		struct lruvec *lruvec;
1342 1343

		spin_lock_irq(&zone->lru_lock);
1344
		lruvec = mem_cgroup_page_lruvec(page, zone);
1345
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1346
			int lru = page_lru(page);
1347
			get_page(page);
1348
			ClearPageLRU(page);
1349 1350
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1351 1352 1353 1354 1355 1356
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1357
/*
F
Fengguang Wu 已提交
1358 1359 1360 1361 1362
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1363 1364 1365 1366 1367 1368 1369 1370 1371
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1372
	if (!global_reclaim(sc))
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1383 1384 1385 1386 1387 1388 1389 1390
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1391 1392 1393
	return isolated > inactive;
}

1394
static noinline_for_stack void
H
Hugh Dickins 已提交
1395
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1396
{
1397 1398
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1399
	LIST_HEAD(pages_to_free);
1400 1401 1402 1403 1404

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1405
		struct page *page = lru_to_page(page_list);
1406
		int lru;
1407

1408
		VM_BUG_ON_PAGE(PageLRU(page), page);
1409
		list_del(&page->lru);
1410
		if (unlikely(!page_evictable(page))) {
1411 1412 1413 1414 1415
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1416 1417 1418

		lruvec = mem_cgroup_page_lruvec(page, zone);

1419
		SetPageLRU(page);
1420
		lru = page_lru(page);
1421 1422
		add_page_to_lru_list(page, lruvec, lru);

1423 1424
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1425 1426
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1427
		}
1428 1429 1430
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1431
			del_page_from_lru_list(page, lruvec, lru);
1432 1433 1434 1435 1436 1437 1438

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1439 1440 1441
		}
	}

1442 1443 1444 1445
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1461
/*
A
Andrew Morton 已提交
1462 1463
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1464
 */
1465
static noinline_for_stack unsigned long
1466
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1467
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1468 1469
{
	LIST_HEAD(page_list);
1470
	unsigned long nr_scanned;
1471
	unsigned long nr_reclaimed = 0;
1472
	unsigned long nr_taken;
1473 1474
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1475
	unsigned long nr_unqueued_dirty = 0;
1476
	unsigned long nr_writeback = 0;
1477
	unsigned long nr_immediate = 0;
1478
	isolate_mode_t isolate_mode = 0;
1479
	int file = is_file_lru(lru);
1480 1481
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1482

1483
	while (unlikely(too_many_isolated(zone, file, sc))) {
1484
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1485 1486 1487 1488 1489 1490

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1491
	lru_add_drain();
1492 1493

	if (!sc->may_unmap)
1494
		isolate_mode |= ISOLATE_UNMAPPED;
1495
	if (!sc->may_writepage)
1496
		isolate_mode |= ISOLATE_CLEAN;
1497

L
Linus Torvalds 已提交
1498
	spin_lock_irq(&zone->lru_lock);
1499

1500 1501
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1502 1503 1504 1505

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1506
	if (global_reclaim(sc)) {
1507 1508
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1509
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1510
		else
H
Hugh Dickins 已提交
1511
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1512
	}
1513
	spin_unlock_irq(&zone->lru_lock);
1514

1515
	if (nr_taken == 0)
1516
		return 0;
A
Andy Whitcroft 已提交
1517

1518
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1519 1520 1521
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1522

1523 1524
	spin_lock_irq(&zone->lru_lock);

1525
	reclaim_stat->recent_scanned[file] += nr_taken;
1526

Y
Ying Han 已提交
1527 1528 1529 1530 1531 1532 1533 1534
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1535

1536
	putback_inactive_pages(lruvec, &page_list);
1537

1538
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1539 1540 1541

	spin_unlock_irq(&zone->lru_lock);

1542
	free_hot_cold_page_list(&page_list, true);
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1554 1555 1556
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1557
	 */
1558
	if (nr_writeback && nr_writeback == nr_taken)
1559
		zone_set_flag(zone, ZONE_WRITEBACK);
1560

1561
	/*
1562 1563
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1564
	 */
1565
	if (global_reclaim(sc)) {
1566 1567 1568 1569 1570 1571 1572
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1573 1574 1575 1576
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1577
		 * pages from reclaim context.
1578 1579 1580 1581 1582
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
1583 1584 1585
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1586 1587
		 * they are written so also forcibly stall.
		 */
1588
		if (nr_immediate && current_may_throttle())
1589
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1590
	}
1591

1592 1593 1594 1595 1596
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1597 1598
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1599 1600
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1601 1602 1603
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1604
		sc->priority,
M
Mel Gorman 已提交
1605
		trace_shrink_flags(file));
1606
	return nr_reclaimed;
L
Linus Torvalds 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1626

1627
static void move_active_pages_to_lru(struct lruvec *lruvec,
1628
				     struct list_head *list,
1629
				     struct list_head *pages_to_free,
1630 1631
				     enum lru_list lru)
{
1632
	struct zone *zone = lruvec_zone(lruvec);
1633 1634
	unsigned long pgmoved = 0;
	struct page *page;
1635
	int nr_pages;
1636 1637 1638

	while (!list_empty(list)) {
		page = lru_to_page(list);
1639
		lruvec = mem_cgroup_page_lruvec(page, zone);
1640

1641
		VM_BUG_ON_PAGE(PageLRU(page), page);
1642 1643
		SetPageLRU(page);

1644 1645
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1646
		list_move(&page->lru, &lruvec->lists[lru]);
1647
		pgmoved += nr_pages;
1648

1649 1650 1651
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1652
			del_page_from_lru_list(page, lruvec, lru);
1653 1654 1655 1656 1657 1658 1659

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1660 1661 1662 1663 1664 1665
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1666

H
Hugh Dickins 已提交
1667
static void shrink_active_list(unsigned long nr_to_scan,
1668
			       struct lruvec *lruvec,
1669
			       struct scan_control *sc,
1670
			       enum lru_list lru)
L
Linus Torvalds 已提交
1671
{
1672
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1673
	unsigned long nr_scanned;
1674
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1675
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1676
	LIST_HEAD(l_active);
1677
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1678
	struct page *page;
1679
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1680
	unsigned long nr_rotated = 0;
1681
	isolate_mode_t isolate_mode = 0;
1682
	int file = is_file_lru(lru);
1683
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1684 1685

	lru_add_drain();
1686 1687

	if (!sc->may_unmap)
1688
		isolate_mode |= ISOLATE_UNMAPPED;
1689
	if (!sc->may_writepage)
1690
		isolate_mode |= ISOLATE_CLEAN;
1691

L
Linus Torvalds 已提交
1692
	spin_lock_irq(&zone->lru_lock);
1693

1694 1695
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1696
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1697
		zone->pages_scanned += nr_scanned;
1698

1699
	reclaim_stat->recent_scanned[file] += nr_taken;
1700

H
Hugh Dickins 已提交
1701
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1702
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1703
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708 1709
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1710

1711
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1712 1713 1714 1715
			putback_lru_page(page);
			continue;
		}

1716 1717 1718 1719 1720 1721 1722 1723
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1724 1725
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1726
			nr_rotated += hpage_nr_pages(page);
1727 1728 1729 1730 1731 1732 1733 1734 1735
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1736
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1737 1738 1739 1740
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1741

1742
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1743 1744 1745
		list_add(&page->lru, &l_inactive);
	}

1746
	/*
1747
	 * Move pages back to the lru list.
1748
	 */
1749
	spin_lock_irq(&zone->lru_lock);
1750
	/*
1751 1752 1753 1754
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1755
	 */
1756
	reclaim_stat->recent_rotated[file] += nr_rotated;
1757

1758 1759
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1760
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1761
	spin_unlock_irq(&zone->lru_lock);
1762

1763
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1764 1765
}

1766
#ifdef CONFIG_SWAP
1767
static int inactive_anon_is_low_global(struct zone *zone)
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1780 1781
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1782
 * @lruvec: LRU vector to check
1783 1784 1785 1786
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1787
static int inactive_anon_is_low(struct lruvec *lruvec)
1788
{
1789 1790 1791 1792 1793 1794 1795
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1796
	if (!mem_cgroup_disabled())
1797
		return mem_cgroup_inactive_anon_is_low(lruvec);
1798

1799
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1800
}
1801
#else
1802
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1803 1804 1805 1806
{
	return 0;
}
#endif
1807

1808 1809
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1810
 * @lruvec: LRU vector to check
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1822
static int inactive_file_is_low(struct lruvec *lruvec)
1823
{
1824 1825 1826 1827 1828
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1829

1830
	return active > inactive;
1831 1832
}

H
Hugh Dickins 已提交
1833
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1834
{
H
Hugh Dickins 已提交
1835
	if (is_file_lru(lru))
1836
		return inactive_file_is_low(lruvec);
1837
	else
1838
		return inactive_anon_is_low(lruvec);
1839 1840
}

1841
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1842
				 struct lruvec *lruvec, struct scan_control *sc)
1843
{
1844
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1845
		if (inactive_list_is_low(lruvec, lru))
1846
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1847 1848 1849
		return 0;
	}

1850
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1851 1852
}

1853 1854 1855 1856 1857 1858 1859
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1860 1861 1862 1863 1864 1865
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1866 1867
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1868
 */
1869 1870
static void get_scan_count(struct lruvec *lruvec, int swappiness,
			   struct scan_control *sc, unsigned long *nr)
1871
{
1872 1873 1874 1875
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1876
	unsigned long anon_prio, file_prio;
1877
	enum scan_balance scan_balance;
1878
	unsigned long anon, file;
1879
	bool force_scan = false;
1880
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1881
	enum lru_list lru;
1882 1883
	bool some_scanned;
	int pass;
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1895
	if (current_is_kswapd() && !zone_reclaimable(zone))
1896
		force_scan = true;
1897
	if (!global_reclaim(sc))
1898
		force_scan = true;
1899 1900

	/* If we have no swap space, do not bother scanning anon pages. */
1901
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1902
		scan_balance = SCAN_FILE;
1903 1904
		goto out;
	}
1905

1906 1907 1908 1909 1910 1911 1912
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1913
	if (!global_reclaim(sc) && !swappiness) {
1914
		scan_balance = SCAN_FILE;
1915 1916 1917 1918 1919 1920 1921 1922
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
1923
	if (!sc->priority && swappiness) {
1924
		scan_balance = SCAN_EQUAL;
1925 1926 1927
		goto out;
	}

1928 1929 1930 1931
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);

		if (unlikely(file + free <= high_wmark_pages(zone))) {
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

1951 1952 1953 1954 1955
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1956
		scan_balance = SCAN_FILE;
1957 1958 1959
		goto out;
	}

1960 1961
	scan_balance = SCAN_FRACT;

1962 1963 1964 1965
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1966
	anon_prio = swappiness;
H
Hugh Dickins 已提交
1967
	file_prio = 200 - anon_prio;
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1980
	spin_lock_irq(&zone->lru_lock);
1981 1982 1983
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1984 1985
	}

1986 1987 1988
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1989 1990 1991
	}

	/*
1992 1993 1994
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1995
	 */
1996
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1997
	ap /= reclaim_stat->recent_rotated[0] + 1;
1998

1999
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2000
	fp /= reclaim_stat->recent_rotated[1] + 1;
2001
	spin_unlock_irq(&zone->lru_lock);
2002

2003 2004 2005 2006
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2007 2008 2009 2010 2011 2012 2013
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2014

2015 2016
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2017

2018 2019
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
				if ((scan_balance == SCAN_FILE) != file)
					scan = 0;
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
			nr[lru] = scan;
2044
			/*
2045 2046
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2047
			 */
2048
			some_scanned |= !!scan;
2049
		}
2050
	}
2051
}
2052

2053 2054 2055
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2056 2057
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
			  struct scan_control *sc)
2058 2059
{
	unsigned long nr[NR_LRU_LISTS];
2060
	unsigned long targets[NR_LRU_LISTS];
2061 2062 2063 2064 2065
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2066
	bool scan_adjusted;
2067

2068
	get_scan_count(lruvec, swappiness, sc, nr);
2069

2070 2071 2072
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2087 2088 2089
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2090 2091 2092
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2093 2094 2095 2096 2097 2098 2099 2100 2101
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2102 2103 2104 2105 2106 2107

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2108
		 * requested. Ensure that the anon and file LRUs are scanned
2109 2110 2111 2112 2113 2114 2115
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2116 2117 2118 2119 2120 2121 2122 2123 2124
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2171
/* Use reclaim/compaction for costly allocs or under memory pressure */
2172
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2173
{
2174
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2175
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2176
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2177 2178 2179 2180 2181
		return true;

	return false;
}

2182
/*
M
Mel Gorman 已提交
2183 2184 2185 2186 2187
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2188
 */
2189
static inline bool should_continue_reclaim(struct zone *zone,
2190 2191 2192 2193 2194 2195 2196 2197
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2198
	if (!in_reclaim_compaction(sc))
2199 2200
		return false;

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2223 2224 2225 2226 2227 2228

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2229
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2230
	if (get_nr_swap_pages() > 0)
2231
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2232 2233 2234 2235 2236
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2237
	switch (compaction_suitable(zone, sc->order)) {
2238 2239 2240 2241 2242 2243 2244 2245
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2246
static bool shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2247
{
2248
	unsigned long nr_reclaimed, nr_scanned;
2249
	bool reclaimable = false;
L
Linus Torvalds 已提交
2250

2251 2252 2253 2254 2255 2256
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2257
		struct mem_cgroup *memcg;
2258

2259 2260
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2261

2262 2263
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2264
			struct lruvec *lruvec;
2265
			int swappiness;
2266

2267
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2268
			swappiness = mem_cgroup_swappiness(memcg);
2269

2270
			shrink_lruvec(lruvec, swappiness, sc);
2271

2272
			/*
2273 2274
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2275
			 * zone.
2276 2277 2278 2279 2280
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2281
			 */
2282 2283
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2284 2285 2286
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2287 2288
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2289 2290 2291 2292 2293

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2294 2295 2296
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2297 2298
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2299 2300

	return reclaimable;
2301 2302
}

2303
/* Returns true if compaction should go ahead for a high-order request */
2304
static inline bool compaction_ready(struct zone *zone, int order)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2315 2316
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2317
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2318 2319 2320 2321 2322 2323
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2324
	if (compaction_deferred(zone, order))
2325 2326 2327
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
2328
	if (!compaction_suitable(zone, order))
2329 2330 2331 2332 2333
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2334 2335 2336 2337 2338
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2339 2340
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2341 2342
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2343 2344 2345
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2346 2347 2348
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2349 2350
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2351
 */
2352
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2353
{
2354
	struct zoneref *z;
2355
	struct zone *zone;
2356 2357
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2358 2359
	unsigned long lru_pages = 0;
	struct reclaim_state *reclaim_state = current->reclaim_state;
2360
	gfp_t orig_mask;
2361 2362 2363
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2364
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2365
	bool reclaimable = false;
2366

2367 2368 2369 2370 2371
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2372
	orig_mask = sc->gfp_mask;
2373 2374 2375
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2376
	nodes_clear(shrink.nodes_to_scan);
2377

2378 2379
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2380
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2381
			continue;
2382 2383 2384 2385
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2386
		if (global_reclaim(sc)) {
2387 2388
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2389 2390

			lru_pages += zone_reclaimable_pages(zone);
2391
			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2392

2393 2394
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2395
				continue;	/* Let kswapd poll it */
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2412
			}
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2426 2427
			if (nr_soft_reclaimed)
				reclaimable = true;
2428
			/* need some check for avoid more shrink_zone() */
2429
		}
2430

2431 2432 2433 2434 2435 2436
		if (shrink_zone(zone, sc))
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2437
	}
2438

2439 2440 2441 2442 2443 2444 2445
	/*
	 * Don't shrink slabs when reclaiming memory from over limit cgroups
	 * but do shrink slab at least once when aborting reclaim for
	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
	 * pages.
	 */
	if (global_reclaim(sc)) {
2446
		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2447 2448 2449 2450 2451 2452
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
	}

2453 2454 2455 2456 2457
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2458

2459
	return reclaimable;
L
Linus Torvalds 已提交
2460
}
2461

L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467 2468 2469
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2470 2471 2472 2473
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2474 2475 2476
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2477
 */
2478
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2479
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2480
{
2481
	unsigned long total_scanned = 0;
2482
	unsigned long writeback_threshold;
2483
	bool zones_reclaimable;
L
Linus Torvalds 已提交
2484

2485 2486
	delayacct_freepages_start();

2487
	if (global_reclaim(sc))
2488
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2489

2490
	do {
2491 2492
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2493
		sc->nr_scanned = 0;
2494
		zones_reclaimable = shrink_zones(zonelist, sc);
2495

2496
		total_scanned += sc->nr_scanned;
2497
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2498 2499 2500 2501
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2502

2503 2504 2505 2506 2507 2508 2509
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2510 2511 2512 2513 2514 2515 2516
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2517 2518
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2519 2520
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2521
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2522
		}
2523
	} while (--sc->priority >= 0);
2524

2525 2526
	delayacct_freepages_end();

2527 2528 2529
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2530
	/* Aborted reclaim to try compaction? don't OOM, then */
2531
	if (sc->compaction_ready)
2532 2533
		return 1;

2534 2535
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2536 2537 2538
		return 1;

	return 0;
L
Linus Torvalds 已提交
2539 2540
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2551 2552 2553
		if (!populated_zone(zone))
			continue;

2554 2555 2556 2557
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2558 2559 2560 2561
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2578 2579 2580 2581
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2582
 */
2583
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2584 2585
					nodemask_t *nodemask)
{
2586
	struct zoneref *z;
2587
	struct zone *zone;
2588
	pg_data_t *pgdat = NULL;
2589 2590 2591 2592 2593 2594 2595 2596 2597

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2598 2599 2600 2601 2602 2603 2604 2605
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_mask, nodemask) {
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2635
		goto out;
2636

2637 2638 2639
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2651 2652

		goto check_pending;
2653 2654 2655 2656 2657
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2658 2659 2660 2661 2662 2663 2664

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2665 2666
}

2667
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2668
				gfp_t gfp_mask, nodemask_t *nodemask)
2669
{
2670
	unsigned long nr_reclaimed;
2671
	struct scan_control sc = {
2672
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2673
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2674 2675 2676
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2677
		.may_writepage = !laptop_mode,
2678
		.may_unmap = 1,
2679
		.may_swap = 1,
2680 2681
	};

2682
	/*
2683 2684 2685
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2686
	 */
2687
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2688 2689
		return 1;

2690 2691 2692 2693
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2694
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2695 2696 2697 2698

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2699 2700
}

A
Andrew Morton 已提交
2701
#ifdef CONFIG_MEMCG
2702

2703
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2704
						gfp_t gfp_mask, bool noswap,
2705 2706
						struct zone *zone,
						unsigned long *nr_scanned)
2707 2708
{
	struct scan_control sc = {
2709
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2710
		.target_mem_cgroup = memcg,
2711 2712 2713 2714
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2715
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2716
	int swappiness = mem_cgroup_swappiness(memcg);
2717

2718 2719
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2720

2721
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2722 2723 2724
						      sc.may_writepage,
						      sc.gfp_mask);

2725 2726 2727 2728 2729 2730 2731
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2732
	shrink_lruvec(lruvec, swappiness, &sc);
2733 2734 2735

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2736
	*nr_scanned = sc.nr_scanned;
2737 2738 2739
	return sc.nr_reclaimed;
}

2740
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2741
					   gfp_t gfp_mask,
2742
					   bool noswap)
2743
{
2744
	struct zonelist *zonelist;
2745
	unsigned long nr_reclaimed;
2746
	int nid;
2747
	struct scan_control sc = {
2748
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2749 2750
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2751 2752 2753 2754 2755
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
2756
	};
2757

2758 2759 2760 2761 2762
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2763
	nid = mem_cgroup_select_victim_node(memcg);
2764 2765

	zonelist = NODE_DATA(nid)->node_zonelists;
2766 2767 2768 2769 2770

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2771
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2772 2773 2774 2775

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2776 2777 2778
}
#endif

2779
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2780
{
2781
	struct mem_cgroup *memcg;
2782

2783 2784 2785 2786 2787
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2788
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2789

2790
		if (inactive_anon_is_low(lruvec))
2791
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2792
					   sc, LRU_ACTIVE_ANON);
2793 2794 2795

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2796 2797
}

2798 2799 2800 2801 2802 2803 2804
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2805 2806
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2807 2808 2809 2810 2811
		return false;

	return true;
}

2812
/*
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2823 2824 2825 2826
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2827
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2828 2829 2830 2831
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2832
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2833
{
2834
	unsigned long managed_pages = 0;
2835
	unsigned long balanced_pages = 0;
2836 2837
	int i;

2838 2839 2840
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2841

2842 2843 2844
		if (!populated_zone(zone))
			continue;

2845
		managed_pages += zone->managed_pages;
2846 2847 2848 2849 2850 2851 2852 2853

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2854
		if (!zone_reclaimable(zone)) {
2855
			balanced_pages += zone->managed_pages;
2856 2857 2858 2859
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2860
			balanced_pages += zone->managed_pages;
2861 2862 2863 2864 2865
		else if (!order)
			return false;
	}

	if (order)
2866
		return balanced_pages >= (managed_pages >> 2);
2867 2868
	else
		return true;
2869 2870
}

2871 2872 2873 2874 2875 2876 2877
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2878
					int classzone_idx)
2879 2880 2881
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2897

2898
	return pgdat_balanced(pgdat, order, classzone_idx);
2899 2900
}

2901 2902 2903
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2904 2905
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2906 2907
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2908
 */
2909
static bool kswapd_shrink_zone(struct zone *zone,
2910
			       int classzone_idx,
2911
			       struct scan_control *sc,
2912 2913
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2914
{
2915 2916
	int testorder = sc->order;
	unsigned long balance_gap;
2917 2918 2919 2920
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2921
	bool lowmem_pressure;
2922 2923 2924

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
2943 2944
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2955
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2956 2957
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2958 2959

	reclaim_state->reclaimed_slab = 0;
2960
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2961 2962
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2963 2964 2965
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2966 2967
	zone_clear_flag(zone, ZONE_WRITEBACK);

2968 2969 2970 2971 2972 2973
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2974
	if (zone_reclaimable(zone) &&
2975 2976 2977 2978 2979
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2980
	return sc->nr_scanned >= sc->nr_to_reclaim;
2981 2982
}

L
Linus Torvalds 已提交
2983 2984
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2985
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2986
 *
2987
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2998 2999 3000 3001 3002
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3003
 */
3004
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3005
							int *classzone_idx)
L
Linus Torvalds 已提交
3006 3007
{
	int i;
3008
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3009 3010
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3011 3012
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3013
		.order = order,
3014
		.priority = DEF_PRIORITY,
3015
		.may_writepage = !laptop_mode,
3016
		.may_unmap = 1,
3017
		.may_swap = 1,
3018
	};
3019
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3020

3021
	do {
L
Linus Torvalds 已提交
3022
		unsigned long lru_pages = 0;
3023
		unsigned long nr_attempted = 0;
3024
		bool raise_priority = true;
3025
		bool pgdat_needs_compaction = (order > 0);
3026 3027

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3028

3029 3030 3031 3032 3033 3034
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3035

3036 3037
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3038

3039 3040
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3041
				continue;
L
Linus Torvalds 已提交
3042

3043 3044 3045 3046
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3047
			age_active_anon(zone, &sc);
3048

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3060
			if (!zone_balanced(zone, order, 0, 0)) {
3061
				end_zone = i;
A
Andrew Morton 已提交
3062
				break;
3063
			} else {
3064 3065 3066 3067
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
3068
				zone_clear_flag(zone, ZONE_CONGESTED);
3069
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
3070 3071
			}
		}
3072

3073
		if (i < 0)
A
Andrew Morton 已提交
3074 3075
			goto out;

L
Linus Torvalds 已提交
3076 3077 3078
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3079 3080 3081
			if (!populated_zone(zone))
				continue;

3082
			lru_pages += zone_reclaimable_pages(zone);
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3094 3095
		}

3096 3097 3098 3099 3100 3101 3102
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3115
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3116 3117
				continue;

3118 3119
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3120 3121 3122
				continue;

			sc.nr_scanned = 0;
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3133
			/*
3134 3135 3136 3137
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3138
			 */
3139 3140 3141
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3142
		}
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3153
		/*
3154 3155 3156 3157 3158 3159
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3160
		 */
3161 3162
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3163

3164 3165 3166
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3167

3168 3169 3170 3171 3172 3173 3174
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3175
		/*
3176 3177
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3178
		 */
3179 3180
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3181
	} while (sc.priority >= 1 &&
3182
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3183

3184
out:
3185
	/*
3186
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3187 3188 3189 3190
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3191
	*classzone_idx = end_zone;
3192
	return order;
L
Linus Torvalds 已提交
3193 3194
}

3195
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3206
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3207 3208 3209 3210 3211 3212 3213 3214 3215
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3216
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3228

3229 3230 3231 3232 3233 3234 3235 3236
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3237 3238 3239
		if (!kthread_should_stop())
			schedule();

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3250 3251
/*
 * The background pageout daemon, started as a kernel thread
3252
 * from the init process.
L
Linus Torvalds 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3265
	unsigned long order, new_order;
3266
	unsigned balanced_order;
3267
	int classzone_idx, new_classzone_idx;
3268
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3269 3270
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3271

L
Linus Torvalds 已提交
3272 3273 3274
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3275
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3276

3277 3278
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3279
	if (!cpumask_empty(cpumask))
3280
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3295
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3296
	set_freezable();
L
Linus Torvalds 已提交
3297

3298
	order = new_order = 0;
3299
	balanced_order = 0;
3300
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3301
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3302
	for ( ; ; ) {
3303
		bool ret;
3304

3305 3306 3307 3308 3309
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3310 3311
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3312 3313 3314 3315 3316 3317
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3318
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3319 3320
			/*
			 * Don't sleep if someone wants a larger 'order'
3321
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3322 3323
			 */
			order = new_order;
3324
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3325
		} else {
3326 3327
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3328
			order = pgdat->kswapd_max_order;
3329
			classzone_idx = pgdat->classzone_idx;
3330 3331
			new_order = order;
			new_classzone_idx = classzone_idx;
3332
			pgdat->kswapd_max_order = 0;
3333
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3334 3335
		}

3336 3337 3338 3339 3340 3341 3342 3343
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3344 3345
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3346 3347 3348
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3349
		}
L
Linus Torvalds 已提交
3350
	}
3351

3352
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3353
	current->reclaim_state = NULL;
3354 3355
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3356 3357 3358 3359 3360 3361
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3362
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3363 3364 3365
{
	pg_data_t *pgdat;

3366
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3367 3368
		return;

3369
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3370
		return;
3371
	pgdat = zone->zone_pgdat;
3372
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3373
		pgdat->kswapd_max_order = order;
3374 3375
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3376
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3377
		return;
3378
	if (zone_balanced(zone, order, 0, 0))
3379 3380 3381
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3382
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3383 3384
}

3385
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3386
/*
3387
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3388 3389 3390 3391 3392
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3393
 */
3394
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3395
{
3396 3397
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3398
		.nr_to_reclaim = nr_to_reclaim,
3399
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3400
		.priority = DEF_PRIORITY,
3401
		.may_writepage = 1,
3402 3403
		.may_unmap = 1,
		.may_swap = 1,
3404
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3405
	};
3406
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3407 3408
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3409

3410 3411 3412 3413
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3414

3415
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3416

3417 3418 3419
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3420

3421
	return nr_reclaimed;
L
Linus Torvalds 已提交
3422
}
3423
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3429 3430
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3431
{
3432
	int nid;
L
Linus Torvalds 已提交
3433

3434
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3435
		for_each_node_state(nid, N_MEMORY) {
3436
			pg_data_t *pgdat = NODE_DATA(nid);
3437 3438 3439
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3440

3441
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3442
				/* One of our CPUs online: restore mask */
3443
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3444 3445 3446 3447 3448
		}
	}
	return NOTIFY_OK;
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3465 3466
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3467
		pgdat->kswapd = NULL;
3468 3469 3470 3471
	}
	return ret;
}

3472
/*
3473
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3474
 * hold mem_hotplug_begin/end().
3475 3476 3477 3478 3479
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3480
	if (kswapd) {
3481
		kthread_stop(kswapd);
3482 3483
		NODE_DATA(nid)->kswapd = NULL;
	}
3484 3485
}

L
Linus Torvalds 已提交
3486 3487
static int __init kswapd_init(void)
{
3488
	int nid;
3489

L
Linus Torvalds 已提交
3490
	swap_setup();
3491
	for_each_node_state(nid, N_MEMORY)
3492
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3493 3494 3495 3496 3497
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3508
#define RECLAIM_OFF 0
3509
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3510 3511 3512
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3513 3514 3515 3516 3517 3518 3519
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3520 3521 3522 3523 3524 3525
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3526 3527 3528 3529 3530 3531
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3574 3575 3576
/*
 * Try to free up some pages from this zone through reclaim.
 */
3577
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3578
{
3579
	/* Minimum pages needed in order to stay on node */
3580
	const unsigned long nr_pages = 1 << order;
3581 3582
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3583
	struct scan_control sc = {
3584
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3585
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3586
		.order = order,
3587
		.priority = ZONE_RECLAIM_PRIORITY,
3588 3589 3590
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.may_swap = 1,
3591
	};
3592 3593 3594
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3595
	unsigned long nr_slab_pages0, nr_slab_pages1;
3596 3597

	cond_resched();
3598 3599 3600 3601 3602 3603
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3604
	lockdep_set_current_reclaim_state(gfp_mask);
3605 3606
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3607

3608
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3609 3610 3611 3612 3613
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3614 3615
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3616
	}
3617

3618 3619
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3620
		/*
3621
		 * shrink_slab() does not currently allow us to determine how
3622 3623 3624 3625
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3626
		 */
D
Dave Chinner 已提交
3627 3628
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3629 3630 3631 3632
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3633
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3634 3635 3636 3637 3638 3639 3640 3641
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3642 3643 3644 3645 3646

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3647 3648 3649
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3650 3651
	}

3652
	p->reclaim_state = NULL;
3653
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3654
	lockdep_clear_current_reclaim_state();
3655
	return sc.nr_reclaimed >= nr_pages;
3656
}
3657 3658 3659 3660

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3661
	int ret;
3662 3663

	/*
3664 3665
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3666
	 *
3667 3668 3669 3670 3671
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3672
	 */
3673 3674
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3675
		return ZONE_RECLAIM_FULL;
3676

3677
	if (!zone_reclaimable(zone))
3678
		return ZONE_RECLAIM_FULL;
3679

3680
	/*
3681
	 * Do not scan if the allocation should not be delayed.
3682
	 */
3683
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3684
		return ZONE_RECLAIM_NOSCAN;
3685 3686 3687 3688 3689 3690 3691

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3692
	node_id = zone_to_nid(zone);
3693
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3694
		return ZONE_RECLAIM_NOSCAN;
3695 3696

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3697 3698
		return ZONE_RECLAIM_NOSCAN;

3699 3700 3701
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3702 3703 3704
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3705
	return ret;
3706
}
3707
#endif
L
Lee Schermerhorn 已提交
3708 3709 3710 3711 3712 3713

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3714
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3715 3716
 *
 * Reasons page might not be evictable:
3717
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3718
 * (2) page is part of an mlocked VMA
3719
 *
L
Lee Schermerhorn 已提交
3720
 */
3721
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3722
{
3723
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3724
}
3725

3726
#ifdef CONFIG_SHMEM
3727
/**
3728 3729 3730
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3731
 *
3732
 * Checks pages for evictability and moves them to the appropriate lru list.
3733 3734
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3735
 */
3736
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3737
{
3738
	struct lruvec *lruvec;
3739 3740 3741 3742
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3743

3744 3745 3746
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3747

3748 3749 3750 3751 3752 3753 3754 3755
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3756
		lruvec = mem_cgroup_page_lruvec(page, zone);
3757

3758 3759
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3760

3761
		if (page_evictable(page)) {
3762 3763
			enum lru_list lru = page_lru_base_type(page);

3764
			VM_BUG_ON_PAGE(PageActive(page), page);
3765
			ClearPageUnevictable(page);
3766 3767
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3768
			pgrescued++;
3769
		}
3770
	}
3771

3772 3773 3774 3775
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3776 3777
	}
}
3778
#endif /* CONFIG_SHMEM */
3779

3780
static void warn_scan_unevictable_pages(void)
3781
{
3782
	printk_once(KERN_WARNING
3783
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3784
		    "disabled for lack of a legitimate use case.  If you have "
3785 3786
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3787 3788 3789 3790 3791 3792 3793 3794 3795
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3796
			   void __user *buffer,
3797 3798
			   size_t *length, loff_t *ppos)
{
3799
	warn_scan_unevictable_pages();
3800
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3801 3802 3803 3804
	scan_unevictable_pages = 0;
	return 0;
}

3805
#ifdef CONFIG_NUMA
3806 3807 3808 3809 3810
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3811 3812
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3813 3814
					  char *buf)
{
3815
	warn_scan_unevictable_pages();
3816 3817 3818
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3819 3820
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3821 3822
					const char *buf, size_t count)
{
3823
	warn_scan_unevictable_pages();
3824 3825 3826 3827
	return 1;
}


3828
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3829 3830 3831 3832 3833
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3834
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3835 3836 3837 3838
}

void scan_unevictable_unregister_node(struct node *node)
{
3839
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3840
}
3841
#endif